
Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 90–98

Online, July 10, 2020. c©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17

90

The NYU-CUBoulder Systems for
SIGMORPHON 2020 Task 0 and Task 2

Assaf Singer
New York University

USA
as12152@nyu.edu

Katharina Kann
University of Colorado Boulder

USA
katharina.kann@colorado.edu

Abstract

We describe the NYU-CUBoulder systems
for the SIGMORPHON 2020 Task 0 on ty-
pologically diverse morphological inflection
and Task 2 on unsupervised morphological
paradigm completion. The former consists
of generating morphological inflections from
a lemma and a set of morphosyntactic fea-
tures describing the target form. The latter
requires generating entire paradigms for a set
of given lemmas from raw text alone. We
model morphological inflection as a sequence-
to-sequence problem, where the input is the
sequence of the lemma’s characters with mor-
phological tags, and the output is the sequence
of the inflected form’s characters. First, we ap-
ply a transformer model to the task. Second, as
inflected forms share most characters with the
lemma, we further propose a pointer-generator
transformer model to allow easy copying of in-
put characters. Our best performing system for
Task 0 is placed 6th out of 23 systems. We
further use our inflection systems as subcom-
ponents of approaches for Task 2. Our best
performing system for Task 2 is the 2nd best
out of 7 submissions.

1 Introduction

In morphologically rich languages, a word’s sur-
face form reflects syntactic and semantic properties
that are expressed by the word. For example, most
English nouns have both singular and plural forms
(e.g., robot/robots, process/processes), which are
known as the inflected forms of the noun. Some lan-
guages display little inflection. In contrast, others
have many inflections per base form or lemma: a
Polish verb has nearly 100 inflected forms (Janecki,
2000) and an Archi verb has around 1.5 million
(Kibrik, 1998).

Morphological inflection is the task of, given
an input word – a lemma – together with mor-
phosyntactic features defining the target form, gen-

Lemma Features Inflected form
hug V;PST hugged
seel V;3;SG;PRS seels

Figure 1: Morphological inflection examples in En-
glish. A lemma and features are mapped to an inflected
form.

erating the indicated inflected form, cf. Figure
1. Morphological inflection is a useful tool for
many natural language processing tasks (Seeker
and Çetinoglu, 2015; Cotterell et al., 2016b), es-
pecially in morphologically rich languages where
handling inflected forms can reduce data sparsity
(Minkov et al., 2007).

The SIGMORPHON 2020 Shared Task consists
of three separate tasks. We participate in Task
0 on typologically diverse morphological inflec-
tion (Vylomova et al., 2020) and Task 2 on un-
supervised morphological paradigm completion
(Kann et al., 2020). Task 0 consists of generat-
ing morphological inflections from a lemma and
a set of morphosyntactic features describing the
target form. For this task, we implement a pointer-
generator transformer model, based on the vanilla
transformer model (Vaswani et al., 2017) and the
pointer-generator model (See et al., 2017). After
adding a copy mechanism to the transformer, it
produces a final probability distribution as a com-
bination of generating elements from its output
vocabulary and copying elements – characters in
our case – from the input. As most inflected forms
derive their characters from the source lemma, the
use of a mechanism for copying characters directly
from the lemma has proven to be effective for mor-
phological inflection generation, especially in the
low resource setting (Aharoni and Goldberg, 2017;
Makarov et al., 2017).

For our submissions, we further increase the size
of all training sets by performing multi-task train-



91

ing on morphological inflection and morphological
reinflection, i.e., the task of generating inflected
forms from forms different from the lemma. For
languages with small training sets, we also perform
hallucination pretraining (Anastasopoulos and Neu-
big, 2019), where we generate pseudo training in-
stances for the task, based on suffixation and pre-
fixation rules collected from the original dataset.

For Task 2, participants are given raw text and
a source file with lemmas. The objective is to gen-
erate the complete paradigms for all lemmas. Our
systems for this task consist of a combination of
the official baseline system (Jin et al., 2020) and
our systems for Task 0. The baseline system finds
inflected forms in the text, decides on the num-
ber of inflected forms per lemma, and produces
pseudo training files for morphological inflection.
Our inflection model then learns from these and,
subsequently, generates all missing forms.

2 Related Work

SIGMORPHON and CoNLL–SIGMORPHON
shared tasks. In recent years, the SIGMOR-
PHON and CoNLL–SIGMORPHON shared tasks
have promoted research on computational mor-
phology, with a strong focus on morphological in-
flection. Research related to those shared tasks
includes Kann and Schütze (2016b), who used
an LSTM (Hochreiter and Schmidhuber, 1997)
sequence-to-sequence model with soft attention
(Bahdanau et al., 2015) and achieved the best result
in the SIGMORPHON 2016 shared task (Kann and
Schütze, 2016a; Cotterell et al., 2016a). Due to
the often monotonic alignment between input and
output, Aharoni and Goldberg (2017) proposed a
model with hard monotonic attention. Based on
this, Makarov et al. (2017) implemented a neural
state-transition system which also used hard mono-
tonic attention and achieved the best results for
Task 1 of the SIGMORPHON 2017 shared task. In
2018, the best results were achieved by a revised
version of the neural transducer, trained with imita-
tion learning (Makarov and Clematide, 2018). That
model learned an alignment instead of maximizing
the likelihood of gold action sequences given by a
separate aligner.

Transformers. Transformers have produced
state-of-the-art results on various tasks such as ma-
chine translation (Vaswani et al., 2017) language
modeling (Al-Rfou et al., 2019), question answer-
ing (Devlin et al., 2019) and language understand-

ing (Devlin et al., 2019). There has been very little
work on transformers for morphological inflection,
with, to the best of our knowledge, Erdmann et al.
(2020) being the only published paper. However,
the widespread success of transformers in NLP
leads us to believe that a transformer model could
perform well on morphological inflection.

Pointer-generators. In addition to the trans-
former, the architecture of our model is also in-
spired by See et al. (2017), who used a pointer-
generator network for abstractive summarization.
Their model could choose between generating a
new element and copying an element from the input
directly to the output. This copying of words from
the source text via pointing (Vinyals et al., 2015),
improved the handling of out-of-vocabulary words.
Copy mechanisms have also been used for other
tasks, including morphological inflection (Sharma
et al., 2018). Transformers with copy mechanisms
have been used for word-level tasks (Zhao et al.,
2019), but, as far as we know, never before on the
character level.

3 SIGMORPHON 2020 Shared Task

The SIGMORPHON 2020 Shared Task is com-
posed of three tasks: Task 0 on typologi-
cally diverse morphological inflection (Vylomova
et al., 2020), Task 1 on multilingual grapheme-to-
phoneme conversion (Gorman et al., 2020), and
Task 2 on unsupervised morphological paradigm
completion (Kann et al., 2020). We submit systems
to Tasks 0 and 2.

3.1 Task 0: Typologically Diverse
Morphological Inflection

SIGMORPHON 2020 Task 0 focuses on morpho-
logical inflection in a set of typologically diverse
languages. Different languages inflect differently,
so it is not trivially clear that systems that work on
some languages also perform well on others. For
Task 0, systems need to generalize well to a large
group of languages, including languages unseen
during model development.

The task features 90 languages in total. 45 of
them are development languages, coming from five
families: Austronesian, Niger–Congo, Uralic, Oto-
Manguean, and Indo-European. The remaining 45
are surprise languages, and many of those are from
language families different from the development
languages. Some languages have very small train-
ing sets, which makes them hard to model. For



92

those cases, the organizers recommend a family-
based multilingual approach to exploit similarities
between related languages. While this might be
effective, we believe that using multitask training
in combination with hallucination pretraining can
give the model enough information to learn the task
well, while staying true to the specific structure of
each individual language.

3.2 Task 2: Unsupervised Morphological
Paradigm Completion

Task 2 is a novel task, designed to encourage work
on unsupervised methods for computational mor-
phology. As morphological annotations are limited
for many of the world’s languages, the study of mor-
phological generation in the low-resource setting
is of great interest (Cotterell et al., 2018). How-
ever, a different way to tackle the problem is by
creating systems that are able to use data without
annotations.

For Task 2, a tokenized Bible in each language
is given to the participants, along with a list of
lemmas. Participants should then produce com-
plete paradigms for each lemma. As slots in the
paradigm are not labeled with gold data paradigm
slot descriptions, an evaluation metric called best-
match accuracy was designed for this task. First,
this metric matches predicted paradigm slots with
gold slots in the way which leads to the highest
overall accuracy. It then evaluates the correctness
of individual inflected forms.

4 Methods

In this section, we introduce our models for Tasks
0 and 2 and describe all approaches we use, such
as multitask training, hallucination pretraining and
ensembling. The code for our models is available
online.1

4.1 Transformer

Our model is built on top of the transformer ar-
chitecture (Vaswani et al., 2017). It consists of an
encoder and a decoder, each composed of a stack
of layers. Each encoder layer consists, in turn, of a
self-attention layer, followed by a fully connected
layer. Decoder layers contain an additional inter-
attention layer between the two.

With inputs (x1, · · · , xT ) being a lemma’s char-
acters followed by tags representing the mor-

1https://github.com/AssafSinger94/
sigmorphon-2020-inflection

phosyntactic features of the target form, the en-
coder processes the input sequence and outputs hid-
den states (h1, · · · , hT ). At generation step t, the
decoder reads the previously generated sequence
(y1, · · · , yt−1) to produce states (s1, · · · , st−1).
The last decoder state st−1 is then passed through
a linear layer followed by a softmax, to generate a
probability distribution over the output vocabulary:

Pvocab = softmax(V st−1 + b) (1)

During training, the entire target sequence(
y1, · · · , yTy

)
is input to the decoder at once, along

with a sequential mask to prevent positions from
attending to subsequent positions.

4.2 Pointer-Generator Transformer
The pointer-generator transformer allows for both
generating characters from a fixed vocabulary, as
well as copying from the source sequence via point-
ing (Vinyals et al., 2015). This is managed by pgen –
the probability of generating as opposed to copying
– which acts as a soft switch between the two ac-
tions. pgen is computed by passing a concatenation
of the decoder state st, the previously generated
output yt−1, and a context vector ct through a linear
layer, followed by the sigmoid function.

pgen = σ(w[st; ct; yt−1] + b) (2)

The context vector is computed as the weighted
sum of the encoder hidden states

ct =
∑T

i=1
atihi (3)

with attention weights
(
at1, · · · , atT

)
. For each in-

flection example, let the extended vocabulary de-
note the union of the output vocabulary, and all
characters appearing in the source lemma. We
then use pgen, Pvocab produced by the transformer,
and the attention weights of the last decoder layer(
at1, · · · , atT

)
to compute a distribution over the

extended vocabulary:

P (c) = pgenPvocab(c) + (1− pgen)Pcopy(c), (4)

with
Pcopy(c) =

∑
i:xi=c

ati (5)

The copy distribution Pcopy(c) for each character
c is the sum of attention weights over all source
positions where xi = c. Note that if c is an out-of-
vocabulary (OOV) character, then Pvocab(c) is zero;
similarly, if c does not appear in the source lemma,

https://github.com/AssafSinger94/sigmorphon-2020-inflection
https://github.com/AssafSinger94/sigmorphon-2020-inflection


93

raw grip grips V;SG;3;PRS
grip gripped V;PST

generated
grips grip V;LEMMA
grips gripped V;PST
gripped grip V;LEMMA

Figure 2: English multitask training example (Task 0).

then
∑

i:xi=c a
t
i is zero. The ability to produce

OOV characters is one of the primary advantages
of pointer-generator models; by contrast models
such as our vanilla transformer are restricted to
their pre-set vocabulary.

4.3 Multitask Training
Some languages in Task 0 have small training sets,
which makes them hard to model. In order to
handle that, we perform multitask training, and,
thereby, increase the amount of examples available
for training.

Morphological reinflection. Morphological re-
inflection is a generalized version of the morpho-
logical inflection task, which consists of producing
an inflected form for any given source form – i.e.,
not necessarily the lemma –, and target tag. For
example:

(hugging; V;PST)→ hugged. (6)

This is a more complex task, since a model needs
to infer the underlying lemma of the source form
in order to inflect it correctly to the desired form.

Many morphological inflection datasets contain
lemmas that are converted to several inflected
forms. Treating separate instances for the same
source lemma as independent is missing an oppor-
tunity to utilize the connection between the differ-
ent inflected forms. We approach this by converting
our morphological inflection training set into one
for morphological reinflection as described in the
following.

From inflection to reinflection. Inflected forms
of the same lemma are grouped together to sets
of one or more (inflected form, morphological fea-
tures) pairs. Then, for each set, we create new train-
ing instances by inflecting all forms to one another,
as shown in Figure 2. We also let the model inflect
forms back to the lemma by adding the lemma as
one of the inflected forms, marked with the synthet-
ically generated LEMMA tag. The new training
set fully utilizes the connections between different

Hyperparameter Value
Embedding dimension 256
Encoder layers 4
Decoder layers 4
Encoder hidden dimension 1024
Decoder hidden dimension 1024
Attention heads 4

Table 1: The hyperparameters used in our inflection
models for both Task 0 and Task 2.

forms in the paradigm, and, in that way, provides
more training instances to our model.

4.4 Hallucination Pretraining

Another effective tool to improve training in the
low-resource setting is data hallucination (Anas-
tasopoulos and Neubig, 2019). Using hallucina-
tion, new pseudo-instances are generated for train-
ing, based on suffixation and prefixation rules col-
lected from the original dataset. For languages with
less than 1000 training instances, we pretrain our
models on a hallucinated training set consisting of
10,000 instances, before training on the multitask
training set.

4.5 Submissions and Ensembling Strategies

We submit 4 different systems for Task 0. NYU-
CUBoulder-2 consists of one pointer-generator
transformer model, and, for NYU-CUBoulder-4,
we train one vanilla transformer. Those two are our
simplest systems and can be seen as baselines for
our other submissions.

Because of the effects of random initialization
in non-convex objective functions, we further use
ensembling in combination with both architectures:
NYU-CUBoulder-1 is an ensemble of three pointer-
generator transformers, and NYU-CUBoulder-3 is
an ensemble of five pointer-generator transformers.
The final decision is made by majority voting. In
case of a tie, the answer is chosen randomly among
the most frequent predictions. Models participating
in the ensembles are from different epochs during
the same training run.

As previously stated, all systems are trained on
the augmented multitask training sets, and systems
trained on languages with less than 1000 train-
ing instances were pretrained on the hallucinated
datasets.



94

4.6 Task 2: Model description

Our systems for Task 2 consist of a combination of
the official baseline system (Jin et al., 2020) and our
inflection systems for Task 0. The system is given
raw text and a source file with lemmas, and gener-
ates the complete paradigm of each lemma. The
baseline system finds inflected forms in the text, de-
cides on the number of inflected forms per lemma,
and produces pseudo training files for morphologi-
cal inflection. Any inflections that the system has
not found in the raw text are given as test instances.
Our inflection model then learns from the files and,
subsequently, generates all missing forms. We use
the pointer-generator and vanilla transformers as
our inflection models.

For Task 2, we use ensembling for all submis-
sions. NYU-CUBoulder-1 is an ensemble of six
pointer-generator transformers, NYU-CUBoulder-
2 is an ensemble of six vanilla transformers, and
NYU-CUBoulder-3 is an ensemble of all twelve
models. For all models in both tasks, we use the
hyperparameters described in Table 1.

5 Experiments

5.1 Task 0

Data. The dataset for Task 0 covers 90 languages
in total: 45 development languages and 45 surprise
languages. For details on the official dataset please
refer to Vylomova et al. (2020).

Baselines. This year, several baselines are pro-
vided for the task. The first system has also been
used as a baseline in previous shared tasks on mor-
phological reinflection (Cotterell et al., 2017, 2018).
It is a non-neural system which first scans the
dataset to extract suffix- or prefix-based lemma-
to-form transformations. Then, based on the mor-
phological tag at inference time, it applies the
most frequent suitable transformation to an input
lemma to yield the output form (Cotterell et al.,
2017). The other two baselines are neural models.
One is a transformer (Vaswani et al., 2017; Wu
et al., 2020), and the second one is a hard-attention
model (Wu and Cotterell, 2019), which enforces
strict monotonicity and learns a latent alignment
while learning to transduce. To account for the
low-resource settings for some languages, the or-
ganizers also employ two additional methods: con-
structing a multilingual model trained for all lan-
guages belonging to each language family (Kann
et al., 2017), and data augmentation using halluci-

Sub-1 Sub-2 Sub-3 Sub-4 Base
Development Set

Low 88.71 88.02 84.90 84.07 -
Other 90.46 90.63 90.20 90.94 -
All 90.06 90.02 88.96 89.34 -

Test Set
Low 84.8 84.8 85.5 83.9 89.77
Other 89.7 89.8 89.8 90.2 92.43
All 88.6 88.7 88.8 88.8 91.81

Table 2: Macro-averaged results over all languages
on the official development and test sets for Task 0.
Low=languages with less than 1000 train instances,
Other=all other languages, All=all languages.

nation (Anastasopoulos and Neubig, 2019). Four
model types are trained for each neural architec-
ture: a plain model, a family-multilingual model, a
data augmented model, and an augmented family-
multilingual model. Overall, there are nine baseline
systems for each language. We compare our mod-
els to an oracle baseline by choosing the best score
over all baseline systems for each language.

Results. Our results for Task 0 are displayed in
Table 2. All four systems produce relatively sim-
ilar results. NYU-CUBoulder-3, our five-model
ensemble, performs best overall with 88.8% accu-
racy on average. We further look at the results for
low-resource (< 1000 training examples) and high-
resource (>= 1000 training examples) languages
separately. This way, we are able to see the ad-
vantage of the pointer-generator transformer in the
low-resource setting, where all pointer-generator
systems achieve an at least 0.9% higher accu-
racy than the vanilla transformer model. How-
ever, in the setting where training data is abun-
dant, the effect of the copy mechanism vanishes, as
NYU-CUBoulder-4 – our only vanilla transformer
– achieved the best results for our high-resource
languages.

5.2 Task 2

Data. For Task 2, a tokenized Bible in each lan-
guage is given to the participants, along with a list
of lemmas. Participants are required to construct
the paradigms for all given lemmas.

The languages for Task 2 are again divided into
development and test languages. Development lan-
guages are available for model development and
hyperparameter tuning, but are not used during the
final evaluation. The test languages are used for



95

System Baseline 1 Baseline 2 Sub-1 Sub-2 Sub-3
Test Set

slots macro slots macro slots macro slots macro slots macro
Basque 30 0.0006 27 0.0006 30 0.0005 30 0.0005 30 0.0007
Bulgarian 35 0.283 34 0.3169 35 0.2769 35 0.2894 35 0.2789
English 4 0.656 4 0.662 4 0.502 4 0.528 4 0.512
Finnish 21 0.0533 21 0.055 21 0.0536 21 0.0547 21 0.0535
German 9 0.2835 9 0.29 9 0.273 9 0.2735 9 0.2735
Kannada 172 0.1549 172 0.1512 172 0.111 172 0.1116 172 0.111
Navajo 3 0.0323 3 0.0327 3 0.004 3 0.0043 3 0.0043
Spanish 29 0.2296 29 0.2367 29 0.2039 29 0.2056 29 0.203
Turkish 104 0.1421 104 0.1553 104 0.1488 104 0.1539 104 0.1513
All 0.2039 0.2112 0.1749 0.1802 0.1765

Table 3: Results for all test languages on the official test sets for Task 2.

evaluation only, and do not have development sets.
The development languages are: Maltese, Persian,
Portuguese, Russian, Swedish. The test languages
are: Basque, Bulgarian, English, Finnish, German,
Kannada, Navajo, Spanish and Turkish.

Baselines. The baseline system for the task is
composed of four components, eventually produc-
ing morphological paradigms (Jin et al., 2020). The
first three modules perform edit tree (Chrupala,
2020) retrieval, additional lemma retrieval from the
corpus, and paradigm size discovery, using distri-
butional information. After the first three steps,
pseudo training and test files for morphological in-
flection are produced. Finally, the non-neural Task
0 baseline system (Cotterell et al., 2017) or the neu-
ral transducer by Makarov and Clematide (2018)
are used to create missing inflected forms.

Results. Systems for Task 2 are evaluated using
macro-averaged best-match accuracy (Jin et al.,
2020). Results are shown in in Table 3. All three
systems produce relatively similar results. NYU-
CUBoulder-2, our vanilla transformer ensemble,
performed slightly better overall with an average
best-match accuracy of 18.02%. Since our system
is close to the baseline models, it performs simi-
larly, achieving slightly worse results. For Basque,
our all-round ensemble NYU-CUBoulder-2 out-
performed both baselines with a best-match accu-
racy of 00.07%, achieving the highest result in the
shared task.

5.3 Low-resource Setting

As most inflected forms derive their characters
from the source lemma, the use of a mechanism

for copying characters directly from the lemma
has proven to be effective for morphological inflec-
tion generation, especially in the low-resource set-
ting (Aharoni and Goldberg, 2017; Makarov et al.,
2017). As all Task 0 datasets are fairly large, we
further design a low-resource experiment to inves-
tigate the effectiveness of our model.

Data. We simulate a low-resource setting by sam-
pling 100 instances from all languages that we
already consider low-resource, i.e., all languages
with less than 1000 training instances. We then
keep their development and test sets unchanged.
Overall, we perform this experiment on 21 lan-
guages.

Experimental setup. We train a pointer-
generator transformer and a vanilla transformer on
the modified datasets to examine the effects of the
copy mechanism. We keep the hyperparameters
unchanged, i.e., they are as mentioned in Table 1.
We use a majority-vote ensemble consisting of 5
individual models for each architecture.

Baseline. We additionally train the neural trans-
ducer by Makarov and Clematide (2018), which
has achieved the best results for the 2018 shared
task in the low-resource setting (Cotterell et al.,

System Trm Trm-PG Baseline
All 63.06 67.61 70.06

Table 4: Results on the official development data
for our low-resource experiment. Trm=Vanilla trans-
former, Trm-PG=Pointer-generator transformer, Base-
line=neural transducer by Makarov and Clematide
(2018).



96

Model: 1 2 3 4 5
Copy X X X
Multitask Train X X X
Hallucination X X X X

Table 5: System components for the ablation study for
Task 0. Each model is a transformer which contains a
combination of the following components: copy mech-
anism, multitask training and hallucination pretraining.

2018). The neural transducer uses hard monotonic
attention (Aharoni and Goldberg, 2017) and trans-
duces the lemma into the inflected form by a se-
quence of explicit edit operations. It is trained
with an imitation learning method (Makarov and
Clematide, 2018). We use this model as a reference
for the state of the art in the low-resource setting.

Results. As seen in Table 4, for the low-resource
dataset, the pointer-generator transformer clearly
outperforms the vanilla transformer by an average
accuracy of 4.46%. For some languages, such as
Chichicapan Zapotec, the difference is up to 14%.
While the neural transducer achieves a higher accu-
racy, our model performs only 2.45% worse than
this state-of-the-art model.2 We are also able to ob-
serve the use of the copy mechanism for copying of
OOV characters in the test sets of some languages.

6 Ablation Studies

Our systems use three components on top of the
vanilla transformer: a copy mechanism, multitask
training and hallucination pretraining. We further
perform an ablation study to measure the contri-
bution of each component to the overall system
performance. For this, we additionally train five
different systems with different combinations of
components. A description of which component
is used in which system for this ablation study is
shown in Table 5.

6.1 Results
Copy mechanism. Comparing models 2 and 4,
which are both trained on the original dataset, pre-
trained with hallucination and differ only by the
use of the copy mechanism, we are able to see that
adding this component slightly improves perfor-
mance by 0.06−0.16%. When comparing models 1
and 3, the copy mechanism decreases performance
slightly by 0.3% for the high-resource languages

2We could probably obtain better results with appropriate
hyperparameter tuning.

Model: 1 2 3 4 5
Development Set

Low 88.20 90.00 87.52 89.84 86.35
Other 90.63 92.66 90.93 92.60 90.63
All 90.02 92.04 90.13 91.96 89.63

Table 6: Ablation study for Task 0; development set
results, averaged over all languages. Low=languages
with less than 1000 train instances, Other=all other lan-
guages, All=all languages.

and 0.11% overall, but increases performance for
low-resource languages by 0.68%.

Multitask training. Unlike the copy mechanism,
multitask training actually consistently decreases
the performance of the models. Looking at mod-
els 1 and 2, training the pointer-generator trans-
former on the multitask dataset decreases accuracy
by 1.8− 2.03% for all three language groups. The
same happens for the vanilla transformer with an
accuracy decrease of 1.67− 2.32%. A possible ex-
planation are the relatively large training sets pro-
vided for the shared task, as this method is more
suitable for the low-resource setting.

Hallucination pretraining. In order to exam-
ine the effect of hallucination pretraining on our
submitted models, we now compare the pointer-
generator transformers trained on the multitask data
with and without hallucination pretraining (models
1 and 5). Hallucination pretraining shows to be
helpful: it increases the accuracy on low-resource
languages by 1.85%. The performance on the high-
resource languages is necessarily the same, as only
models for low-resource languages are actually pre-
trained.

7 Conclusion

We presented the NYU-CUBoulder submissions
for SIGMORPHON 2020 Task 0 and Task 2.

We developed morphological inflection models,
based on a transformer and a new model for the
task, a pointer-generator transformer, which is a
transformer-analogue of a pointer-generator model.
For Task 0, we further added multitask training
and hallucination pretraining. For Task 2, we com-
bined our inflection models with additional compo-
nents from the provided baseline to obtain a fully
functional system for unsupervised morphological
paradigm completion.

We performed an ablation study to examine the



97

effects of all components of our inflection system.
Finally, we designed a low-resource experiment
to show that using the copy mechanism on top of
the vanilla transformer is beneficial if training sets
are small, and achieved results close to a state-
of-the-art model for low-resource morphological
inflection.

Acknowledgments

We would like to thank the organizers of SIGMOR-
PHON 2020 Task 0 and Task 2.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Vol-
ume 1: Long Papers, pages 2004–2015.

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy
Guo, and Llion Jones. 2019. Character-level lan-
guage modeling with deeper self-attention. In The
Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, The Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019.,
pages 3159–3166.

Antonios Anastasopoulos and Graham Neubig. 2019.
Pushing the limits of low-resource morphological in-
flection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 984–
996. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Grzegorz Chrupala. 2020. Towards a machine-learning
architecture for lexical functional grammar parsing.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, S. J. Mielke, Garrett
Nicolai, Miikka Silfverberg, David Yarowsky, Ja-
son Eisner, and Mans Hulden. 2018. The conll-
sigmorphon 2018 shared task: Universal morpholog-
ical reinflection. In Proceedings of the CoNLL SIG-
MORPHON 2018 Shared Task: Universal Morpho-
logical Reinflection, Brussels, October 31 - Novem-
ber 1, 2018, pages 1–27. Association for Computa-
tional Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017.
Conll-sigmorphon 2017 shared task: Universal mor-
phological reinflection in 52 languages. In Proceed-
ings of the CoNLL SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection, Van-
couver, BC, Canada, August 3-4, 2017, pages 1–30.
Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016a. The SIGMORPHON 2016 shared task -
morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
Berlin, Germany, August 11, 2016, pages 10–22. As-
sociation for Computational Linguistics.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016b. Morphological smoothing and extrapolation
of word embeddings. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association
for Computer Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Alexander Erdmann, Micha Elsner, Shijie Wu, Ryan
Cotterell, and Nizar Habash. 2020. The paradigm
discovery problem. CoRR, abs/2005.01630.

Kyle Gorman, Lucas F.E. Ashby, Aaron Goyzueta,
Arya D. McCarthy, Shijie Wu, and Daniel You. 2020.
The sigmorphon 2020 shared task on multilingual
grapheme-to-phoneme conversion. In Proceedings
of the 17th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Klara Janecki. 2000. 300 polish verbs. Barron’s Edu-
cational Series.

Huiming Jin, Liwei Cai, Yihui Peng, Chen Xia, Arya D.
McCarthy, and Katharina Kann. 2020. Unsuper-
vised morphological paradigm completion. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/P17-1183
https://doi.org/10.18653/v1/P17-1183
https://doi.org/10.18653/v1/P17-1183
https://doi.org/10.1609/aaai.v33i01.33013159
https://doi.org/10.1609/aaai.v33i01.33013159
https://doi.org/10.18653/v1/D19-1091
https://doi.org/10.18653/v1/D19-1091
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/k18-3001
https://doi.org/10.18653/v1/k18-3001
https://doi.org/10.18653/v1/k18-3001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/W16-2002
https://doi.org/10.18653/v1/W16-2002
https://doi.org/10.18653/v1/p16-1156
https://doi.org/10.18653/v1/p16-1156
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/2005.01630
http://arxiv.org/abs/2005.01630
https://doi.org/10.1162/neco.1997.9.8.1735


98

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017. One-shot neural cross-lingual transfer for
paradigm completion. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1993–2003, Vancouver, Canada. Association for
Computational Linguistics.

Katharina Kann, Arya D. McCarthy, Garrett Nico-
lai, and Mans Hulden. 2020. The SIGMORPHON
2020 shared task on unsupervised morphological
paradigm completion. In Proceedings of the 17th
SIGMORPHON Workshop on Computational Re-
search in Phonetics, Phonology, and Morphology.
Association for Computational Linguistics.

Katharina Kann and Hinrich Schütze. 2016a. MED:
the LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In Pro-
ceedings of the 14th SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, Berlin, Germany, August 11, 2016,
pages 62–70.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 2: Short Papers.

Aleksandr E. Kibrik. 1998. The handbook of morphol-
ogy. In Andrew Spencer and Arnold M. Zwicky, edi-
tors, pages 455–476. Oxford: Blackwell Publishers.

Peter Makarov and Simon Clematide. 2018. UZH
at conll-sigmorphon 2018 shared task on universal
morphological reinflection. In Proceedings of the
CoNLL SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, Brussels, October
31 - November 1, 2018, pages 69–75. Association
for Computational Linguistics.

Peter Makarov, Tatiana Ruzsics, and Simon Clematide.
2017. Align and copy: UZH at SIGMORPHON
2017 shared task for morphological reinflection.
CoRR, abs/1707.01355.

Einat Minkov, Kristina Toutanova, and Hisami Suzuki.
2007. Generating complex morphology for machine
translation. In ACL 2007, Proceedings of the 45th
Annual Meeting of the Association for Computa-
tional Linguistics, June 23-30, 2007, Prague, Czech
Republic. The Association for Computational Lin-
guistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, pages 1073–1083.

Wolfgang Seeker and Özlem Çetinoglu. 2015. A graph-
based lattice dependency parser for joint morpholog-
ical segmentation and syntactic analysis. Trans. As-
soc. Comput. Linguistics, 3:359–373.

Abhishek Sharma, Ganesh Katrapati, and Dipti Misra
Sharma. 2018. IIT(BHU)-IIITH at conll-
sigmorphon 2018 shared task on universal
morphological reinflection. In Proceedings of
the CoNLL SIGMORPHON 2018 Shared Task:
Universal Morphological Reinflection, Brussels,
October 31 - November 1, 2018, pages 105–111.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neu-
ral Information Processing Systems 28: Annual
Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 2773–2781.

Ekaterina Vylomova, Jennifer White, Elizabeth
Salesky, Sabrina J. Mielke, Shijie Wu, Edoardo
Ponti, Rowan Hall Maudslay, Ran Zmigrod, Joseph
Valvoda, Svetlana Toldova, Francis Tyers, Elena
Klyachko, Ilya Yegorov, Natalia Krizhanovsky,
Paula Czarnowska, Irene Nikkarinen, Andrej
Krizhanovsky, Tiago Pimentel, Lucas Torroba
Hennigen, Christo Kirov, Garrett Nicolai, Ad-
ina Williams, Antonios Anastasopoulos, Hilaria
Cruz, Eleanor Chodroff, Ryan Cotterell, Miikka
Silfverberg, and Mans Hulden. 2020. The SIG-
MORPHON 2020 Shared Task 0: Typologically
diverse morphological inflection. In Proceedings
of the 17th SIGMORPHON Workshop on Compu-
tational Research in Phonetics, Phonology, and
Morphology.

Shijie Wu and Ryan Cotterell. 2019. Exact hard mono-
tonic attention for character-level transduction. In
Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 1530–1537. Association for
Computational Linguistics.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2020.
Applying the transformer to character-level transduc-
tion.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical er-
ror correction via pre-training a copy-augmented ar-
chitecture with unlabeled data. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 156–165.

https://doi.org/10.18653/v1/P17-1182
https://doi.org/10.18653/v1/P17-1182
https://doi.org/10.18653/v1/W16-2010
https://doi.org/10.18653/v1/W16-2010
https://doi.org/10.18653/v1/W16-2010
https://www.aclweb.org/anthology/P16-2090/
https://www.aclweb.org/anthology/P16-2090/
https://www.aclweb.org/anthology/P16-2090/
https://doi.org/10.18653/v1/k18-3008
https://doi.org/10.18653/v1/k18-3008
https://doi.org/10.18653/v1/k18-3008
http://arxiv.org/abs/1707.01355
http://arxiv.org/abs/1707.01355
https://www.aclweb.org/anthology/P07-1017/
https://www.aclweb.org/anthology/P07-1017/
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/631
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/631
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/631
https://www.aclweb.org/anthology/K18-3013/
https://www.aclweb.org/anthology/K18-3013/
https://www.aclweb.org/anthology/K18-3013/
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language
https://doi.org/10.18653/v1/p19-1148
https://doi.org/10.18653/v1/p19-1148
http://arxiv.org/abs/2005.10213
http://arxiv.org/abs/2005.10213
https://www.aclweb.org/anthology/N19-1014/
https://www.aclweb.org/anthology/N19-1014/
https://www.aclweb.org/anthology/N19-1014/

