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Abstract

Typological knowledge bases (KBs) such as
WALS (Dryer and Haspelmath, 2013) contain
information about linguistic properties of the
world’s languages. They have been shown
to be useful for downstream applications, in-
cluding cross-lingual transfer learning and lin-
guistic probing. A major drawback hamper-
ing broader adoption of typological KBs is
that they are sparsely populated, in the sense
that most languages only have annotations for
some features, and skewed, in that few features
have wide coverage. As typological features
often correlate with one another, it is possible
to predict them and thus automatically popu-
late typological KBs, which is also the focus
of this shared task. Overall, the task attracted
8 submissions from 5 teams, out of which the
most successful methods make use of such fea-
ture correlations. However, our error analysis
reveals that even the strongest submitted sys-
tems struggle with predicting feature values
for languages where few features are known.

1 Introduction

Linguistic typology is the study of structural prop-
erties of languages (Comrie, 1988; Croft, 2002;
Velupillai, 2012). Approaches to the categorisation
of the languages of the world according to their lin-
guistic properties are represented by, e.g., typologi-
cal features in databases such as WALS (Dryer and
Haspelmath, 2013), URIEL (Littell et al., 2017),
and AUTOTYP (Nichols et al., 2013), e.g. in terms
of their syntax, morphology, and phonology. One
example of such a typological feature is the basic
word order feature in WALS. For instance, English
is best described as a subject-verb-object (SVO)
language, whereas Japanese is best described as a
subject-object-verb (SOV) language.

Once a relatively niche topic in the NLP com-
munity, studying typological features has recently
risen in popularity and importance for a number

of reasons. The field has seen considerable ad-
vances in cross-lingual transfer learning, whereby
stable cross-lingual representations can be learned
on massive amounts of data in an unsupervised
way, be it for words (Ammar et al., 2016; Wada
et al., 2019) or, more recently, sentences (Artetxe
and Schwenk, 2019; Devlin et al., 2019; Conneau
and Lample, 2019; Conneau et al., 2020). This
naturally raises the question of what these repre-
sentations encode, and some have turned to typol-
ogy for potential answers (Choenni and Shutova,
2020; Zhao et al., 2020). In a similar vein, research
has shown that these learned representations can
be fine-tuned for supervised tasks, then applied to
new languages in a few- or even zero-shot fash-
ion with surprisingly high performance. This has
raised the question of what causes such surpris-
ingly high results, and to what degree typological
similarities are exploited by such models (Bjerva
and Augenstein, 2018a; Nooralahzadeh et al., 2020;
Zhao et al., 2020).

In addition to using typology for diagnostic pur-
poses, prior work has also found that typology
can guide cross-lingual sharing (de Lhoneux et al.,
2018). Finally, the relationship between typologi-
cal knowledge bases (KBs) such as WALS (Dryer
and Haspelmath, 2013) and language represen-
tations has been studied, which has shown that
knowledge base population methods can be used to
complete typological KBs (Malaviya et al., 2017;
Murawaki, 2017; Bjerva and Augenstein, 2018a;
Bjerva et al., 2019c), and that implications can
be discovered in typological KBs (Daumé III and
Campbell, 2007; Bjerva et al., 2019b).

The latter stream of work has provided the in-
spiration for this shared task on typological feature
prediction. As knowledge bases are notoriously
incomplete and require manual labour from (in this
case, linguistic) domain experts to create, populate
and maintain, high-performance methods for auto-
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Figure 1: Shared task WALS data superimposed on a map showing one point per language with train, dev, and test
splits; relative point sizes representing number of features for that language.

matic knowledge base population are highly desir-
able. While past approaches have shown the fea-
sibility of typological feature prediction, the con-
sidered evaluation setups have some flaws which
led to overestimated performance. Some papers
control for phylogenetic relationships between lan-
guages, e.g. not both training and testing on Slavic
languages, but little-to-no work has considered con-
trolling for geographical proximity. This is cor-
rected for in this shared task.

The shared task attracted 8 system submissions
from 5 teams for two subtasks (constrained and
unconstrained resources). In general, the systems
which make use of correlations between features,
and exploit observed features during inference, per-
form better, whereas those that do not make use
of observed features perform similarly to our base-
lines.

2 Task Description

The SIGTYP 2020 shared task is concerned with
predicting typological features from the World At-
las of Language Structures (WALS) (Dryer and
Haspelmath, 2013). For the task, participants were
invited to build systems to predict features for lan-
guages unseen at training time. The shared task
consisted of two subtasks: 1) the constrained set-
ting, for which only the provided training data may
be used; 2) the unconstrained setting, for which
training data may be extended with any external
source of information (e.g. pre-trained embeddings,
additional text, etc.)

Data Format For each instance, the following
information is provided: the language code, name,
latitude, longitude, genus, family, country code,
and features. At training time, both the feature
names and feature values are given, while at test
time, submitted systems are required to fill values
for the requested features. An example of a test
instance is given in Table 1.

2.1 Dataset

WALS comprises 2679 languages and a total of
192 feature categories (Dryer and Haspelmath,
2013). However, the database is quite sparse in
that many language-feature combinations lack an-
notation. Furthermore, it is a skewed database,
in that a handful of languages have annotations
for a large number of features, and some features
are annotated for almost all languages, whereas
some have very little coverage. In order to allevi-
ate data sparsity in the shared task, only the subset
of the languages in WALS with more than 3 fea-
tures available are considered. Furthermore, of
all the features of the languages so selected only
those present in more than 9 languages have been
retained. Most feature categories in WALS can
take several feature values. For instance, the fea-
ture Tone can take one of the values: No tones,
Simple tone system, or Complex tone
system. This dataset has been divided into train
set (90%), dev set (5%), and test set (5%).
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Lang code Name Lat Long Genus Family Count Code Features

Input
mhi Marathi 19.0 76.0 Indic Indo-European IN order of subject, object, and verb=? |

number of genders=?

jpn Japanese 37.0 140.0 Japanese Japanese JP case syncretism=? | order of adjective and noun=?

Output

mhi Marathi 19.0 76.0 Indic Indo-European IN order of subject, object, and verb=SOV |
number of genders=three

jpn Japanese 37.0 140.0 Japanese Japanese JP case syncretism=no case marking |
order of adjective and noun=demonstrative-Noun

Table 1: Data format for two test instances of the SIGTYP 2020 shared task dataset

3 Evaluation Setup

While a substantial amount of previous work deals
with feature prediction in typological databases
such as WALS (e.g. Malaviya et al. (2017); Mu-
rawaki (2017); Bjerva and Augenstein (2018a);
Bjerva et al. (2019c)), most such work does not
take into account that both phylogenetic and geo-
graphic proximity should be controlled for. Lan-
guages which have shared common ancestry will
often have similar typological features, hence train-
ing and evaluating on the same language family
will tend to inflate the expected performance of the
model (Bjerva et al., 2019a). In the data for this
shared task, we make sure to control for both of
these factors.

Our evaluation setup is constructed as follows.
We evaluate on a set of languages from small lan-
guages spread across the world, as defined by the
WALS macroareas: Mayan (North America), Tu-
canoan (South America), Madang (Papuanesia),
Mahakiranti (Eurasia), Northern Pama-Nyungan
(Australia), and Nilotic (Africa). In addition, we
include a subset of languages spoken around the
world, by randomly sampling 10% of the available
data in WALS. This yields two evaluation set-ups:
one in which we evaluate on unobserved languages,
controlling for both phylogenetic and geographic
relationships, and one in which we perform a ran-
dom evaluation as is common in previous work.

The languages in the test data vary in the number
of removed and present feature values so that the
blanking ratios are spread uniformly between 5%
and 95%. This will allow our analysis to investigate
whether some approaches benefit from observing
a large number of features and whether some are
robust to situations where only a small number of
features are observed (subsection 5.4).

In order to control for phylogenetic and geo-
graphic effects, we remove all languages from the
same language genus as the aforementioned lan-
guages from the training set, as well as all lan-

guages which are spoken within 1,000km of any
of these languages.1 This reduces the number of
languages in the training set to 1250. The task had
participants run their systems on the partial feature
information for our held-out languages and send
us the outputs of their systems, i.e., the imputed
features.

3.1 Evaluation Metrics

We report macro-averaged accuracies, meaning that
we first compute the average accuracy for each lan-
guage, i.e., the fraction of to be imputed features
correctly predicted by the participant’s system, then
average these language accuracies within each lan-
guage genus, and finally report the average of these
genus accuracies to rank participants as well as
all these accuracies for each language genus (Sec-
tion 5) to see whether systems behave differently
on different language families. We judge statisti-
cal significance using a non-parametric two-tailed
paired permutation test with 5k samples each.

3.2 Baselines

We provide two baselines. The first is a simple
lower-bound baseline based on observing feature
frequencies in WALS (Baseline frequency in Fig-
ure 2). For each unobserved feature in the test set,
we predict the most frequent feature value from the
training set.

The second uses the k-nearest neighbours (k-
NN) algorithm with a simple feature set to pre-
dict each unobserved feature, with k = 1 (Base-
line knn-imputation in Figure 2). Each language is
represented by a language vector (~l ∈ R64) trained
as a part of a multilingual character-based language
model (Östling and Tiedemann, 2017). During in-
ference, for a language l and unobserved feature y,
we find the nearest neighbour to ~l for which y has
been observed, similar to Bjerva and Augenstein
(2018a,b).

1Distances calculated with WALS language locations.
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3.3 Submissions

We received eight submissions from five teams
across the constrained and unconstrained subtasks,
as described below.

ÚFAL (Vastl et al. (2020), Charles University)
submitted a constrained system which ensembled
two approaches: first, estimating the correlation of
feature values within languages enables missing
feature prediction, and second, using a neural net-
work to predict whether feature values match a spe-
cific language after training one network with all
provided WALS feature values and pre-computed
language embeddings. By ensembling both using
confidence scores, they were able to improve on
each individual approach and produce the best ac-
curacy of all constrained and unconstrained sub-
missions.

CrossLingference (Jäger (2020), University of
Tübingen) submitted an unconstrained system us-
ing inferred phylogenetic trees. These were built
with Continuous Time Markov Processes using
Swadesh lists from the Automated Similarity Judg-
ment Project (ASJP), with k-nearest neighbour esti-
mations based on geographic information as back-
off for test set languages not in both Glottolog and
ASJP. Ancestral state reconstruction allows the in-
ference of features for ancestral states from the
provided surface features (WALS), and similarly,
for this year’s shared task, unknown feature values
for non-ancestral languages can be inferred individ-
ually by rerooting the tree to a related language.

NUIG (Choudhary (2020), NUI Galway) sub-
mitted a constrained system with independent clas-
sifiers to predict each WALS feature. The outputs
of independent classifiers are then fed into a shared
encoder with feed-forward and self-attention layers
in order to make use of feature correlations. Their
model does not use other known features for WALS
feature prediction at inference time, relying only
on the 5-dimensional inputs of longitude, latitude,
genus, family, and country-code.

NEMO (Gutkin and Sproat (2020), Google
London and Tokyo) submitted constrained sys-
tems which first computed probabilities of repre-
sented feature values across each language’s ge-
netic (genus and family), and areal (features from
languages within a 2,500 kilometre radius, com-
puted from provided latitude and longitude with
the Haversine formula), and implicational univer-
sals or rather, priors for certain features given com-
monly associated feature-value pairs in the data.

Figure 2: Macro-averaged rankings of all submissions

They compared several classifiers’ performance
using these sparse features, ultimately submitting
systems using ridge regression. The two submit-
ted systems differ in whether these features were
computed for the test set or only train and dev.

Panlingua (Kumar et al., 2020), a team effort
across KMI, Panlingua, and IIT KGP, submit-
ted constrained systems from three approaches:
two rule-based systems (one statistical, and one
frequency-based baseline) and one hybrid sys-
tem. Their baseline is similar to the organizers’
frequency-base baseline, except that it produces
the most frequent value for a feature within a genus
if available, backing off to language family, and
then the overall most-frequent value. The hybrid
system uses 180 different SVM classifiers for the
180 features which were present in the training
set. The statistical system provides a two-step back
off procedure if neither a feature has been seen
for either a languages’ genus or family in training:
first, finding the most frequent values in nearby
languages using Haversine distance, and if these
are too distant, turning to nearby language families.
This system performed best on the held-out data.

4 Results

Figure 2 shows the overall results and rankings
for all shared task submissions. The rankings use
macro-averaged accuracies as this equally weights
the controlled genera (the exception is the compari-
son to micro-averaged accuracies in Figure 3). This
year’s shared task was separated into two subtasks:
constrained systems which used only the WALS
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Figure 3: Comparison of macro-averaged and micro-
averaged accuracies across submissions

features and data provided, and unconstrained sys-
tems, open to use of any data or pre-trained models.
Accordingly, we have two winning systems: ÚFAL
for constrained, and CrossLingference for uncon-
strained, with ÚFAL producing the best results
overall across both subtasks.

Results for each unobserved genus, shown in
comparison to results across genera observed in
training, may be found in Table 2.

WALS feature value formatting is not standard-
ized and, unfortunately, the test data was released
containing additional tabs within the feature values
for some features, which adversely affected teams
who may have used tab-separation for data prepro-
cessing. Many teams accounted for this and submit-
ted feature values for all 2417 features across the
149 languages in the test data, but for two teams
this led to missing features in their submissions:
CrossLingference was missing 7 features across
7 languages, affecting their results by 1%; Panlin-
gua was missing 61 features across 15 languages
in their rule-based submission and 57 across 11 for
their additional two submissions, affecting their re-
sults by 2%. When evaluating without the affected
features, rankings were not changed, nor were there
significant differences between submitted systems.

4.1 Subtask 1: Constrained Setting

The nine systems in the constrained setting used
a diverse set of model features and architectures.
When computing pairwise significances with a
paired permutation test, we find that these systems
cluster into three groups, within each the systems
are not significantly different from each other: {1},

{2-3}, and {4-8}. Teams submitting multiple sys-
tems were able to improve their accuracy within
their own submissions, but we did not find that
their individual submissions were statistically sig-
nificantly different. Similar differences in overall
accuracy do not necessarily indicate statistically
significant margins: for example, the 1st and 2nd
systems have the same margin (0.05) as the 4th
and 7th, but the latter are not significantly different
while the former are.

Finer-grained analysis of results across con-
trolled genera, and comparing results across dif-
ferent levels of representation in the training data,
can be found in Section 5.

4.2 Subtask 2: Unconstrained Setting

CrossLingference submitted the only uncon-
strained system, which used additional data in the
form of Swadesh lists to infer phylogenetic trees.
This system outperforms the unconstrained knn-
imputation baseline on all evaluated conditions.
When we contextualize this submission by com-
paring it to those in the constrained setting, we find
that it joins the second cluster with the two submis-
sions from NEMO; interestingly, when features
are micro-averaged rather than macro-averaged,
these teams reorder, with CrossLingference out-
performing the two NEMO systems, seen in Fig-
ure 3. This is somewhat counter-intuitive, given
the way each system uses phylogenetic informa-
tion. While CrossLingference explicitly models
phylogenetic information through its model struc-
ture, NEMO takes a frequentist approach where
the counts and probabilities of each feature within
a language’s genus, family, and geographic area
are pre-computed and passed as sparse features to
feature classifiers. One might expect the latter to
perform better on a micro-average where overall
data frequencies would be more heavily weighted
than each genus, but this was not the case here. We
explore this further in Section 5.

5 Analysis

Our test data was constructed to enable compari-
son across controlled phylogenetic and geographic
relationships, and randomly sampled features from
languages covered in training as is common in pre-
vious work.
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Submission Tucanoan Madang Mahakiranti Nilotic Mayan N. Pama-Nyungan Other genera
(8) (9) (13) (15) (17) (24) (63)

ÚFAL 0.73 0.78 0.74 0.71 0.80 0.76 0.76
NEMO system2 0.71 0.72 0.72 0.76 0.76 0.67 0.69
NEMO system1 0.70 0.72 0.68 0.75 0.71 0.68 0.67
Panlingua stat 0.70 0.64 0.55 0.55 0.33 0.62 0.58
Panlingua hybrid 0.65 0.64 0.57 0.51 0.34 0.61 0.53
Panlingua freq 0.59 0.64 0.53 0.55 0.31 0.59 0.55
Baseline frequency 0.51 0.53 0.37 0.49 0.41 0.58 0.53
NUIG 0.51 0.56 0.35 0.45 0.32 0.45 0.48

CrossLingference 0.71 0.73 0.67 0.68 0.57 0.60 0.65
Baseline knn-imputation 0.48 0.57 0.46 0.48 0.32 0.52 0.51

Table 2: Macro-averaged results across each unobserved genus, as compared to genera with languages observed in
training with randomly sampled splits, shown with number of languages in each genus.

5.1 Overall Results

Table 2 compares submission accuracy on features
from diverse WALS macroareas unobserved in
training data, and other observed genera. We see
that overall rankings hold when evaluated on ob-
served languages. However, this is not the case
for several of our unobserved genera. With re-
spect to the shared task baselines, we find that the
frequency baseline, which naively picks the most
well-represented values for each feature, is most
representative for the larger ‘other genera’ cate-
gory, which represents the majority of the training
data but does not account for the diversity of typo-
logical features and values across many languages.
Nonetheless, for most of the unobserved genera,
the frequency baseline performed better than the
knn-imputation baseline, which was significantly
better for Mahakiranti only, primarily due to cor-
rect prediction of “OV” ordering across multiple
features.

Interestingly, while the first 3 systems perform
better on macro-averaged accuracy than micro-
averaged (Figure 3), this is not true for all other
systems, suggesting that they rely more on get-
ting frequent and “easy” features right, relying on
frequency in training data. Note that the six un-
observed genera come from separate macroareas
across six different continents, and have a more
even distribution of feature values than the ‘other
genera.’

5.2 Differences across Genera

Looking at specific genera, we see that Mayan
caused the greatest split between submitted sys-
tems, with the first two clusters performing very
well, and the frequency baseline performed bet-

ter than the majority of systems. On the other
end of the spectrum, certain genera (Tucanoan and
Madang) with well-represented features were rel-
ative equalizers, with the least variance in results
across the submitted systems.

Within those teams which submitted multiple
systems, there were only certain cases in which
these performed significantly differently from each
other. Panlingua submitted three different sys-
tems; two rule-based (one statistical and one
frequency-based), and one hybrid model. For
most genera, these performed very similarly, with
consistently better results from the statistical rule-
based system than the others, though there were
no statistically significant differences shown by
paired permutation tests. However, this was
not the case for Tucanoan, where the statisti-
cal (and to a less degree, hybrid) model signif-
icantly outperformed the other. These systems
had equal performance on four of the Tucanoan
languages {Cubeo,Secoya,Siona,Koreguaje}, but
quite divergent on the remaining four languages
{Desano,Retuarã,Tucano,Tuyuca}. This second set
required predicting values for several features con-
cerning the order of Subject, Object, Verb, which
the statistical model was able to correctly predict
through better back-off choices, but swayed by the
more frequent SVO languages in training, their fre-
quency baseline and SVM-based classifiers were
not.

5.3 Differences among Features

Table 3 shows the features with the highest and
lowest accuracies across all submissions. We find
that the features with highest accuracies also have
the most consistent performance across all systems,
and typically have the most frequent values for
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Feature # Langs Avg. Accuracy Std. Deviation

Highest

front rounded vowels 4 0.65 0.08
inclusive/exclusive forms in pama-nyungan 2 0.65 0.09
distributive numerals 3 0.64 0.08
optional double negation in svo languages 1 0.64 0.08
voicing in plosives and fricatives 4 0.63 0.08

Lowest

verb-initial with clause-final negative 1 0.44 0.21
multiple negative constructions in svo languages 3 0.41 0.27
suppletion in imperatives and hortatives 2 0.40 0.13
languages with two dominant orders of subject, object, and verb 2 0.39 0.20
the position of negative morphemes in verb-initial languages 9 0.38 0.28

Table 3: Features with the highest and lowest overall accuracies across all submissions, with number of languages
containing the feature in the test data (183 total languages)

those features. The most difficult features, on the
other hand, have the least frequently occurring val-
ues in the training data, and have higher variance –
interestingly, the top four systems were nonetheless
able to achieve greater than 65% accuracy on these
features, while the remaining systems’ accuracies
were ∼ 20%.

5.4 Impact of Blanking Ratio

Since the languages in our test sets all remove and
retain different numbers of features, we can see
whether the blanking ratio, that is, the ratio of fea-
tures that participants have to impute to the features
listed for that language, correlates with the perfor-
mance of the system in question on that language.
Calculating Pearson’s correlation coefficient for ev-
ery system individually, we realize that they range
from -0.23 (for a NEMO system) to 0.31 (for a
Panlingua system), almost all of which statistically
significantly different from 0.

Why do these correlations differ so much from
system to system? To answer that question, we
plot these correlation coefficients as a function of
the system’s overall performance in Figure 4. It
turns out that a system’s overall performance and
how sensitive it is to the blanking ratio are highly
correlated: the stronger systems are much more
negatively affected by the removal of more fea-
tures (their correlations are negative), weaker sys-
tems are not only not harmed, but seem to find the
languages where only a few features are blanked
harder still (having positive correlations).

6 Related Work

Previous work can be divided into research on pre-
dicting typological features automatically, cross-
lingual transfer learning which utilises typology
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Figure 4: Correlation coefficients (between blanking
ratio and language performance) for each system as a
function of that system’s performance. The correlation
of R = −0.88 is significant at p < .001.

to inform sharing, probing of representations for
what typological knowledge they encode, and fi-
nally, work on how best to represent a language in
terms of its typological features.

6.1 Predicting Typological Features

Typological knowledge bases are both sparse and
skewed in terms of language–feature annotations.
They are sparse in the sense that most languages
only have annotations for a handful of features and
skewed in the sense that a few features have much
wider coverage than others. Luckily, such features
often correlate with one another, which allows for
prediction of those features from others. For in-
stance, languages where the verb precedes the ob-
ject tend to have prepositions, e.g. Norwegian,
whereas languages where the object precedes the
verb word tend to have postpositions, e.g. Japanese.

A survey of approaches to prediction of features
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is provided in Ponti et al. (2019a, § 4.3). Some
common approaches include prediction based on
language representations learned as a by-product
of model training (Östling and Tiedemann, 2017;
Malaviya et al., 2017; Bjerva and Augenstein,
2018a; Bjerva et al., 2019c) and matrix factori-
sation (Murawaki, 2017; Bjerva et al., 2019a).

6.2 Typologically Informed Sharing
Cross-lingual sharing informed by typology has
been investigated for, among others, parsing
(Naseem et al., 2012; Täckström et al., 2013; Zhang
and Barzilay, 2015; de Lhoneux et al., 2018), lan-
guage modeling (Tsvetkov et al., 2016; Ponti et al.,
2019b), machine translation (Daiber et al., 2016;
Ponti et al., 2018), and morphological inflection
(Chaudhary et al., 2019). Many of these approaches
use language embeddings with sparse features en-
coding WALS feature values. Oncevay et al. (2020)
find that combining information from typological
databases with embeddings learned during training
of an NMT model can be beneficial for multilingual
NMT.

6.3 Typological Probing
Several recent papers study typological fea-
ture prediction as a probing task for evaluat-
ing cross-lingual sentence encoders (Choenni and
Shutova, 2020; Bjerva and Augenstein, 2018a;
Nooralahzadeh et al., 2020; Zhao et al., 2020).
Typically, hidden representations are probed for
whether or not they might encode a typological
feature by, e.g., using them in a separate classi-
fier (Malaviya et al., 2017; Bjerva and Augenstein,
2018a; Nooralahzadeh et al., 2020). Östling and
Tiedemann (2017) learn language representations
during multilingual language modelling and find
that the resulting representations can reproduce rel-
atively credible phylogenetic trees.

Bjerva and Augenstein (2018a) learn language
representations under NLP tasks such as POS tag-
ging and grapheme-to-phoneme conversion, and
find that typological features related to the task at
hand are sometimes encoded. Nooralahzadeh et al.
(2020) use a typological probing task in experi-
ments for zero- and few-shot NLI and QA, finding
that languages which share typological properties
benefit from sharing. Zhao et al. (2020) attempt to
induce language-agnostic representations, e.g. by
reducing the typological gaps between languages,
and find that this is beneficial for NLI and MT.
Gerz et al. (2018) show that there is a correlation

between typological features related to morphology
and model performance in language modelling, and
Cotterell et al. (2018) further show that inflectional
morphology affects performance in both n-gram
and LSTM-based language models.

7 Conclusions

This paper documents the first SIGTYP shared task
on prediction of typological features in WALS. The
8 system submissions from 5 teams showed that a
variety of different methods can be applied to the
task. Interestingly, the best system only achieved a
macro-averaged accuracy of 75%, indicating that
the task is far from solved. This further shows
that the evaluation set-up in which we controlled
for both phylogenetic relationships and geographic
proximity is a challenging one. We expect that fur-
ther exploration of unconstrained systems to have
the most potential for predicting features in such
cases, where little or nothing is known about a
language.
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