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Abstract
We describe the design and findings of the
SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. Par-
ticipants were asked to submit systems which
consume a sequence of graphemes then emit
output a sequence of phonemes representing
the pronunciation of that grapheme sequence
in one of fifteen languages. Nine teams sub-
mitted a total of 23 systems, at best achiev-
ing an 18% relative reduction in word error
rate (macro-averaged over languages), versus
strong neural sequence-to-sequence baselines.
To facilitate error analysis, we publicly release
the complete outputs for all systems—a first
for the SIGMORPHON workshop.

1 Introduction
Speech technologies such as automatic speech
recognition and text-to-speech synthesis require
mappings between written words and their pronun-
ciations. Even recent attempts to do away with ex-
plicit pronunciation models via “end-to-end” sys-
tems (e.g., Watts et al. 2013, Chan et al. 2016,
Sotelo et al. 2017, Chiu et al. 2018, Pino et al. 2019,
McCarthy et al. 2020) must induce an implicit
mapping of this sort. For open-vocabulary ap-
plications, these mappings must generalize to un-
seen words, and so must be expressed as mappings
between sequences of graphemes—i.e., glyphs—
and phonemes or phones—i.e., sounds.1
For some languages, this mapping is suffi-

ciently consistent that a literate, linguistically-
sophisticated speaker can simply enumerate the
necessary rules; this sequence of rules can then

1We note that the term phoneme is a well-defined ob-
ject in linguistic theory, and that referring to the elements of
transcriptions as phonemesmakes strong ontological commit-
mentswhichmay not be appropriate for a given pronunciation
dictionary (cf. Lee et al. 2020, fn. 4). Therefore, in what fol-
lowswe use the term phone, in a pre-theoretical sense, to refer
to transcriptions symbols.

be compiled into a finite-state transducer (e.g.,
Sproat 1996, Black et al. 1998). However, rule-
based systems require linguistic expertise to de-
velop and maintain, and may be brittle or inac-
curate. Therefore, modern speech engines usu-
ally treat grapheme-to-phoneme conversion as a
machine learning problem, either using generative
models expressed as weighted finite-state trans-
ducers (e.g., Taylor 2005, Bisani and Ney 2008,
Wu et al. 2014, Novak et al. 2016) or discrimi-
native models based on conditional random fields
(Lehnen et al. 2013), recurrent neural networks
(e.g., Rao et al. 2015, Yao and Zweig 2015, van
Esch et al. 2016, Lee et al. 2020) or transformers
(Yolchuyeva et al. 2019).
While the grapheme-to-phoneme conversion

(or G2P) task is crucial to speech technology,
the vast majority of published research focuses
on English or a few other highly-resourced, glob-
ally hegemonic languages for which free pronun-
ciation dictionaries are available. One excep-
tion, a recent study by van Esch et al. (2016),
compares naïve rule-based systems and neural
network-based sequence-to-sequence models for
20 languages; unfortunately, the data used in this
study is proprietary. Like many other types of lan-
guage resources, pronunciation dictionaries are ex-
pensive to create and maintain, and until recently,
free high-quality dictionaries were only available
for a small number of languages.
This limitation to a handful of languages is

unfortunate because, as we discuss below, writ-
ing systems are almost as diverse as languages
themselves. Therefore, we present a multilingual
grapheme-to-phoneme conversion task with data
sets, evaluation metrics, and strong baselines. In
this we are aided by the recent release ofWikiPron
(Lee et al. 2020), a freely available collection of
pronunciation dictionaries. The resulting task, the
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first of its kind, included data from fifteen lan-
guages and scripts, and received 23 submissions
from nine teams.

2 Data

Fifteen language/script pairs were chosen to cover
a wide variety of script types. Ten of the scripts
are alphabetic systems known to descend from
Phoenician (and ultimately from Egyptian hiero-
glyphs); of these, seven are variants of the Latin
script. Two others, the Armenian aybuben and the
Georgian mkhedruli, are alphabetic scripts of un-
known origin, but may ultimately be modeled on
Greek (Sanjian 1996). The devanāgarī script used
to write Hindi, is an alphasyllabary, in which most
glyphs—known traditionally as akṣara—denote
consonant and consonant-vowel sequences. Vow-
els (or their absence) are primarily indicated with
diacritics. It too is thought to ultimately descend
from Phoenician. Hiragana, one of several scripts
used to write Japanese, is a syllabary, in which
most glyphs denote entire syllables The glyphs
themselves are derived from Chinese characters.
Like hiragana, the Korean hangul script is also a
syllabary It may have been have been inspired by
‘phags-pa, a Tibetan alphabet which is itself a dis-
tant cousin of devanāgarī (Ledyard 1966).
It is important to note that languages—and the

scripts used to write them—differ enormously in
their affordances for grapheme-to-phoneme con-
version. Writing systems are, at their core, lin-
guistic analyses, albeit sometimes quite naïve, and
(as argued in DeFrancis 1989) explicitly encode
details of the phonological and phonetic structure
of the language they are used to write. Still, the
exact details of these mappings can vary greatly
between even closely related languages and/or
scripts. Whereas related languages may retain tell-
tale grammatical features across millennia, dozens
of languages have abruptly switched from one
script to another in just the last century, usually
in response to political—rather than linguistic—
concerns. It is thus unsurprising that Bjerva and
Augenstein (2018) find grapheme embeddings in-
duced by training G2P systems are poorly corre-
lated with gross phonological typology, and exper-
iments with “polyglot” G2P models (e.g., Peters
et al. 2017) have produced equivocal results.
While we did not pay particular attention to

language families when selecting language fam-
ily, we note that nine of the languages are Indo-

European (though no two are closely related) and
none of the remaining six—Adyghe, Georgian,
Hungarian, Japanese, Korean, and Vietnamese—
are known to be genetically related to each other.

3 Methods

The primary data for the shared task is derived
from WikiPron (Lee et al. 2020), a massively
multilingual resource of grapheme–phoneme pairs
extracted from Wiktionary, an online multilin-
gual dictionary. Depending on language and
script, these pronunciations may be manually en-
tered by human volunteers—usually working from
language-specific pronunciation guidelines—or
generated using server-side scripting routines;
some languages (e.g., Bulgarian and French) use
a mixture of the two approaches. WikiPron is
configured to apply case-folding where appropri-
ate. It removes stress and syllable boundary mark-
ers and segments pronunciation strings—encoded
in the International Phonetic Alphabet—using the
segments library (Moran and Cysouw 2018).
For this task, words with multiple

pronunciations—both homographs and free
pronunciation variants—were excluded, since
pronunciations for such words are often selected
by a rather different procedure: they are chosen
from a small, predetermined set of possible
pronunciations using classifiers conditioned on
local context (e.g., Gorman et al. 2018).
Training and development data for ten

languages—the “development” languages—was
released at the start of the task; equivalent data
for the five “surprise” languages was released
one week before the start the evaluation phase.
Table 1 provides sample training data pairs for the
development and surprise languages.
As there is considerable variation in the num-

ber of available examples for any given language,
each languages’ data was downsampled to 4,500
examples. We regard as a “medium-resource” set-
ting for this task; these data sets are, for instance,
several orders of magnitude smaller than the pro-
prietary G2P data used by van Esch et al. (2016).
Following similar procedures in other shared tasks
(e.g., Cotterell et al. 2017), words were sampled
according to their frequency in the largest avail-
able Wortschatz (Goldhahn et al. 2012) corpus for
that language. These frequencies were smoothed
by adding a 0.3 pseudo-count to the frequency of
all WikiPron entries. Wortschatz frequency data
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Language ISO 639-2 Example training data pair
Armenian arm մեծաքանակ m ɛ t͡ s ɑ kʰ ɑ n ɑ k
Bulgarian bul североизток s ɛ v ɛ r o i s t o k
French fre hébergement e b ɛ ʁ ʒ ə m ɑ̃
Georgian geo ფორმიანი pʰ ɔ r m ɪ ɑ n ɪ
Modern Greek gre καθισμένες k a θ i z m e n e s
Hindi hin कैलकुलेटर k ɛː l k ʊ l eː ʈ ə ɾ
Hungarian hun csendőrök t͡ ʃ ɛ n d øː r ø k
Icelandic hin þýskaland θ i s k a l a n t
Korean kor 말레이시아 m a̠ ɭ ɭ e̞ i ɕʰ i a̠
Lithuanian lit galinčiais ɡ aː lʲ ɪ nʲ tʲ ʃʲ ɛ j s

Adyghe ady бзыукъолэн b z ə w qʷ a l a n
Dutch dut aanduiding aː n d œ y̯ d ɪ ŋ
Japanese hiragana jpn どちらさま d o̞ t͡ ɕ i ɾ a̠ s a̠ m a̠
Romanian rum bineînțeles b i n e ɨ n t s e l e s
Vietnamese vie duyên phận z w i ə n ˧˧ f ə n ˧˨ ʔ

Table 1: Languages, language codes, and example training data pairs for the shared task.

was not available for Adyghe, so uniform sam-
pling was used for this language.
The downsampled data was then randomly split

into training (80%; 3,600 examples), development
(10%; 450 examples), and testing (10%; 450 exam-
ples) shards. For some languages, Wiktionary con-
tains pronunciations for both lemmas (i.e., head-
words, citations forms) and inflection variants; for
others, pronunciations are only available for lem-
mas. We hypothesized that cases where one inflec-
tional variant of a lemma is present in the train-
ing data and another in the test data—as might
occur if the data was split totally at random—
would make the overall task somewhat easier. To
forestall this possibility, the splitting procedure
was constrained so that all inflectional variants of
any given lemma—according to the UniMorph 2
(Kirov et al. 2018) paradigm tables, also extracted
from Wiktionary—are limited to a single shard.
For example, since the French word acteur ‘actor’
occurs in the training shard, so must its plural form
acteurs. This additional constraint was applied
to all languages but Japanese and Vietnamese, for
which no UniMorph data was available. We note
thatWiktionary does not generally provide pronun-
ciations for inflectional variants in Japanese, and
that Vietnamese is a highly isolating language with
no discernable system of inflection (Noyer 1998),
so this is unlikely to have introduced bias.

4 Evaluation
The primary metric for this task was word error
rate (WER); we also report phone error rate (PER).
WER This is the percentage of words for which
the hypothesized transcription sequence is not
identical to the gold reference transcription; lower
WER indicates better performance. Following
common practice in speech research, we multiply
theWER by 100 and display it as a percentage. We
choose this as the primary metric for the shared
task because we hypothesize that any G2P error,
no matter how small, will result in a substantial
degradation in subjective quality for downstream
speech applications.
PER This is a more forgiving measure measur-
ing the normalized distance (i.e., in number of in-
sertions, deletions, and substitutions) between the
predicted and reference transcriptions. It is com-
puted by summing the minimum edit distance—
computed with the Wagner and Fischer (1974)
algorithm—between prediction and reference tran-
scriptions, and dividing by the sum of the refer-
ence transcription lengths. That is,

PER := 100×
∑n

i edits(p, r)∑n
i |r|

where p is the predicted pronunciation sequence,
r is the reference sequence, and edits(p, r) is the
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Levenshtein distance between the two. Once
again, we multiply it by 100, though strictly speak-
ing it is not a true percentage because it can hypo-
thetically exceed 100. As with WER, lower PER
indicates better performance.
Participants were provided with two evalua-

tion scripts: one which computes the two metrics
for a single language, and another which macro-
averages the metrics across all languages.

5 Baselines
Three baselines were made available at the start
of the task. To aid reproducibility, participants
were also provided with a Conda “environment”,
a schematic that allows users to reconstruct the ex-
act software environment used to train and eval-
uate the baselines. Several submissions made use
of the baselines for data augmentation or ensemble
construction. Wemake these baseline implementa-
tions available under the task1/baselines sub-
directory of the shared task repository.2

Pair n-gram model The first baseline consists
of a pair n-gram model, which be can thought of
as a finite-state approximation of a hiddenMarkov
model with states representing graphemes and
emissions representing output phones. The model
is quite similar to the Phonetisaurus toolkit (No-
vak et al. 2016), but here is implemented using
the OpenGrm toolkit (Roark et al. 2012, Gorman
2016); see Lee et al. 2020 for a full description.
The sole hyperparameter for this model, Markov
model order, is tuned separately for each language
using the development set.

Encoder-decoder LSTM The second baseline
is a neural network sequence-to-sequence model
consisting of a single-layer bidirectional LSTM
encoder and a single-layer unidirectional LSTM
decoder connected using an attention mechanism
(Luong et al. 2015). It is implemented using the
fairseq library (Ott et al. 2019). LSTM-based
encoder-decoder models have been claimed to out-
perform pair n-gramG2Pmodels, both inmonolin-
gual (e.g., Rao et al. 2015, Yao and Zweig 2015)
and multilingual (e.g., van Esch et al. 2016, Lee
et al. 2020) evaluations, though these prior studies
use substantially more training data than is avail-
able in this task. During training, we perform
4,000 updates to minimize label-smoothed cross-
entropy (Szegedy et al. 2016) with a smoothing

2https://github.com/sigmorphon/2020

rate of .1. We use the Adam optimizer (Kingma
and Ba 2015) with a learning rate of α = .001 and
weight decay coefficients of β = (.9, .98), and clip
norms exceeding 1.0. We use the development set
to tune—for each language—batch size (256, 512,
1024), dropout (.1, .2, .3), and the size of the en-
coder and decoder modules. A module is said to
be “small” when it has a 128-dimension embed-
ding layer and a 512-unit hidden layer, and “large”
when it has a 256-dimension embedding layer and
a 1024-unit hidden layer. In both cases, the de-
coder shares a single embedding layer for both in-
puts and outputs. Altogether, this defines a 36-
element hyperparameter grid. During tuning, we
employ a form of early stopping; we save a check-
point every 5 epochs, and then use the checkpoint
that achieves the lowest WER on the development
set. We use a beam of size 5 for decoding.

Encoder-decoder transformer The third base-
line is a transformer, a neural sequence-to-
sequence models that replaces hidden layer re-
currence with layers of multi-head self-attention
(Vaswani et al. 2017). Once again, it is imple-
mented using fairseq. Here the model con-
sists of four encoder layers and four decoder lay-
ers, both with pre-layer normalization, tuned for
character-level tasks (Wu et al. 2020). The hyper-
parameter grid, tuning procedures, and beam size
are the same as for the LSTMmodel above, except
that learning rate is decayed on an inverse square-
root schedule after a 1,000-update linear warm-up
period. While most participants chose to compare
their results to the transformer and not the LSTM
in system description papers, the transformer was
outperformed by the LSTM baseline in most set-
ting with the hyperparameter exploration budget.

6 System descriptions
Below we provide brief descriptions of submis-
sions to the shared task.

CLUZH The Institute of Computational Lin-
guistics at the University of Zurich submitted a sin-
gle system (Makarov and Clematide 2020) extend-
ing earlier work (Makarov and Clematide 2018)
on imitation learning-based transducers that out-
put a sequence of edit actions rather than a target
string itself. To adapt to the G2P task, where input
(grapheme) and output (phone) vocabularies are
largely disjoint, they add a substitution action. The
costs of each edit action are drawn from aweighted

https://github.com/sigmorphon/2020
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finite state transducer (WFST). The authors sug-
gest that external lexical information such as part
of speech, etymology (borrowing particularly) and
morphological segmentation would improve sys-
tems. During preprocessing, they decompose Ko-
rean hangul characters into their constituent jamo,
each corresponding roughly to a single phoneme.

CU One team from the University of Colorado
Boulder (Prabhu and Kann 2020) ensembled sev-
eral transformer models created with different ran-
dom seeds using majority voting. They also exper-
iment with a form ofmulti-task learning: they train
a “bidirectional” model to do both grapheme-to-
phoneme and phoneme-to-grapheme prediction.

CUZ A second team from the University of
Colorado Boulder (Ryan and Hulden 2020) uses
a “slice-and-shuffle” data augmentation strategy.
First, they perform character-level one-to-one
alignment between graphemes and phonemes.
Then they concatenate frequent subsequence pairs
to each other to create nonce training examples.
Their submission is an LSTM model with a bidi-
rectional encoder trained on this augmented data.
While they also developed transformer models,
these did not finish training in time for submission.
Results for their transformer system, not reported
here, are included in their system description.

DeepSPIN Researchers at the Instituto Superior
Técnico and Unbabel produced four submissions
(Peters and Martins 2020) based on sparse at-
tention models. Each submission consists of a
single multilingual neural model in which sepa-
rate learned “language embeddings” are concate-
nated to all encoder and decoder states, rather
than prepending a language-identification token
to the input sequence. Their submissions either
use LSTM- or transformer-based encoder-decoder
sequence-to-sequence models with different val-
ues of a hyperparameter enforcing sparsity in the
final layer (Peters et al. 2019). Like CLUZH, they
preprocess Korean hangul characters, decompos-
ing them into constituent jamo, each correspond-
ing roughly to a single phoneme.

IMS A single submission from the Institut für
Maschinelle Sprachverarbeitung at the University
of Stuttgart (Yu et al. 2020) uses self-training
(Yarowsky 1995) and ensembles of the baseline
models. The components of the ensemble are
selected using a genetic algorithm. They report

that their data augmentation does not affect per-
formance substantially, except in a simulated low-
resource setting with 200 training examples. They
romanize Japanese and Korean texts as a prepro-
cessing step, and they use external word frequency
lists.

NSU The Novosibirsk State University team did
not provide a system description.

UA The submissions from the University of Al-
berta (Hauer et al. 2020) either use a non-neural
discriminative string transduction model (DTLM;
Nicolai et al. 2018), or tranformers. They lever-
age both grapheme-to-phoneme and phoneme-to-
grapheme models to filter candidates for data aug-
mentation, enforcing a cyclic consistency con-
straint. They further show strong performance in
a simulated low-resource scenario with 100 train-
ing examples. They note that the DTLM system
is much faster to train than transformer models.
Their six submissions vary the amount of train-
ing data and use either DTLM, a transformer, or
a transformer with data augmentation.

UBCNLP The University of British Columbia
submitted two systems (Vesik et al. 2020). One
is a multilingual model akin to Peters et al.
(2017), in which a language-identification token
is prepended to the input sequence. They also en-
semble multiple checkpoints. Their second sub-
mission adds self-training on Wikipedia text; they
report that this data augmentation strategy does not
improve scores.

UZH For all three of their submissions, the team
from the Department of Informatics at the Univer-
sity of Zurich (ElSaadany and Suter 2020) used
a single set of encoder-decoder parameters shared
across all languages. UZH-1 is a large transformer
model with large embedding, hidden layers, and
batches, with a high dropout probability. UZH-
2 augments this model with WikiPron data for
six other languages. UZH-3 is an ensemble of
the previous two models which selects from the
predictions of the two component models using
whichever model’s prediction has a higher poste-
rior probability. The ensemble outperformed the
component models for most languages. During
preprocessing they also decomposeKorean hangul
characters into their constituent jamo; they report
this results in a 46% relative word error reduction.
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7 Results
We now review baseline and submission results.

7.1 Baseline results
Baseline results are shown in Table 2. The
encoder-decoder LSTM (Lee et al. 2020) per-
formed best for nine out of fifteen languages; the
transformer was the strongest for four languages,
and for the remaining two—Modern Greek and
Hungarian—there was a virtual tie between the
two neural network baselines. The pair n-gram
model was outperformed by the neural baselines
on all languages, and by 10 or more points WER
in Bulgarian, Georgian, and Korean. This suggest
that this model is no longer competitive with pow-
erful discriminative neural methods, at least in this
medium-resource G2P task.
While this task was not designed explicitly

to compare LSTM and transformer sequence-to-
sequence models, it does suggest an advantage for
LSTM models. However, we speculate that ad-
ditional training data, or a more generous hyper-
parameter tuning budget, might favor transformer
models. Indeed, anticipating the results below, the
one team that directly compared transformer and
LSTMsystems, DeepSPIN, achieved the third best
submission overall using a transformer.
We also note that for four languages, the base-

line system that achieves the best WER does not
achieve the best PER, though the two metrics pro-
duce the same one-best ranking for the remaining
eleven languages.

7.2 Submission results
Table 3 shows, for each language, the system or
systems that achieved the best WER, as well as
the best baselineWER. For all fifteen languages, at
least one team outperformed the baselines, some-
times quite substantially. Six of the nine teams
achieved the best WER on at least one language.
More detailed per-language, per-submission re-
sults are available online.3
Table 4 gives the macro-averaged WER and

PER for the three baselines, and for the best over-
all submission from each team. As expected, the
strongest baseline is the LSTM model. Across all
submissions, the IMS team achieves both the low-
est average WER, a 3% absolute (18% relative)

3https://docs.google.com/spreadsheets/d/
1g0HyGeVzFrNt2pvNuu8L1voFFQY-0CwjTxGA3VXXNGI/
edit?usp=sharing

word error reduction over the LSTM baseline, and
the lowest overall PER, a 1% absolute (31% rela-
tive) phone error reduction over the LSTM base-
line. The CLUZH and DeepSPIN-3 submissions
achieve second and third place, respectively; the
CU, UCBNLP, and UZH teams also submitted sys-
tems that outperform the LSTM baseline’s WER.

8 Discussion

When this task was initially proposed, there was
some concern that the submissions—if not the
baselines themselves—would easily achieve per-
fect or near-perfect performance on some lan-
guages. This was not the case. Even on the “easi-
est” language, the best submission has .89%WER,
and for three languages, no submission achieves
an error rate below 20%.
At the same time, we observe a large range of er-

ror rates across languages. It is tempting to spec-
ulate that word and/or phone error rates actually
represent differences in difficulty. Insofar as this
is correct, we can begin to ask what makes a lan-
guage “hard to pronounce”, much like howMielke
et al. (2019) ask what makes a language “hard to
language-model”.
One thing that may make a language hard to

pronounce is data sparsity. Consider the case of
Korean, which has by far the highest baseline er-
ror rate of all fifteen languages. Three features
of Korean and of hangul conspire to make this
task particularly challenging. First, hangul is a syl-
labary, and therefore necessarily has a much larger
graphemic inventory than an alphabet or alphasyl-
labary. A whopping 889 unique hangul charac-
ters appear across the 4,500 words used for this
task.4 Secondly, hangul is a relatively deep or ab-
stract orthography (in the sense of Rogers 2005);
it operates at a roughly-morphophonemic level
whereas Lithuanian and Hungarian, for example,
are is roughly phonemic. Third, Korean has many
phonological processes that operate across sylla-
ble boundaries. Since the effect of these processes
is not indicated by the highly abstract, morpho-
phonemic orthography, they can only be learned
by observing the targeted syllable bigrams dur-
ing training. Lee et al. (2020) perform a man-
ual error analysis of a Korean G2P system similar

4Few syllabaries are so large. For instance, there are only
79 unique hiragana symbols in the Japanese data, but this rel-
ative size difference is not surprising given that Korean has a
more permissive syllable structure than Japanese.

https://docs.google.com/spreadsheets/d/1g0HyGeVzFrNt2pvNuu8L1voFFQY-0CwjTxGA3VXXNGI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1g0HyGeVzFrNt2pvNuu8L1voFFQY-0CwjTxGA3VXXNGI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1g0HyGeVzFrNt2pvNuu8L1voFFQY-0CwjTxGA3VXXNGI/edit?usp=sharing
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Pair n-gram LSTM Transformer
WER PER WER PER WER PER

arm 18.00 3.90 14.67 3.49 14.22 3.29
bul 41.33 9.05 31.11 5.94 34.00 7.89
fre 13.56 3.12 6.22 1.32 6.89 1.72
geo 37.78 6.48 26.44 5.14 28.00 5.43
gre 21.78 4.05 18.89 3.30 18.89 3.06
hin 12.67 2.82 6.67 1.47 9.56 2.40
hun 6.67 1.51 5.33 1.18 5.33 1.28
ice 17.56 3.62 10.00 2.36 10.22 2.21
kor 52.22 15.88 46.89 16.78 43.78 17.50
lit 23.11 4.43 19.11 3.55 20.67 3.65

ady 32.00 7.56 28.00 6.53 28.44 6.49
dut 23.78 3.97 16.44 2.94 15.78 2.89
jap 9.56 2.07 7.56 1.79 7.33 1.86
rum 11.56 3.55 10.67 2.53 12.00 2.62
vie 8.44 1.79 4.67 1.52 7.56 2.27

Table 2: Results for the three baseline systems.

to the LSTM baseline and observe errors caused
by underapplication of these coda-onset cluster
rules. It is unsurprising then that several submis-
sions achieved substantial gains by either roman-
izing hangul or decomposing it into its constituent
jamo during preprocessing, since both techniques
reduce the size of the input vocabulary.
The results suggest that G2P technologies are

not yet language-agnostic (in the sense of Ben-
der 2009). However, some caution is in order
here: inter-language differences in word error rate
may also reflect inconsistencies in the WikiPron
data itself. During the task, participants reported
apparent transcription inconsistencies in the Bul-
garian, Georgian, and Lithuanian Wiktionary data.
If these inconsistencies are due to overly-narrow
allophonic transcriptions, one might suspect that
they can be learned by sufficiently sophisticated
sequence-to-sequence models. However, if they
represent free variation, inconsistent application
of the transcription guidelines, or even typograph-
ical errors, they inflate error rates and increase the
risk of overfitting. In response to this, we have
begun development of quality assurance software
for WikiPron, including a phone-based whitelist-
ing approach. We anticipate that manual er-
ror analysis will reveal errors in the Wiktionary
data, similar to the large number of test data er-

rors identified by Gorman et al. (2019) for the
2017 CoNLL–SIGMORPHON morphological in-
flection task. To encourage this sort of error analy-
sis, for the first time in the history of the SIGMOR-
PHON workshop, we publicly release the predic-
tions made by all 23 submissions.5 Finally, we
plan to apply large-scale consistency-enforcing ed-
its upstream, i.e., to Wiktionary itself.
While the baselines are somewhat naïve and

lack the sophisticated data augmentation and en-
sembling techniques used by the top submissions,
we were pleasantly surprised by the substantial
reductions in error achieved by the participating
teams. As mentioned above, the best submis-
sions handily outperforms the baselines for all lan-
guages. Interestingly, this is true for the most
challenging languages—like Korean, where the
best submission achieves a 45% relative word er-
ror reduction over the baseline—but also for Viet-
namese, the language with the lowest baseline
WER; there, the best submission achieves an im-
pressive 81% relative word error reduction.
As mentioned above, top submissions make

use of techniques such as preprocessing, data
augmentation, ensembling, multi-task learning
(e.g., phoneme-to-grapheme conversion), and self-

5https://drive.google.com/drive/folders/
1kdawyeI17iGC0jlY_2dZQpK75hpShY_H?usp=sharing

https://drive.google.com/drive/folders/1kdawyeI17iGC0jlY_2dZQpK75hpShY_H?usp=sharing
https://drive.google.com/drive/folders/1kdawyeI17iGC0jlY_2dZQpK75hpShY_H?usp=sharing
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Best baseline Best submission
arm 14.22 transformer 12.22 CLUZH
bul 31.11 LSTM 22.22 IMS
fre 6.22 LSTM 5.11 DeepSPIN-3
geo 26.44 LSTM 24.89 IMS
gre 18.89 LSTM, transformer 14.44 CU-2, CUZ
hin 6.67 LSTM 5.11 CLUZH, IMS
hun 5.33 LSTM, transformer 4.00 CLUZH
ice 10.00 LSTM 9.11 CLUZH, UBCNLP-2
kor 43.78 transformer 24.00 DeepSPIN-1, DeepSPIN-2
lit 19.11 LSTM 18.67 CLUZH

ady 28.00 LSTM 24.67 DeepSPIN-4
dut 16.44 transformer 13.56 IMS
jap 7.33 transformer 4.89 DeepSPIN-4
rum 10.67 LSTM 9.78 DeepSPIN-3
vie 4.67 LSTM 0.89 DeepSPIN-2

Table 3: The best baseline(s) and submission(s) WERs for each language.

WER PER
Pair n-gram 22.00 4.92
LSTM 16.84 3.99
Transformer 17.51 4.30

CLUZH 14.13 2.82
CU-1 14.52 3.24
CUZ 20.87 5.23
DeepSPIN-3 14.15 2.92
IMS 13.81 2.76
NSU-1 63.56 20.76
UA-2 17.47 4.26
UBCNLP-1 14.99 3.30
UZH-3 16.34 3.27

Table 4: Macro-averaged results for the baselines and
the best submission from each team.

training. These techniques are commonly used
in shared tasks and are essentially task-agnostic.
However, we were surprised that few teams
made use of task-specific resources such as the
PHOIBLE phonemic inventories and feature spec-
ifications (Moran andMcCloy 2019) or rule-based
G2P systems like Epitran (Mortensen et al. 2018).
Nor do any of the submissions make use of
morphological analyzers or lexicons, which were
found to be helpful in earlier work (e.g., Coker
et al. 1990, Demberg et al. 2007). We speculate

that such resources might further improve perfor-
mance. Finally we note that submissions make use
of unsupervised tokenization techniques such as
byte-pair encoding (Schuster and Nakajima 2012).
Finally, we note that several participants ex-

pressed interest in a low-resource version of
this challenge, and two teams simulated a low-
resource setting. We leave the design of a low-
resource task for future work.

9 Conclusion
SIGMORPHON, under whose auspices this task
was conducted, was once known as SIGPHON
and was primarily focused on computational pho-
netics and phonology. The shared task on
multilingual grapheme-to-phoneme conversion, a
uniquely phonological problem, thus represents
something of a return to the roots of this special
interest group. In this task, nine teams submitted
23G2P systems for fifteen languages and achieved
substantial improvements over the provided base-
lines. The results suggest many directions for im-
proving G2P systems and the pronunciation dictio-
naries used to train them.
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