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Abstract
Reinforcement learning and probabilistic rea-
soning algorithms aim at learning from interac-
tion experiences and reasoning with probabilis-
tic contextual knowledge respectively. In this
research, we develop algorithms for robot task
completions, while looking into the comple-
mentary strengths of reinforcement learning
and probabilistic reasoning techniques. The
robots learn from trial-and-error experiences
to augment their declarative knowledge base,
and the augmented knowledge can be used
for speeding up the learning process in poten-
tially different tasks. We have implemented
and evaluated the developed algorithms using
mobile robots conducting dialog and naviga-
tion tasks. From the results, we see that our
robot’s performance can be improved by both
reasoning with human knowledge and learning
from task-completion experience. More inter-
estingly, the robot was able to learn from navi-
gation tasks to improve its dialog strategies.

1 Introduction

Knowledge representation and reasoning (KRR)
and reinforcement learning (RL) are two impor-
tant research areas in artificial intelligence (AI)
and have been applied to a variety of problems in
robotics. On the one hand, KRR research aims to
concisely represent knowledge, and robustly draw
conclusions with the knowledge (or generate new
knowledge). Knowledge in KRR is typically pro-
vided by human experts in the form of declara-
tive rules. Although KRR paradigms are strong
in representing and reasoning with knowledge in
a variety of forms, they are not designed for (and
hence not good at) learning from experiences of
accomplishing the tasks. On the other hand, RL
algorithms enable agents to learn by interacting
with an environment, and RL agents are good at
learning action policies from trial-and-error expe-
riences toward maximizing long-term rewards un-

der uncertainty, but they are ill-equipped to utilize
declarative knowledge from human experts. Moti-
vated by the complementary features of KRR and
RL, we aim at a framework that integrates both
paradigms to enable agents (robots in our case) to
simultaneously reason with declarative knowledge
and learn by interacting with an environment.

Most KRR paradigms support the representation
and reasoning of knowledge in logical form, e.g.,
Prolog-style. More recently, researchers have de-
veloped hybrid KRR paradigms that support both
logical and probabilistic knowledge (Richardson
and Domingos, 2006; Bach et al., 2017; Wang et al.,
2019). Such logical-probabilistic KRR paradigms
can be used for a variety of reasoning tasks. We
use P-log (Baral et al., 2009) in this work to repre-
sent and reason with both human knowledge and
the knowledge from RL. The reasoning results are
then used by our robot to compute action policies
at runtime.

Reinforcement learning (RL) algorithms can be
used to help robots learn action policies from the
experience of interacting with the real world (Sut-
ton and Barto, 2018). We use model-based RL in
this work, because the learned world model can be
used to update the robot’s declarative knowledge
base and combined with human knowledge.

Theoretical Contribution: In this paper, we de-
velop a learning and reasoning framework (called
KRR-RL) that integrates logical-probabilistic KRR
and model-based RL. The KRR component reasons
with the qualitative knowledge from humans (e.g.,
it is difficult for a robot to navigate through a busy
area) and the quantitative knowledge from model-
based RL (e.g., a navigation action’s success rate in
the form of a probability). The hybrid knowledge
is then used for computing action policies at run-
time by planning with task-oriented partial world
models. KRR-RL enables a robot to: i) represent



the probabilistic knowledge (i.e., world dynamics)
learned from RL in declarative form; ii) unify and
reason with both human knowledge and the knowl-
edge from RL; and iii) compute policies at runtime
by dynamically constructing task-oriented partial
world models.

Application Domain: We use a robot delivery
domain for demonstration and evaluation purposes,
where the robot needs to dialog with people to fig-
ure out the delivery task’s goal location, and then
physically take navigation actions to complete
the delivery task (Thomason et al., 2020; Veloso,
2018). A delivery is deemed successful only if both
the dialog and navigation subtasks are successfully
conducted. We have conducted experiments using
a simulated mobile robot, as well as demonstrated
the system using a real mobile robot. Results show
that the robot is able to learn world dynamics from
navigation tasks through model-based RL, and ap-
ply the learned knowledge to both navigation tasks
(with different goals) and delivery tasks (that re-
quire subtasks of navigation and dialog) through
logical-probabilistic reasoning. In particular, we
observed that the robot is able to adjust its dialog
strategy through learning from navigation behav-
iors.

2 Related Work

Research areas related to this work include inte-
grated logical KRR and RL, relational RL, and
integrated KRR and probabilistic planning.

Logical KRR has previously been integrated
with RL. Action knowledge (McDermott et al.,
1998; Jiang et al., 2019) has been used to rea-
son about action sequences and help an RL agent
explore only the states that can potentially con-
tribute to achieving the ultimate goal (Leonetti
et al., 2016). As a result, their agents learn faster
by avoiding choosing “unreasonable” actions. A
similar idea has been applied to domains with non-
stationary dynamics (Ferreira et al., 2017). More
recently, task planning was used to interact with the
high level of a hierarchical RL framework (Yang
et al., 2018). The goal shared by these works is
to enable RL agents to use knowledge to improve
the performance in learning (e.g., to learn faster
and/or avoid risky exploration). However, the KRR
capabilities of these methods are limited to logical
action knowledge. By contrast, we use a logical-
probabilistic KRR paradigm that can directly rea-
son with probabilities learned from RL.

Relational RL (RRL) combines RL with rela-
tional reasoning (Džeroski et al., 2001). Action
models have been incorporated into RRL, result-
ing in a relational temporal difference learning
method (Asgharbeygi et al., 2006). Recently, RRL
has been deployed for learning affordance relations
that forbid the execution of specific actions (Srid-
haran et al., 2017). These RRL methods, includ-
ing deep RRL (Zambaldi et al., 2018), exploit
structural representations over states and actions
in (only) current tasks. In this research, KRR-RL
supports the KRR of world factors beyond those
in state and action representations, e.g., time in
navigation tasks, as detailed in Section 4.2.

The research area of integrated KRR and proba-
bilistic planning is related to this research. Logical-
probabilistic reasoning has been used to compute
informative priors and world dynamics (Zhang
et al., 2017; Amiri et al., 2020) for probabilistic
planning. An action language was used to com-
pute a deterministic sequence of actions for robots,
where individual actions are then implemented us-
ing probabilistic controllers (Sridharan et al., 2019).
Recently, human-provided information has been in-
corporated into belief state representations to guide
robot action selection (Chitnis et al., 2018). In
comparison to our approach, learning (from rein-
forcement or not) was not discussed in the above-
mentioned algorithms.

Finally, there are a number of robot reason-
ing and learning architectures (Tenorth and Beetz,
2013; Oh et al., 2015; Hanheide et al., 2017; Khan-
delwal et al., 2017), which are relatively complex,
and support a variety of functionalities. In com-
parison, we aim at a concise representation for
robot KRR and RL capabilities. To the best of our
knowledge, this is the first work on a tightly cou-
pled integration of logical-probabilistic KRR with
model-based RL.

3 Background

We briefly describe the two most important build-
ing blocks of this research, namely model-based
RL and hybrid KRR.

3.1 Model-based Reinforcement Learning

Following the Markov assumption, a Markov de-
cision process (MDP) can be described as a four-
tuple 〈S,A,T,R〉 (Puterman, 1994). S defines the
state set, where we assume a factored space in
this work. A is the action set. T : S ×A×S →



[0,1] specifies the state transition probabilities.
R : S ×A→ R specifies the rewards. Solving an
MDP produces an action policy π : s 7→ a that maps
a state to an action to maximize long-term rewards.

RL methods fall into classes including model-
based and model-free. Model-based RL methods
learn a model of the domain by approximating
R(s,a) and P(s′|s,a) for state-action pairs, where
P represents the probabilistic transition system. An
agent can then use planning methods to calculate an
action policy (Sutton, 1990; Kocsis and Szepesvári,
2006). Model-based methods are particularly at-
tractive in this work, because they output partial
world models that can better accommodate the di-
versity of tasks we are concerned with, c.f., model-
free RL that is typically goal-directed.

One of the best known examples of model-based
RL is R-Max (Brafman and Tennenholtz, 2002),
which is guaranteed to learn a near-optimal pol-
icy with a polynomial number of suboptimal (ex-
ploratory) actions. The algorithm classifies each
state-action pair as known or unknown, according
to the number of times it was visited. When plan-
ning on the model, known state-actions are mod-
eled with the learned reward, while unknown state-
actions are given the maximum one-step reward,
Rmax. This “maximum-reward” strategy automati-
cally enables the agent to balance the exploration
of unknown states and exploitation. We use R-Max
in this work, though KRR-RL practitioners can use
supervised machine learning methods, e.g., imita-
tion learning (Osa et al., 2018), to build the model
learning component.

3.2 Logical Probabilistic KRR
KRR paradigms are concerned with concisely rep-
resenting and robustly reasoning with declarative
knowledge. Answer set programming (ASP) is
a non-monotonic logical KRR paradigm (Baral,
2010; Gelfond and Kahl, 2014) building on the sta-
ble model semantics (Gelfond and Lifschitz, 1988).
An ASP program consists of a set of logical rules,
in the form of “head :- body”, that read “head is
true if body is true”. Each ASP rule is of the form:

a or ... or b :- c, ..., d, not e, ..., not f.

where a...f are literals that correspond to true or
false statements. Symbol not is a logical connec-
tive called default negation; not l is read as “it is
not believed that l is true”, which does not imply
that l is false. ASP has a variety of applications (Er-
dem et al., 2016).

Model-based RLHuman

KRR

Declarative 
knowledge

World 
dynamics

World

Controller
New task

Learning

Task 
completions

Figure 1: An overview of KRR-RL for robot learning
and reasoning to complete complex tasks.

Traditionally, ASP does not explicitly quantify
degrees of uncertainty: a literal is either true, false
or unknown. P-log extends ASP to allow probabil-
ity atoms (or pr-atoms) (Baral et al., 2009; Balai
and Gelfond, 2017). The following pr-atom states
that, if B holds, the probability of a(t)=y is v:

pr(a(t)=y|B)=v.

where B is a collection of literals or their default
negations; a is a random variable; t is a vector of
terms (a term is a constant or a variable); y is a term;
and v ∈ [0,1]. Reasoning with an ASP program
generates a set of possible worlds: {W0,W1, · · ·}.
The pr-atoms in P-log enable calculating a prob-
ability for each possible world. Therefore, P-log
is a KRR paradigm that supports both logical and
probabilistic inferences. We use P-log in this work
for KRR purposes.

4 KRR-RL Framework

KRR-RL integrates logical-probabilistic KRR and
model-based RL, and is illustrated in Figure 1. The
KRR component includes both declarative quali-
tative knowledge from humans and the probabilis-
tic knowledge from model-based RL. When the
robot is free, the robot arbitrarily selects goals (dif-
ferent navigation goals in our case) to work on,
and learns the world dynamics, e.g., success rates
and costs of navigation actions. When a task be-
comes available, the KRR component dynamically
constructs a partial world model (excluding unre-
lated factors), on which a task-oriented controller
is computed using planning algorithms. Human
knowledge concerns environment variables and
their dependencies, i.e., what variables are related
to each action. For instance, the human provides
knowledge that navigation actions’ success rates
depend on current time and area (say elevator areas
are busy in the mornings), while the robot must
learn specific probabilities by interacting with the
environment.

Why is KRR-RL needed? Consider an indoor
robot navigation domain, where a robot wants to



maximize the success rate of moving to goal posi-
tions through navigation actions. Shall we include
factors, such as time, weather, positions of human
walkers, etc, into the state space? On the one hand,
to ensure model completeness, the answer should
be “yes”. Human walkers and sunlight (that blinds
robot’s LiDAR sensors) reduce the success rates of
the robot’s navigation actions, and both can cause
the robot irrecoverably lost. On the other hand,
to ensure computational feasibility, the answer is
“no”. Modeling whether one specific grid cell being
occupied by humans or not introduces one extra
dimension in the state space, and doubles the state
space size. If we consider (only) ten such grid cells,
the state space becomes 210 ≈ 1000 times bigger.
As a result, RL practitioners frequently have to
make a trade-off between model completeness and
computational feasibility. In this work, we aim at a
framework that retains both model scalability and
computational feasibility, i.e., the agent is able to
learn within relatively little memory while comput-
ing action policies accounting for a large number
of domain variables.

4.1 A General Procedure

In factored spaces, state variables V =
{V0,V1, ...,Vn−1} can be split into two cat-
egories, namely endogenous variables Ven

and exogenous variables Vex (Chermack,
2004), where Ven = {V en

0 ,V en
1 , ...,V en

p−1} and
Vex = {V ex

0 ,V ex
1 , ...,V ex

q−1}. In our integrated KRR-
RL context, Ven is goal-oriented and includes
the variables whose values the robot wants to
actively change so as to achieve the goal; and
Vex corresponds to the variables whose values
affect the robot’s action outcomes, but the robot
cannot (or does not want to) change their values.
Therefore, Ven and Vex both depend on task τ .
Continuing the navigation example, robot position
is an endogenous variable, and current time is an
exogenous variable. For each task, V = Ven∪Vex

and n = p + q, and RL agents learn in spaces
specified by Ven.

The KRR component models V , their depen-
dencies from human knowledge, and conditional
probabilities on how actions change their values, as
learned through model-based RL. When a task ar-
rives, the KRR component uses probabilistic rules
to generate a task-oriented Markov decision pro-
cess (MDP) (Puterman, 1994), which only contains
a subset of V that are relevant to the current task,

Procedure 1 Learning in KRR-RL Framework
Require: Logical rules ΠL; probabilistic rules ΠP; random

variables V = {V0,V1, ...,Vn−1}; task selector ∆; and guid-
ance functions (from human knowledge) of fV (V,τ) and
f A(τ)

1: while Robot has no task do
2: τ ← ∆(): a task is heuristically selected
3: Ven← fV (V,τ), and Vex← V \Ven

4: A← f A(τ)
5: M← Procedure-2(ΠL,ΠP,Ven,Vex,A)
6: Initialize agent: agent← R-Max(M)
7: RL agent repeatedly works on task τ , and keeps main-

taining task model M′, until policy convergence
8: end while
9: Use M′ to update ΠP

i.e., Ven, and their transition probabilities. Given
this task-oriented MDP, a corresponding action pol-
icy is computed using value iteration or policy iter-
ation.

Procedures 1 and 2 focus on how our KRR-RL
agent learns by interacting with an environment
when there is no task assigned.1 Next, we present
the details of these two interleaved processes.

Procedure 1 includes the steps of the learning
process. When the robot is free, it interacts with the
environment by heuristically selecting a task2, and
repeatedly using a model-based RL approach, R-
Max (Brafman and Tennenholtz, 2002) in our case,
to complete the task. The two guidance functions
come from human knowledge. For instance, given
a navigation task, it comes from human knowl-
edge that the robot should model its own position
(specified by f V ) and actions that help the robot
move between positions (specified by f A). After
the policy converges or this learning process is in-
terrupted (e.g., by task arrivals), the robot uses the
learned probabilities to update the corresponding
world dynamics in KRR. For instance, the robot
may have learned the probability and cost of navi-
gating through a particular area in early morning.
In case this learning process is interrupted, the so-
far-“known” probabilities are used for knowledge
base update.

Procedure 2 includes the steps for building the
probabilistic transition system of MDPs. The key
point is that we consider only endogenous variables
in the task-specific state space. However, when

1As soon as the robot’s learning process is interrupted by
the arrival of a real service task (identified via dialog), it will
call Procedure 2 to generate a controller to complete the task.
This process is not included in the procedures.

2Here curriculum learning in RL (Narvekar et al., 2017)
can play a role to task selection and we leave this aspect of
the problem for future work.
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Figure 2: Transition system specified for delivery tasks, where question-asking actions are used for estimating the
service request in dialog. Once the robot becomes confident about the service request, it starts to work on the
navigation subtask. After the robot arrives, the robot might have to come back to the dialog subtask and redeliver,
depending on whether the service request was correctly identified.

reasoning to compute the transition probabilities
(Line 5), the KRR component uses both ΠP and
Vex. The computed probabilistic transition systems
are used for building task-oriented controllers, i.e.,
π , for task completions. In this way, the dynami-
cally constructed controllers do not directly include
exogenous variables, but their parameters already
account for the values of all variables.

Next, we demonstrate how our KRR-RL frame-
work is instantiated on a real robot.

4.2 An Instantiation on a Mobile Robot

We consider a mobile service robot domain where a
robot can do navigation, dialog, and delivery tasks.
A navigation task requires the robot to use a se-
quence of (unreliable) navigation actions to move
from one point to another. In a dialog task, the
robot uses spoken dialog actions to specify service
requests from people under imperfect language un-
derstanding. There is the trend of integrating lan-
guage and navigation in the NLP and CV commu-
nities (Chen et al., 2019; Shridhar et al., 2020). In
this paper, they are integrated into delivery tasks
that require the robot to use dialog to figure out
the delivery request and conduct navigation tasks
to physically fulfill the request. Specifically, a de-
livery task requires the robot to deliver item I to
room R for person P, resulting in services in the
form of <I,R,P>. The challenges come from unre-
liable human language understanding (e.g., speech
recognition) and unforeseen obstacles that proba-
bilistically block the robot in navigation.

Human-Robot Dialog The robot needs spoken
dialog to identify the request under unreliable lan-
guage understanding, and navigation controllers
for physically making the delivery.

The service request is not directly observable to
the robot, and has to be estimated by asking ques-
tions, such as “What item do you want?” and “Is

Procedure 2 Model Construction for Task Com-
pletion
Require: ΠL; ΠP; Ven; Vex; Action set A
1: for Vi ∈ Ven, i in [0, · · · , |Ven|−1] do
2: for each possible value v in range(Vi) do
3: for each a ∈ A do
4: for each possible value v′ in range(Vi) do
5: M(v′|a,v)← Reason with ΠL and ΠP w.r.t

Vex

6: end for
7: end for
8: end for
9: end for

10: return M

this delivery for Alice?” Once the robot is confi-
dent about the request, it takes a delivery action
(i.e., serve(I,R,P)). We follow a standard way to
use partially observable MDPs (POMDPs) (Kael-
bling et al., 1998) to build our dialog manager, as
reviewed in (Young et al., 2013). The state set
S is specified using curr s. The action set A is
specified using serve and question-asking actions.
Question-asking actions do not change the current
state, and delivery actions lead to one of the termi-
nal states (success or failure). 3

After the robot becomes confident about the
request via dialog, it will take a delivery action
serve{I,R,P}. This delivery action is then im-
plemented with a sequence of act move actions.
When the request identification is incorrect, the
robot needs to come back to the shop, figure out
the correct request, and redeliver, where we as-
sume the robot will correctly identify the request
in the second dialog. We use an MDP to model
this robot navigation task, where the states and ac-
tions are specified using sorts cell and move. We
use pr-atoms to represent the success rates of the
unreliable movements, which are learned through
model-based RL. The dialog system builds on our

3More details in the supplementary document.



previous work (Lu et al., 2017). Figure 2 shows the
probabilistic transitions in delivery tasks.

Learning from Navigation We use R-
Max (Brafman and Tennenholtz, 2002), a
model-based RL algorithm, to help our robot learn
the success rate of navigation actions in different
positions. The agent first initializes an MDP, from
which it uses R-Max to learn the partial world
model (of navigation tasks). Specifically, it initial-
izes the transition function with T N(s,a,sv) = 1.0,
where s ∈ S and a ∈ A, meaning that starting
from any state, after any action, the next state is
always sv. The reward function is initialized with
R(s,a) = Rmax, where Rmax is an upper bound of
reward. The initialization of T N andR enables the
learner to automatically balance exploration and
exploitation. There is a fixed small cost for each
navigation action. The robot receives a big bonus
if it successfully achieves the goal (Rmax), whereas
it receives a big penalty otherwise (−Rmax). A
transition probability in navigation, T N(s,a,s′), is
not computed until there are a minimum number
(M) of transition samples visiting s′. We recompute
the action policy after E action steps.

Dialog-Navigation Connection The update of
knowledge base is achieved through updating the
success rate of delivery actions serve(I,R,P) (in
dialog task) using the success rate of navigation
actions act move=M in different positions.

T D(sr,ad ,st) ={
PN(ssp,sgl), if sr�ad

PN(ssp,smi)×PN(smi,ssp)×PN(ssp,sgl), if sr⊗ad

where T D(sr,ad ,st) is the probability of fulfilling
request sr using delivery action ad; st is the “suc-
cess” terminal state; ssp, smi and sgl are states of
the robot being in the shop, a misidentified goal
position, and real goal position respectively; and
PN(s,s′) is the probability of the robot successfully
navigating from s to s′ positions. When sr and ad

are aligned in all three dimensions (i.e., sr� ad),
the robot needs to navigate once from the shop (ssp)
to the requested navigation goal (sgl). PN(ssp,sgl)
is the probability of the corresponding navigation
task. When the request and delivery action are not
aligned in at least one dimension (i.e., sr⊗ad), the
robot has to navigate back to the shop to figure out
the correct request, and then redeliver, resulting in
three navigation tasks.

Figure 3: Occupancy-grid map used in our experiments
(Left), including five rooms, one shop, and four block-
ing areas (indicated by ‘BA’), where all deliveries are
from the shop and to one of the rooms; and (Right)
mobile robot platform used in this research.

Intuitively, the penalty of failures in a dialog
subtask depends on the difficulty of the wrongly
identified navigation subtask. For instance, a
robot supposed to deliver to a near (distant) location
being wrongly directed to a distant (near) location,
due to a failure in the dialog subtask, will produce
a higher (lower) penalty to the dialog agent.

5 Experiments

In this section, the goal is to evaluate our hy-
pothesis that our KRR-RL framework enables a
robot to learn from model-based RL, reason with
both the learned knowledge and human knowledge,
and dynamically construct task-oriented controllers.
Specifically, our robot learns from navigation tasks,
and applied the learned knowledge (through KRR)
to navigation, dialog, and delivery tasks.

We also evaluated whether the learned knowl-
edge can be represented and applied to tasks under
different world settings. In addition to simulation
experiments, we have used a real robot to demon-
strate how our robot learns from navigation to per-
form better in dialog. Figure 3 shows the map of the
working environment (generated using a real robot)
used in both simulation and real-robot experiments.
Human walkers in the blocking areas (“BA”) can
probabilistically impede the robot, resulting in dif-
ferent success rates in navigation tasks.

We have implemented our KRR-RL framework
on a mobile robot in an office environment. As
shown in Figure 3, the robot is equipped with two
Lidar sensors for localization and obstacle avoid-
ance in navigation, and a Kinect RGB-D camera for
human-robot interaction. We use the Speech Ap-
plication Programming Interface (SAPI) package
(http://www.iflytek.com/en) for speech recog-
nition. The robot software runs in the Robot Oper-
ating System (ROS) (Quigley et al., 2009).

http://www.iflytek.com/en
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Figure 4: Screenshots of a demonstration trial on a real
robot. (a) User gives the service request; (b) The robot
decided to confirm about the item, considering its un-
reliable language understanding capability; (c) After
hearing “coke”, the robot became more confident about
the item, and decided to ask again about the goal room’;
(d) After hearing “office2”, the robot became confident
about the whole request, and started to work on the task;
(e) Robot was on the way to the kitchen to pick up the
object; and (f) Robot arrived at the kitchen, and was
going to pick up the object for delivery.

An Illustrative Trial on a Robot: Figure 4
shows the screenshots of milestones of a demo
video, which will be made available given its ac-
ceptance. After hearing “a coke for Bob to office2”,
the three sub-beliefs are updated (turn1). Since
the robot is aware of its unreliable speech recog-
nition, it asked about the item, “Which item is
it?” After hearing “a coke”, the belief is updated
(turn2), and the robot further confirmed on the
item by asking “Should I deliver a coke?” It re-
ceived a positive response (turn3), and decided to
move on to ask about the delivery room: “Should I
deliver to office 2?” After this question, the robot
did not further confirm the delivery room, because
it learned through model-based RL that navigating
to office2 is relatively easy and it decided that it
is more worth risking an error and having to replan
than it is to ask the person another question. The
robot became confident in three dimensions of the
service request (<coke,Bob,office2> in turn4)
without asking about person, because of the prior
knowledge (encoded in P-log) about Bob’s office.

Figure 5 shows the belief changes (in the di-

mensions of item, person, and room) as the robot
interacts with a human user. The robot started with
a uniform distribution in all three categories. It
should be noted that, although the marginal distri-
butions are uniform, the joint belief distribution is
not, as the robot has prior knowledge such as Bob’s
office is office2 and people prefer deliveries to
their own offices. Demo video is not included to
respect the anonymous review process.

Learning to Navigate from Navigation Tasks
In this experiment, the robot learns in the
shop-room1 navigation task, and extracts the
learned partial world model to the shop-room2 task.
It should be noted that navigation from shop to
room2 requires traveling in areas that are unneces-
sary in the shop-room1 task.

Figure 6 presents the results, where each data
points corresponds to an average of 1000 trials.
Each episode allows at most 200 (300) steps in
small (large) domain. The curves are smoothed
using a window of 10 episodes. The results suggest
that with knowledge extraction (the dashed line)
the robot learns faster than without extraction, and
this performance improvement is more significant
in a larger domain (the Right subfigure).

Learning to Dialog and Navigate from Navi-
gation Tasks Robot delivering objects requires
both tasks: dialog management for specifying ser-
vice request (under unreliable speech recognition)
and navigation for physically delivering objects
(under unforeseen obstacles). Our office domain
includes five rooms, two persons, and three items,
resulting in 30 possible service requests. In the
dialog manager, the reward function gives delivery
actions a big bonus (80) if a request is fulfilled, and
a big penalty (-80) otherwise.

General questions and confirming questions cost
2.0 and 1.5 respectively. In case a dialog does not
end after 20 turns, the robot is forced to work on
the most likely delivery. The cost/bonus/penalty
values are heuristically set in this work, following
guidelines based on studies from the literature on
dialog agent behaviors (Zhang and Stone, 2015).

Table 1: Overall performance in delivery tasks (requir-
ing both dialog and navigation).

Static policy KRR-RL

Reward Fulfilled QA Cost Reward Fulfilled QA Cost

br = 0.1 182.07 0.851 20.86 206.21 0.932 18.73
br = 0.5 30.54 0.853 20.84 58.44 0.927 18.98
br = 0.7 -40.33 0.847 20.94 -14.50 0.905 20.56



Figure 5: Belief change in three dimensions (In order from the left: Items, Persons and Offices) over five turns in a
human-robot dialog . The distributions are grouped by turns (Including the initial distribution). In each turn, there
are three distribution bars which means three different dimensions (In order from the left: Item, Person and Office).
In order from the bottom, the values in each dimension are 1) coke, coffee and soda in Item; 2) John and Bob in
Person; and 3) office1, office2, office3, office4 and office5 in Office.
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Figure 6: Navigation tasks in small (Left: 30×30 grid)
and large (Right: 50× 50 grid) domains. With extrac-
tion (KRR-RL in dashed line), the robot learns faster in
the target navigation task.

Table 1 reports the robot’s overall performance
in delivery tasks, which requires accurate dialog
for identifying delivery tasks and safe navigation
for object delivery. We conduct 10,000 simulation
trials under each blocking rate. Without learning
from RL, the robot uses a world model (outdated)
that was learned under br = 0.3. With learning, the
robot updates its world model in domains with dif-
ferent blocking rates. We can see, when learning is
enabled, our KRR-RL framework produces higher
overall reward, higher request fulfillment rate, and
lower question-asking cost. The improvement is sta-
tistically significant, i.e., the p−values are 0.028,
0.035, and 0.049 for overall reward, when br is 0.1,
0.5, and 0.7 respectively (100 randomly selected
trials with/without extraction).

Learning to Adjust Dialog Strategies from Nav-
igation In the last experiment, we quantify the
information collected in dialog in terms of entropy
reduction. The hypothesis is that, using our KRR-
RL framework, the dialog manager wants to collect
more information before physically working on
more challenging tasks. In each trial, we randomly
generate a belief distribution over all possible ser-
vice requests, evaluate the entropy of this belief,
and record the suggested action given this belief.

We then statistically analyze the entropy values of
beliefs, under which delivery actions are suggested.

Table 2: The amount of information (in terms of en-
tropy) needed by a robot before taking delivery actions.

Entropy (room1) Entropy (room2) Entropy (room5)

Mean (std) Max Mean (std) Max Mean (std) Max

br = 0.1 .274 (.090) .419 .221 (.075) .334 .177 (.063) .269
br = 0.5 .154 (.056) .233 .111 (.044) .176 .100 (.041) .156
br = 0.7 .132 (.050) .207 .104 (.042) .166 .100 (.041) .156

Table 2 shows that, when br grows from 0.1 to
0.7, the means of belief entropy decreases (i.e.,
belief is more converged). This suggests that the
robot collected more information in dialog in envi-
ronments that are more challenging for navigation,
which is consistent with Table 1 in the main paper.
Comparing the three columns of results, we find
the robot collects the most information before it de-
livers to room5. This is because such delivery tasks
are the most difficult due to the location of room5.
The results support our hypothesis that learning
from navigation tasks enables the robot to adjust
its information gathering strategy in dialog given
tasks of different difficulties.

Adaptive Control in New Circumstances The
knowledge learned through model-based RL is con-
tributed to a knowledge base that can be used for
many tasks. So our KRR-RL framework enables a
robot to dynamically generate partial world models
for tasks under settings that were never experienced.
For example, an agent does not know the current
time is morning or noon, there are two possible val-
ues for variable “time”. Consider that our agent has
learned world dynamics under the times of morn-
ing and noon. Our KRR-RL framework enables
the robot to reason about the two transition systems
under the two settings and generate a new tran-
sition system for this “morning-or-noon” setting.
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Figure 7: Adaptive behaviors under new circum-
stances.

Without our framework, an agent would have to
randomly select one between the “morning” and
“noon” policies.

To evaluate our policies dynamically constructed
via KRR, we let an agent learn three controllers
under three different environment settings – the
navigation actions have decreasing success rates
under the settings. In this experiment, the robot
does not know which setting it is in (out of two that
are randomly selected). The baseline does not have
the KRR capability of merging knowledge learned
from different settings, and can only randomly se-
lect a policy from the two (each corresponding
to a setting). Experimental results show that the
baseline agent achieved an average of 26.8% suc-
cess rate in navigation tasks, whereas our KRR-
RL agent achieved 83.8% success rate on average.
Figure 7 shows the costs in a box plot (including
min-max, 25%, and 75% values). Thus, KRR-RL
enables a robot to effectively apply the learned
knowledge to tasks under new settings.

Let us take a closer look at the “time” variable T .
If T is the domain of T , the RL-only baseline has
to compute a total of 2|T | world models to account
for all possible information about the value of T ,
where 2|T | is the number of subsets of T . If there
are N such variables, the number of world models
grows exponentially to 2|T |·N . In comparison, the
KRR-RL agent needs to compute only |T |N world
models, which dramatically reduces the number of
parameters that must be learned through RL while
retaining policy quality.

6 Conclusions and Future Work

We develop a KRR-RL framework that integrates
computational paradigms of logical-probabilistic
knowledge representation and reasoning (KRR),
and model-based reinforcement learning (RL). Our
KRR-RL agent learns world dynamics via model-
based RL, and then incorporates the learned dynam-
ics into the logical-probabilistic reasoning module,
which is used for dynamic construction of efficient

run-time task-specific planning models. Experi-
ments were conducted using a mobile robot (simu-
lated and physical) working on delivery tasks that
involve both navigation and dialog. Results sug-
gested that the learned knowledge from RL can be
represented and used for reasoning by the KRR
component, enabling the robot to dynamically gen-
erate task-oriented action policies.

The integration of a KRR paradigm and model-
based RL paves the way for at least the following
research directions. We plan to study how to se-
quence source tasks to help the robot perform the
best in the target task (i.e., a curriculum learning
problem within the RL context (Narvekar et al.,
2017)). Balancing the efficiencies between ser-
vice task completion and RL is another topic for
further study – currently the robot optimizes for
task completions (without considering the poten-
tial knowledge learned in this process) once a task
becomes available. Fundamentally, all domain vari-
ables are endogenous, because one can hardly find
variables whose values are completely independent
from robot actions. However, for practical reasons
(such as limited computational resources), people
have to limit the number of endogenous. It remains
an open question of how to decide what variables
should be considered as being endogenous.
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based monte-carlo planning. In Machine Learning:
ECML 2006, pages 282–293. Springer.

Matteo Leonetti, Luca Iocchi, and Peter Stone. 2016. A
synthesis of automated planning and reinforcement
learning for efficient, robust decision-making. Arti-
ficial Intelligence.

Dongcai Lu, Shiqi Zhang, Peter Stone, and Xiaop-
ing Chen. 2017. Leveraging commonsense reason-
ing and multimodal perception for robot spoken di-
alog systems. In 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS),
pages 6582–6588. IEEE.

Drew McDermott, Malik Ghallab, Adele Howe, Craig
Knoblock, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. 1998. Pddl-the planning
domain definition language.

Sanmit Narvekar, Jivko Sinapov, and Peter Stone. 2017.
Autonomous task sequencing for customized cur-
riculum design in reinforcement learning. In Pro-
ceedings of IJCAI.
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