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Abstract

This work investigates the most basic units
that underlie contextualized word embeddings,
such as BERT — the so-called word pieces.
In Morphologically-Rich Languages (MRLs)
which exhibit morphological fusion and non-
concatenative morphology, the different units
of meaning within a word may be fused, in-
tertwined, and cannot be separated linearly.
Therefore, when using word-pieces in MRLs,
we must consider that: (1) a linear segmen-
tation into sub-word units might not capture
the full morphological complexity of words;
and (2) representations that leave morpholog-
ical knowledge on sub-word units inaccessi-
ble might negatively affect performance. Here
we empirically examine the capacity of word-
pieces to capture morphology by investigating
the task of multi-tagging in Hebrew, as a proxy
to evaluating the underlying segmentation.
Our results show that, while models trained
to predict multi-tags for complete words out-
perform models tuned to predict the distinct
tags of WPs, we can improve the WPs tag pre-
diction by purposefully constraining the word-
pieces to reflect their internal functions. We
conjecture that this is due to the naı̈ve linear to-
kenization of words into word-pieces, and sug-
gest that linguistically-informed word-pieces
schemes, that make morphological knowledge
explicit, might boost performance for MRLs.

1 Introduction

Contextualized word-embedding models, such as
BERT (Devlin et al., 2019) and XLNet (Yang
et al., 2019), rely on sub-word units called word-
pieces (Johnson et al., 2017), that enable these
models to generalize over frequent character-
sequences and elegantly handle out-of-vocabulary
items (with minimal resort to character-based
models). This word-pieces architecture helps
the models make better predictions for complete

words without the need to keep a large dictionary
for all the possible word-forms in a language.

Effectively analyzing the internal content of
words is important for Morphologically-Rich Lan-
guages (MRLs) (Tsarfaty et al., 2010), that express
multiple units of meaning at word level. Due to
morphological ambiguity, the interpretation of the
many functions of a complete word has to be deter-
mined in the context of the utterance, making ex-
plicit the contribution of each linguistic sub-word
unit (a.k.a., morpheme) to the global meaning.

In this study we aim to investigate how well
morphological information is captured by contex-
tualized embedding models, or, more specifically,
by their underlying word-pieces. We hypothesize
that the word-pieces tokenization scheme in these
models, which is not reflective of the actual mor-
phology, will decrease the models ability to pre-
dict morphological functions on sub-word units.

In order to test this hypothesis we use Multi-
lingual BERT (Devlin et al., 2019) on the task
of multi-tagging raw words in a morphologically
rich and ambiguous language, Modern Hebrew.
Pre-neural studies on Hebrew found that explic-
itly modeling sub-word morphological informa-
tion, substantially improves results on tagging and
parsing down the NLP pipeline (More and Tsar-
faty, 2016; More et al., 2019). Here our results
show a significant drop in multi-tagging accuracy
in word-level settings compared to settings where
we aim to tag the distinct WPs. Nevertheless,
when we purposefully incorporate morphological
knowledge that reflect the internal functions of
WPs, the tagging of WPs substantially improves.

We conjecture that current word-pieces archi-
tectures might be sub-optimal for capturing com-
plex (e.g., fusional) morphology, and that more
morphologically-informed schemes may yield
better models, at least for MRLs.
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2 The Data: All Analytic Languages are
Alike, Each MRL Is Rich In Its Own
Way

Morphologically-Rich languages (MRLs) (Tsar-
faty et al., 2010) are languages that express syn-
tactic relations by inflection or agglutination at
word level. In NLP, MRLs often require segmen-
tation into sub-word units called morphemes as
part of the pre-processing in the NLP pipelines.
The term morphological fusion, or simply fusion,
refers to the degree to which morphemes are con-
nected to a word host or stem (Bickel and Nichols,
2013). There are three values for the degree of
fusion: isolating (low), concatenative (mild) and
non-concatenative (high). MRLs thus belong to
the mild- and high-fusion language groups.

In concatenative MRLs like Turkish (Swift,
1963) and Russian (Wade, 1992; Shevelov, 1957)
morphemes are linearly connected to the stem,
and so a concatenated word-form can easily be
segmented back into its composing morphemes.
Segmenting highly fusional MRLs (henceforth
fMRL), like Hebrew (Berman and Bolozky, 1978),
is not as simple, since words can be affixed in
such a way that makes the stem and/or affix un-
dergo morpho-phonological changes resulting in
ambiguous, syncretic word-forms. These changes
cannot be restored without morphological disam-
biguation of the word in context of the whole sen-
tence. Furthermore, word-forms may involve a
combination of a root and a template which are
intertwined via a non-concatenative process, and
both contribute meaning to the word-form.

Let us consider two examples for high fusion
morphological phenomena in Modern Hebrew.
First, consider the word-form !Mבצל. It can
either mean ‘in their shadow’ ∧Preposition-ב!) -צל!
Noun∧ !Mשלה-Possessive), ‘their onion’ -בצל!)
Noun∧ !Mשלה-Possessive)), ‘in the photographer’
( ∧Preposition-ב! ∧Definite-ה! !Mצל-Noun) or ‘Betse-
lem’ (!Mבצל-Proper Noun, a known organization).
The differences between the actual word-form
!Mבצל and the segments representing the compos-
ing morphemes in the different analyses, illustrate
how complex morphological processes in Hebrew
dictate the final word form — that is, the final
form is no longer re-constructable by (simply
concatenating) the morphological segments.
Among the different analyses, no interpretation is
a-priori more likely than others. Only in context
the correct analysis can be determined.

Next, let us consider the following two verbs:
שומר! (‘/somer’, keep.PRES.MASC.SG, ‘keeps’)
and נ¢שמור! (‘ni-/smor’, 1st.PL.FUT-keep.FUT, ‘we
will keep’). Here, although the affixes ,ו! נ¢! can be
separated from the root letters ,שמר! the analysis of
the verb cannot be constructed by analyzing the
mere character sequences, it must be understood
from the unified form of the morphemes.

So, from the first example, we observe that mor-
phological disambiguation is crucial, and that con-
textualized models may actually be good candi-
dates for morphological disambiguation where the
external context is crucial. But from the second
example, we learn that the linear order and strict
separation of words into word-pieces, as is done in
current contextualized embeddings, may be too ar-
bitrary and too strict, which may in turn undermine
the performance of tasks down the NLP pipeline,
particularly for fMRLs.

3 The Question: How Adequate are
Word Pieces for Modeling Morphology

The Goal This paper aims to investigate
whether word pieces capture sufficient morpho-
logical information about whole words. That is,
we ask whether the information contained in such
representations would allow to predict the multi-
ple functions of an input, i.e. a space-delimited
word-form. In particular, we empirically exam-
ine this capacity via the task of multi-tag assign-
ment in Hebrew — where each multi-tag reflects
the analyses of a single word-form bearing multi-
ple POS tags — as illustrated in our Hebrew ex-
ample in section 2. We conduct a series of exper-
iments on multi POS-tag assignment to raw word
forms in Hebrew texts, changing the granularity
of the input and the output to reflect word-internal
functions that are potentially captured by individ-
ual word-pieces.

The Task We define a multitag as a single label
that consists of the multiple POS tags reflecting
the categories of the (morphological) segments of
a word-form. For example, we assign the word-
form ,בבית! which means ‘in the house’, the mul-
titag IN∧DEF∧NN. In all of our experiments, the
model receives as input a sentence that underwent
a tokenization into word pieces by the built-in tok-
enizer of mBERT (Wolf et al., 2019). We then out-
put a multitag for each word as whole. Our models
vary in how much (and what kind of) information
is predicted for each of the word-pieces.
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Experimental Setup We use the Hebrew sec-
tion of the SPMRLs treebank, which consists of
6500 sentences from the daily newspaper Ha’aretz
(Sima’an et al., 2001). This corpus was manu-
ally annotated for POS tags at morpheme-level by
trained experts, and it is the accepted benchmark
for all morphological processing tasks in Hebrew.
We fine-tune the models using the Pytorch imple-
mentation of transformers by Wolf et al. (2019).
We use its standard BertTokenizer and BertForTo-
kenClassification, with multilingual BERT (cased)
as our model for fine-tuning.

We use the standard train set as input for fine-
tuning, and evaluate and report results on the dev
set. We report on two measures. The first is Exact
Match (EM), that is, the percentage of correct mul-
titag assignments from all multitag assignments to
word-forms in the evaluation set.

EM =
# correct multitags

# words
(1)

The second is Existence F1: precision and recall
on the existence of correct POS tags in a (possible
incorrect) multitag assignment. We compute Ex-
istence F1 based on the precision and recall that
follow. For calculating the precision and recall the
predicted multitag is split into its composing sim-
ple POS tags. Note that F1 gives partial credit on
correctly identified POS in the case of partial iden-
tification or wrong order, while EM doesn’t.

Precision =
# correctly predicted individual POS tags

# individual POS tags in all multitag assignments (2)

Recall =
# correctly predicted individual POS tags

# individual POS tags in all multitags in the evaluation set
(3)

3.1 Models
3.1.1 Oracle
We begin with an Oracle scenario that emulates
an English-like POS tagging scenario, where the
input is a sequence of strings, in our case gold pre-
segmented morphemes, and the output is a single
POS tag per segment. For fine-tuning, we use pre-
segmented words along with their corresponding
POS tags, as it is gold-annotated in our training
data. It should be noted that these segments un-
dergo additional tokenization into word pieces by
mBERT’s tokenizer, based on its internal word-
pieces lexicon, prior to fine-tuning.

For comparability with the other models, the
evaluation is done on raw words i.e., we combine

Before Tokenization: After Tokenization:
Nickname Word label WP label

Oracle ל! IN ל! IN
ה! DEF ה! DEF

משטרה! NN מש! NN
טר!## NN
ה!## NN

Word-Level למשטרה! IN-DEF-NN ל! IN-DEF-NN
משטרה!## IN-DEF-NN

Word-Level למשטרה! NN ל! NN
Host משטרה!## NN

Word-Level למשטרה! IN-DEF ל! IN-DEF
Prefix משטרה!## IN-DEF

Decomposed ל! IN ל! IN
ה! DEF ה! DEF

משטרה! NN מש! NN
טר!## NN
ה!## NN

Decomposed למשטרה! IN-DEF-NN ל! IN-DEF
Informed משטרה!## NN

Table 1: The Labeled Data we crafted for Fine-
Tuning the Models. We illustrate it for the Hebrew
form למשטרה! (to-the-police, IN-DEF-NN), before and
after the tokenization to WPs by BERT. At inference,
the Oracle is given pre-segmented words to tag. All
other models are given complete word-forms as input.

the predicted simple tags into a multitag and com-
pare it to the original multitag per word. This
scenario is of course not realistic, in the sense
that gold segmented data at morpheme level are
slow and costly to deliver. However, this setting
provides an empirical upper-bound for the per-
formance of BERT on a simple POS tagging in
Hebrew. We hypothesize that, had BERT’s tok-
enization into word pieces been morphologically
informed, the model’s accuracy in word-level set-
tings could rise up to the level of performance on
this pre-segmented Oracle scenario.

3.1.2 Word-Level Multi-tagging
Moving on to a realistic scenario, in our next task
the input to the model is a sequence of raw word
forms, and the output is a sequence of multi-tags,
one multi-tag (i.e., multiple POS) per word. Dur-
ing fine-tuning, each word piece (WP) is assigned
the multitag of the complete original word. Unlike
the Oracle setting, where the input for fine-tuning
reflected morphological phenomena, here no mor-
phological knowledge is incorporated at all. Dur-
ing inference, the input is composed of raw words
which undergo BERT’s tokenization into word-
pieces (WP), and each WP gets assigned one of
the multi-tags encountered during fine-tuning.

The goal here is to examine the ability of
the BERT-based representations to cope with a
large space of complex labels (multi-tags) that re-
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Model Nickname Oracle Word-Level Word-Level Informed Decomposed Decomposed Informed
Model Input Gold-Morph. Segment Word Word Word Word
Model Output Tag Multi-tag {Prefix|Host} Multi-tag WP-based Multi-tag WP-based Multi-tag
Fine-Tuned on Tagged Segments Multi-tagged Words {Single|Multi}-tagged Word-Pieces
Exact Match 94.44 92.45 92.05 69.47 86.66
Existence F1 95.51 94.09 94.22 76.65 88.71

Table 2: Empirical Results. We report EM and F1 on raw-words’ multi-tags, for all models and training regimes.

sult from different morphological (and morpho-
phonological) processes that construct words in an
MRL. This setting has several drawbacks; first, it
is unable to generalize to an unseen composition
of tagged-pieces into a new multitag, and second,
throughout the process, the internal morphological
segmentation of the tokens remains inaccessible.

3.1.3 Prefix/Host Multi-tagging

Retaining our realistic settings, where the input is
composed of raw words, we split multi-tagging
into two independent tasks. One predicts the
multi-tag reflecting the prefix of that word, and
the other predicts the multi-tag of its host (plus
pronominal clitics).1 The input for fine-tuning, in
both cases, presents raw words having undergone
BERT’s tokenization, and each WP is assigned the
multi-tag of the Prefix (/Host) of that word.

For the prefix task, we implemented a func-
tion that looks for all known tags that represent
prefixes in Hebrew, and truncated the complete
multitag of the word to include only them. For
instance, a word that is assigned the multi-tag
IN∧DEF∧NN will now get assigned the multi-tag
IN∧DEF. Words that don’t contain a prefix get as-
signed the label ‘–‘. Likewise for the host, words
are assigned only the part of the multi-tag that
doesn’t contain prefix tags. For the above exam-
ple, this would simply be NN. Fine-tuning is per-
formed independently for each of the tasks. At
inference time, the predictions for the prefix and
host are combined into a single multi-tag, com-
pared against the gold multi-tag for evaluation.

One technical advantage of this setting is that it
substantially limits the label-space that needs to be
learned per word. Also, unlike the previous sce-
nario, the model is able to generate unseen mul-
titags (to some extent) by creating previously un-
seen Prefix-Host compositions.

1Since Hebrew can stack prefixes before a host, the pre-
fixes require a multi-tag. Similarly, hosts with pronominal
clitics may also be assigned a multi-tag rather than one tag.

3.1.4 Decomposed Multi-tagging
In this scenario we aim to assign to each WP a
single tag that corresponds to the actual function
of that WP.

For fine-tuning, we use the same data as in the
Oracle scenario. That is, we use pre-segmented
morphemes that undergo BERT’s tokenization,
paired with their corresponding tags, a single tag
per WP. Now, at inference time, whole words
undergo BERT’s tokenization into word-pieces.
Since the model was trained (fine-tuned) to pre-
dict a single tag per word-piece, the hope is that we
could predict the single tag that reflects the func-
tion of this specific WP. We then combine all the
(unique) predictions for all the WPs in the word to
concatenate them to a single multi-tag.

This setting tests whether the tokenization al-
gorithm outputs WPs that are reflective of the ac-
tual morphemes the model was fine-tuned on. If
this is the case, predicting a single POS tag per
WP would perform similarly to the Oracle setting.
Howvere, since the internal decomposition of the
words at inference time is determined solely by
BERT’s WPs, any diversion between the WP tok-
enization and the gold morphological decomposi-
tion is expected to negatively affect performance.

3.1.5 Morphologically-Informed
Decomposed Multi-tagging

Here again the input for the task consists of raw
words, tokenized by BERT into word-pieces. As
output we now aim to assign each word-piece a
multi-tag that reflects exactly its own content.

The input to fine-tuning thus has to be modified.
We use raw words having undergone BERT’s to-
kenization into WPs, and each WP is assigned a
multitag label that reflects the actual POS tag(s)
that this part of the word contains (an informed
multi-tag). We obtain these informed multi-tags
using a deterministic procedure that compares the
WPs proposed by BERT to the gold morphological
segmentation we have for the training data. Dur-
ing training, we can unambiguously detect which
morphemes are relevant for the WP only, and the



208

WP gets assigned the multi-tag of the actual mor-
phemes it contains. At inference time we provide
BERT-tokenized words as input, and each WP gets
assigned an informed multi-tag as observed dur-
ing fine-tuning. For evaluation, we combine the
prediction made on all WPs of a word to a sin-
gle ordered multi-tag, and compare it to the gold
multi-tag of that word. Interestingly, this setting
can potentially generate previously unseen multi-
tags, and it maximizes the extent to which we can
access word-internal structure during fine-tuning.

4 Results

The input, output and training regimes for our
models are illustrated in Table 1. Table 2 presents
the results on multi-tagging for all of our models.

As expected, the Oracle scenario assigning sin-
gle tags to gold segments outperformed all other
models that aim to multi-tag complete words. For
word-level multi-tagging, the word-level model
performed at the same level as the Prefix/Host
model — narrowing down the labels’ space in this
fashion does not seem to improve results or pro-
vide any further generalization capacity.

Purposefully fine-tuning our model to assign a
single POS tag per WP (trained on our gold mor-
phological data) did not help, in fact it dramati-
cally hurts performance. This indicates that WPs
in and of themselves do not coincide with the no-
tion of morphemes. Curiously though, inform-
ing BERT’s WPs as to their own internal func-
tion prior to fine-tuning significantly improves the
results compared to the model trained to assign a
POS-per-WP based on gold morphology.

This last result suggests that, while current WPs
do not reflect morphological structure and lose
morphological distinctions in their sub-word units,
informing these word-units as to their own internal
functions can provide a major performance boost.
So far, we only incorporated such morphologi-
cal information during fine-tuning. We conjecture
that informing the WP algorithm earlier on, prior
to pre-training, with a linguistically-informed de-
composition into WPs, may greatly advance the
performance of contextualized models for fMRLs.

5 Related Work

Although the term ’word pieces’ was only coined
in 2017, by Johnson et al. (2017), the idea that
sub-word segmentation might be useful for down-
stream tasks was already well-known and studied,

especially in the field on Neural Machine Trans-
lation. In 2010 Luong et al. (2010) explicitly
showed that incorporating morphological knowl-
edge in the translation process significantly im-
proves translation. In 2017 Belinkov et al. (2017)
found that for learning morphology it is better
to use character based representation rather than
word-based ones. They also found that neural net-
works encode morphology in the lower layers of
the network, which might explain why mere fine-
tuning is insufficient to capture morphological
complexity. Later, Straka et al. (2019) achieved
SoTA on POS tagging on 54 languages, includ-
ing Heberew, but was using BERT embeddings
along with character level embeddings and Fast-
text (Bojanowski et al., 2017) word embeddings
on gold morphology, which strengthen our claim
that word pieces by themselves don’t capture mor-
phology well. This was also supported by Mielke
and Eisner (2019), that explicitly mentioned the
non-concatenativity of Hebrew and Arabic as the
major drawback of sub word tokenization systems.

6 Conclusion

In this work we examined the adequacy of BERT’s
word-pieces as sub-word units for representing
complex morphology. We chose to investigate
multi-tagging in a high fusional language, as a
proxy for assessing the underlying segmentation
into distinct morphemes. We expected that if dis-
tinct word-pieces indeed reflect units of meaning,
then tagging them would be as accurate as it is for
languages that assign a single tag per word. Our
results show that the current word pieces do not
reflect actual morphology, resulting in decreased
performance for tagging complex Hebrew words.
Nonetheless, we found that imposing morpholog-
ical knowledge during fine-tuning (an Informed
setup) is indeed helpful, albeit a bit late. We con-
jecture that pre-training with a morphologically-
informed word-pieces scheme that reflects a com-
plex morphological reality, has the potential to im-
prove multi-tagging, as well as other tasks down
the pipeline, in Hebrew and other fMRLs.
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