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Abstract

In this paper, we present our system for SemEval-2020 task 3, Predicting the (Graded) Effect
of Context in Word Similarity. Due to the unsupervised nature of the task, we concentrated
on inquiring about the similarity measures induced by different layers of different pre-trained
Transformer-based language models, which can be good approximations of the human sense
of word similarity. Interestingly, our experiments reveal a language-independent characteristic:
the middle to upper layers of Transformer-based language models can induce good approximate
similarity measures. Finally, our system was ranked 1st on the Slovenian part of Subtask1 and
2nd on the Croatian part of both Subtask1 and Subtask2.

1 Introduction

In this paper, we describe our participation in SemEval-2020 task 3: Predicting the (Graded) Effect of
Context in Word Similarity (Armendariz et al., 2020). The goal of the task is to understand the effect
of contexts on word similarity. The task is composed of two subtasks sharing inputs: we are given a
word pair (i.e., two words) and two text snippets (hereafter “contexts”) both including the word pair. For
convenience of explanation, we describe Subtask2 first. In Subtask2, we predict two similarity scores
between the word pair in the two given contexts. In Subtask1, we predict the difference in the above two
similarity scores. More detailed descriptions of the subtasks are give in Section 3.

In both subtasks, small labeled data is available for model development. Thus, participants are required
to build models in an unsupervised manner.

We formulated the tasks as the exploration of similarity measures induced in the hidden layer word
representation space of pre-trained Transformer (Vaswani et al., 2017) based language models. Our ex-
pectation is that contextualized representation of Transformers could induce context dependent similarity
measures that approximate the human perception.

Experimental results show that better approximations of word sense similarity can be induced in the
middle to upper layers of Transformers for most languages. As a result, our system was ranked 1st on
the Slovenian part of Subtask 1 and 2nd on the Croatian part of both Subtask 1 and Subtask 2.

2 Background

Capturing the similarity between words has been considered to be one of the fundamental tasks in natural
language processing research because it is strongly related to many research fields such as text search,
entailment recognition, and information extraction. Recent work has been aimed at predicting the sim-
ilarity of a given word pair (Camacho-Collados et al., 2017; Mikolov et al., 2013) and considers the
similarity of word meanings that does not consider the effects of their contexts. Word-Sense Disam-
biguation (WSD) (Miller et al., 2012; Raganato et al., 2017), which is a lexicographical approach to
the representation of word senses, aims at selecting an appropriate sense for a given word from word-
specific sense candidates. Alongside with these two lines of the work, Armendariz et al. (2020) extended
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context text sim score
c1 Her prison cell was almost an improvement over her room at the last hostel. s1 = 7
c2 His job as a biologist didn’t leave much room for a personal life. He knew much more about human

cells than about human feelings.
s2 = 2

Table 1: Example of data used in task. In this case, w1 = “cell,” and w2 = “room.” In c1, both w1 and
w2 refer to different kinds of rooms, so similarity score s1 is rather high. In c2, w1 is used as biological
term, while w2 means abstract concept, so similarity score s2 is low. Note that this sample is taken from
official competition examples, and scores are virtual since we do not know gold ones.

similarity-based word-sense detection in SemEval-2020 task 3. This task focuses on the effect of contexts
on word similarity. More concretely, the task aims at predicting the similarity of a given word pair in
different contexts.

Recently proposed contextual word vectors, especially those of Transformer-based language models,
are considered to be able to capture context-dependent word meanings (Ethayarajh, 2019). We utilize
these vectors for the task.

3 Task Formalization

The task includes two subtasks, both of which aim at capturing the effect of context on similarities of
word pairs. Each subtask has four “sub-subtasks”, each of those corresponding to each of four languages,
namely, English, Finnish, Hungarian, and Slovenian.

As shown in Table 1, let w = (w1, w2) denote the given word pair, c = (c1, c2) the two different
contexts, and s = (s1, s2) the human-annotated similarity scores of w for each context (c1, c2). si is
annotated as an integer number in the range of [0, 10]. The higher the value is, the more similar w1 and
w2 are.

Given w and c, Subtask 1 aims at predicting d = s2 − s1, which expresses the change in similarity
scores caused by contexts. The metric of Subtask 1 is the Pearson correlation coefficient between gold
labels and predictions. Due to the translational and scale invariance of Pearson correlation, we can use
the [-1, +1] range instead of [0, 10]. Using this same input for Subtask 1, Subtask 2 aims at predicting
s1 and s2 directly. The evaluation metric is the uncentered Pearson correlation coefficient; thus, we can
use any range in R as well.

We take a two-stage approach; (i) we first solve Subtask 2 by predicting s1 and s2 directly, and (ii) we
second solve Subtask 1 by calculating d from the predicted s1 and s2.

4 Model

As we mentioned in the above, we explore similarity measures in Transformer’s representation space
exhaustively, which will represent the human sense of word similarity well. We introduce a cosine
similarity-based measure and then take a “layer-wise” exploration strategy.

Transformer Similarity

Because the input contexts are plain text, we apply two-level tokenization (i.e., word-level tokenization
and subword-level tokenization) for each context c1 and c2 and then feed the subword-level tokens to a
Transformer-based language model to get contextual word vectors:

v
(τ,λ)
11 = e(τ,λ)(w1, c1), v

(τ,λ)
21 = e(τ,λ)(w2, c1),

v
(τ,λ)
12 = e(τ,λ)(w1, c2), v

(τ,λ)
22 = e(τ,λ)(w2, c2),

where e(τ,λ)(w, c) represents the representation vector of word w in context c, taken from the λ-th layer
of the given Transformer-based language model τ . To get a word-level token representation w, we take
an average of all the representation vectors of the corresponding subword-level tokens.

To calculate the similarity between two words, we take cosine-similarity (written as “sim”) between
the corresponding word vectors. Cosine-similarity scores between the contextualized vectors are repre-
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sented as the following operations.

s
(τ,λ)
1 = sim

(
v
(τ,λ)
11 ,v

(τ,λ)
21

)
,

s
(τ,λ)
2 = sim

(
v
(τ,λ)
12 ,v

(τ,λ)
22

)
.

For Subtask 1, we predict the similarity score difference d̂(τ,λ) by:

d̂(τ,λ) = s
(τ,λ)
2 − s(τ,λ)1

For Subtask 2, we simply exploit the above similarity scores s(τ,λ)1 and s(τ,λ)2 as our predictions.

Exploration on Representation Space

As described in the above, each combination of (τ, λ) induces a similarity measure. Therefore, we define
Exploration Space Θ = {(τ, λ)|τ ∈ Transformers, λ ∈ Layers(τ)}, where Transformers represents a
set of Transformer-based language model types, and Layers(τ) represents the set of layer indices that
Transformer-based language model τ contains. We investigate Θ to find the one that approximates gold
similarity the best. Details on Transformers and Layers are given in Section 5.

Rank-Weighted Voting for English

Relatively larger number of pieces of annotated data are available in the English task. This enables us to
tune a slightly more complicated system for better predicting gold labels. Therefore, we decided to build
a special system for the English task that utilizes the multiple predictions made from different similarity
measures in Θ for more robust predictions.

First, we sort the predictions of different similarity measures in Θ in the order of the overall perfor-
mance on the development data, that is, in descending order of the Pearson coefficients between the
predictions and gold labels. Let yr denote the prediction on a given sample made by the r-ranked simi-
larity measure. Concretely, yr corresponds to d̂(τr,λr) in Subtask 1, s(τr,λr)1 and s(τr,λr)2 in Subtask 2. We
calculate the rank-decayed weighted average of the predictions:

y =
∑
r

ω(r)F (yr) , ω(r) =
exp(−r/R)∑
r exp(−r/R)

,

where R is a tunable hyperparameter representing the rank decay rate, and F is a non-linear transforma-
tion function. Note that the non-linearity of F is a significant property. Using a linear transformation
function is equivalent to only taking weighted n-best predictions, which have a smaller Pearson coeffi-
cient. 1

5 Experiments

Setup

We employed six types of Transformer-based language models as shown in Table 2. For the non-English
languages, we used multilingual models, namely, multilingual BERT (Devlin et al., 2019) and XLM-
RoBERTa (Conneau et al., 2019). For English, we employed BERT (monolingual/multilingual) (Devlin
et al., 2019), GPT-2 (Radford et al., 2019), Transformer-XL (Dai et al., 2019), XLNet (Yang et al., 2019),
and XLM-RoBERTa (Conneau et al., 2019).

1Let y denote a linear combination of uncorrelated stochastic variables: y[ω] =
∑

r ω(r)yr . Let l denote another stochastic
variable. In our case, yr is the prediction of the r-th ranked similarity measure and l the gold label. By simple calculation, we
can show that the Pearson coefficient Pearson(y[ω], l) takes the max when the ω(r) is taken as follows.

ω(r) =

{
1 (r = r0)

0 (otherwise)

Pearson(yr0 , l) ≥ Pearson(yr, l)

Although, in our case, yr does have correlations if taken from a different layer of the same Transformer, the correlations may
originate from rather trivial degeneracy, which we do not want the system to rely on.
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Transformers Layers type English Hungarian Finnish Slovenian
BERT (Devlin et al., 2019) 24 large-uncased X
BERT(multilingual) (Devlin et al., 2019) 12 base-cased X X X X
GPT-2 (Radford et al., 2019) 24 medium X
Transformer-XL (Dai et al., 2019) 18 wt103 X
XLNet (Yang et al., 2019) 24 large-cased X
XLM-RoBERTa (Conneau et al., 2019) 24 large X X X X

Table 2: Provided Transformer-based language models. Xshows models used in our experiments.

Subtask1 Subtask2
English Finnish Hungarian Slovenian English Finnish Hungarian Slovenian

model weighted-voting m-B m-B m-B weighted-voting m-B m-B m-B
layer index - 8 8 8 - 5 12 6

Table 3: Submitted similarity measures. m-B represents multilingual-BERT.
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(d) Subtask2 - XLM-RoBERTa

Figure 1: Pearson coefficient heatmaps for each Transformer layer in multi-lingual models (i.e.,
multilingual-BERT) and XLM-RoBERTa. Brighter color means higher value. “average” shows layer-
wise average over three languages.

We employed the log function as the scaling function F for English, which performed best on the
development data.

All of the experimental code was implemented with PyTorch (Paszke et al., 2019) and jiant (Pruk-
sachatkun et al., 2020). jiant is a recently developed transfer learning framework, which in turn utilizes
Hugging Face’s library (Wolf et al., 2019) for Transformer-based language models and their tokenizers.

Results

Table 4 and Table 5 present the official ranking of the subtasks. We submitted the similarity measures
described in Table 3, which performed the best on the test data among the fixed number of trials.2 The
similarity measures that performed the best on the development data were selected for the trials.

Interestingly, for all the non-English language tasks that employed multilingual-BERT and XLM-
RoBERTa, multilingual-BERT outperformed XLM-RoBERTa. Furthermore, for Subtask 1, the 8th-layer
outperformed the other layers submitted for the trials.
Which Layer Approximates the Human Sense of Similarity Better?: Figure 1 shows heatmaps of
Pearson coefficients between the gold labels and the predictions made by two of the Transformer-based
language models (i.e., multilingual-BERT and XLM-RoBERTa), calculated on the development data.
We also show the layer-wise averages over the languages. Note that the Finnish results are not shown

2Trials on the test set were permitted up to 9 times.
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Subtask1
English Croatian Slovenian Finnish
Ferryman 0.774 BabelEnconding 0.74 Hitachi (ours) 0.654 will_go 0.772
will_go 0.768 Hitachi (ours) 0.681 BRUMS 0.648 Ferryman 0.745
MultiSem 0.76 BRUMS 0.664 BabelEnconding 0.646 BabelEnconding 0.726
LMMS 0.754 Ferryman 0.634 CiTIUS-NLP 0.624 BRUMS 0.671
BRUMS 0.754 LMMS 0.616 Ferryman 0.606 CiTIUS-NLP 0.671
Hitachi (ours) 0.749 will_go 0.597 will_go 0.603 MultiSem 0.593
BabelEnconding 0.73 CiTIUS-NLP 0.587 LMMS 0.56 Hitachi (ours) 0.574
CiTIUS-NLP 0.721 MineriaUNAM 0.374 MineriaUNAM 0.328 MineriaUNAM 0.389
MineriaUNAM 0.544 MultiSem 0 MultiSem 0 LMMS 0.36

Table 4: Official ranking of Subtask 1. Values shown are Pearson coefficients.

Subtask2
English Croatian Slovene Finnish
MineriaUNAM 0.723 BabelEnconding 0.658 BabelEnconding 0.579 BRUMS 0.645
LMMS 0.72 Hitachi (ours) 0.616 BRUMS 0.573 BabelEnconding 0.611
AlexU-Aux-Bert 0.719 MineriaUNAM 0.613 CiTIUS-NLP 0.538 MineriaUNAM 0.597
MultiSem 0.718 LMMS 0.565 will_go 0.516 MultiSem 0.492
BRUMS 0.715 BRUMS 0.545 AlexU-Aux-Bert 0.516 Ferryman 0.357
will_go 0.695 CiTIUS-NLP 0.496 Hitachi (ours) 0.514 LMMS 0.354
Hitachi (ours) 0.695 AlexU-Aux-Bert 0.402 MineriaUNAM 0.487 will_go 0.35
CiTIUS-NLP 0.687 will_go 0.402 LMMS 0.483 Hitachi (ours) 0.335
BabelEnconding 0.634 Ferryman 0.397 Ferryman 0.345 CiTIUS-NLP 0.289
Ferryman 0.437 MultiSem 0 MultiSem 0 AlexU-Aux-Bert 0.289

Table 5: Official ranking of Subtask 2. Values shown are Pearson coefficients.

because no development data was distributed.
We can see from Figure 1 that better approximations of word sense similarity can be induced in

the middle to upper layers of Transformers for most of the languages. This is also consistent with the
intended design of the multi-layered self-attention mechanism, which aims to obtain more contextualized
word representations on the upper layers.

Looking more into detail, there are different characteristics between the multilingual-BERT and XLM-
RoBERTa. For multilingual-BERT, it seems that the deeper the layer is, the higher the performance is.
For XLM-RoBERTa, the middle layers tend to perform better than the other layers. This implies that
different Transformer language models capture word similarity differently.

6 Conclusion

In this paper, we proposed a model for the task of capturing the effects of context on word similar-
ity. We employed similarity measures induced by the hidden layer representation vectors of pre-trained
Transformer-based language models. We explored all the layers of the models to find the one that matches
human perception the best.

Our experimental results show that the multi-layered self-attention mechanism of Transformer-based
language models successfully captures the human sense of context-dependent word similarity. The re-
sults also revealed a universal language characteristic, that is, for all the Transformer-based language
models, the middle to upper layers perform better on the task than the others.
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