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Abstract

This paper describes EmbLexChange, a system introduced by the “Life-Language” team for
SemEval-2020 Task 1, on unsupervised detection of lexical-semantic changes. EmbLexChange
is defined as the divergence between the embedding based profiles of word w (calculated with re-
spect to a set of reference words) in the source and the target domains (source and target domains
can be simply two time frames t1 and t2). The underlying assumption is that the lexical-semantic
change of word w would affect its co-occurring words and subsequently alters the neighbor-
hoods in the embedding spaces. We show that using a resampling framework for the selection of
reference words (with conserved senses), we can more reliably detect lexical-semantic changes
in English, German, Swedish, and Latin. EmbLexChange achieved second place in the binary
detection of semantic changes in the SemEval-2020.

1 Introduction

SemEval 2020 Task 1 is defined on the unsupervised detection of word sense changes over time in Ger-
man, English, Swedish, and Latin. In particular, this challenge focused on detection and quantification
of the sense changes of word w in the transition from the time period t1 to the time period t2 in the above
mentioned four languages, where the input for each language are the text corpora dating from t1 and t2.
This challenge involved two subtasks:

i. Classification: The goal of the classification task is the binary detection of lexical semantic change
implying loss or gain of senses (from t1 to t2) for the given word w.

ii. Ranking: This subtask involves the ranking of lexical-semantic change for a given list of words
(w1, w2, . . . , wM ) by assigning scores quantifying relative changes of the word senses.

In order to evaluate the two subtasks, the participating systems are evaluated against a ground truth
corpus annotated by native speakers or scholars of the respective languages (Schlechtweg et al., 2020).

Human languages constantly change due to cultural, technological, and social drift. Lexical semantic
changes of human languages can materialize in the form of introducing/borrowing new words, or for
the existing words can involve acquiring/losing some word senses (Koch, 2016; Traugott, 2017). Com-
putational methods for automated detection of semantic changes can be extremely helpful in the study
of historical texts or corpora spanning a very long period of time, e.g., semantic analysis of 1000 years
of poetry (Asgari and Chappelier, 2013; Asgari et al., 2013), or in the design of the OCR algorithm
for text digitization, or in designing an information retrieval system incorporating the semantic changes
(Tahmasebi et al., 2018). Applications in the study of historical texts aside, the proposed methods detect
lexical-semantic drift also in the same time period for different domains. This can be useful for com-
piling glossaries and specific training material in certain industries where new senses are introduced for
words as compared to their standard usage e.g. to facilitate a more efficient training for new employees.

In the past decade, a variety of methods were introduced in the literature for automatic detection of
lexical-semantic changes (Tahmasebi et al., 2018), where we only can refer to a subset of work, including
but not limited to (i) co-occurrence-based methods (Sagi et al., 2009; Basile et al., 2016), (ii) embedding-
based approaches (Bamman and Crane, 2011; Kim et al., 2014; Kulkarni et al., 2015; Asgari and Mofrad,
2016; Hamilton et al., 2016a; Asgari, 2019; Asgari et al., 2020), and (iii) topic-models-based (Frermann
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and Lapata, 2016) approaches. In this paper, we extend our recently introduced DomDrift embedding-
based approach for the detection of semantic changes (Asgari et al., 2020) introduced for the extension
of the computational analyses on 1000+ languages (Asgari and Schütze, 2017). Similar our earlier work
on WELD(Asgari and Mofrad, 2016) and similar to (Hamilton et al., 2016a), DomDrift works based
on a comparison of relative distances of words in the embedding spaces of the source and the target
domains. To increase the stability of detection in DomDrift, we extend DomDrift to EmbLexChange by
the following modifications: (i) instead of creating word profiles against all common words between the
source and target domain, we use only a subset of pivot words, which are frequent words with unchanged
relative frequencies. (ii) We create multiple word profiles by resampling from a set of pivot words.
We show that the EmbLexChange can reliably detect the lexical-semantic changes in English, German,
Swedish, and Latin achieving an average accuracy of 0.686 as second best system of the competition
where the first place system achieved an accuracy of 0.687.

2 System overview

Here we detail the steps of the EmbLexChange system, where the overview is depicted in Figure 1. The
EmbLexChange framework is developed based on the following assumptions:
H1: frequent words change at slower rates (Hamilton et al., 2016b; Dubossarsky et al., 2017).
H2: the relative frequency of unchanged words is not dramatically different in different time peri-
ods/domains.
H3: changes of the word sense are reflected in the context, which are captured by the embedding model
resulting in changes of the neighbors in the embedding space. Thus, the relative drift of a query word (a
word which we target to investigate its lexical semantic change) with respect to unchanged words in the
embedding space can characterize the lexical-semantic change.

1.1 Train embedding space for t1
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Figure 1: Overview of the EmbLexChange system for unsupervised detection of lexical-semantic
changes. The steps are detailed in the §2.1.

2.1 EmbLexChange

1. Training language-model-based embedding spaces: The training of word embeddings using a
language modeling objective (e.g., skip-gram) has shown to preserve the syntactic and the semantic
regularities in the vector space (Mikolov et al., 2013; Pennington et al., 2014). Semantic changes impact
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the neighborhoods in the embedding space (H3). Thus, the first step to investigate change is to train
embeddings separately for the text corpora in time periods t1 and t2 (steps 1.1 and 1.2 in Figure 1). In
order to generate the embedding space Ωt, the only necessary resource is the raw text. For embedding
creation, we use fasttext (Bojanowski et al., 2017) which leverages subword information within
the skip-gram architecture. Using sub-word information minimizes the Out-OF-Vocabulary problem for
query terms (Bojanowski et al., 2017). The result of this step are separate embedding spaces Ωt1 and
Ωt2 for the time periods t1 and t2, Ωtx : Vtx → Rhtx , tx ∈ {t1, t2} mapping their vocabulary Vltx to
continuous vector representations in Rhtx .
2. Selection of fixed words and prepare pivot sets: To measure the degree of semantic change for the
given query words in Ωt1 and Ωt2 , we need some fixed points, called pivot set VP comprising words with
the property that their semantics are not dramatically changed and their relative positions in Ωt1 and Ωt2

remain almost constant (step 2 in Figure 1). For this purpose, based on H1 and H2, we propose the use
of frequent words with their relative frequency higher than α in both time periods of t1 and t2. Secondly,
we filter this set by removing words whose relative frequency has changed between t1 and t2, resulting
in VP . These fixed points are then used to create query profiles in t1 and t2. In order to increase the
reliability and make variance analysis feasible, we execute N resamples each containing M words from
VP : V (1)

P ,V (2)
P ,. . . ,V (N)

P .
3. Query profiles creation: In the next step, for each query word, we create t1 and t2 profiles based on
the pivot resamples (step 3 in Figure 1). The profile in time t is an l1 normalized embedding similarity
vector of the query to the terms in V (i)

P :
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where V (i)
P is the ith resample from the pivot set (created in step 2), wq is the query word, w(i)

k is the kth

word in the ith resample, −→w is the vector representation of word w in the embedding space Ωt, φ is the
temperature of the softmax function (used as a hyper parameter). Hence, for each V (i)

P we can create one
profile in t1 and one profile in t2.
4. Profile divergence calculation: Next, for each resample V (i)

P we calculate the divergence between
the profile in the time period t1 and the time period t2 using KL-divergence:

λi = DKL(P (wq, V
(i)
P ,Ωt1)‖P (wq, V

(i)
P ,Ωt2))

We average the λ′is overN resamples as the measure of semantic change for the query word wq. Since
DKL does not have an upper bound, we estimate an upper bound based on λi’s on resamples of a large
set of randomly selected words Vexplore including VP and a set of words with a change in their relative
frequency. We draw K resamples of size M ′ words from Vexplore and calculate the λk ’s (λ’s of words
in kth resample of Vexplore). We select the average of the 90th percentile over K resamples as the upper
bound and the average of the 10th percentile as the lower bound of the λ to scale any calculated λi for a
query word to λ̂i (0 ≤ λ̂i ≤ 1). Considering a threshold of h, we assign λ̄ > h to the category of lexical
semantic change, which can be adjusted as a hyperparameter on a validation set.

3 Data

The dataset used in this shared task includes corpora of English, German, Latin, and Swedish texts. For
each language, the text corpora of two time periods are given. More details on the exact time frames and
data sizes are provided in Table 1.

4 Experiment

The goal of SemEval task 1 is to detect the words with a change in their semantics in the transition from
the time period t1 to the time period t2 in English, German, Swedish, and Latin languages. We closely
follow the steps described in §2.
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Languages t1: time period (# tokens) t2: time period (# tokens) Reference
English 1810 – 1860 (6.6M) 1960 – 2010 (6.8M) CCOHA (Alatrash et al., 2020)
German 1800 – 1899 (70.2M) 1946 – 1990 (72.4M) DTA, BZ, and ND corpora
Latin –200 – 0 (1.8M) 0 – 2000 (9.4M) LatinISE (McGillivray and Kilgarriff, 2013)
Swedish 1790 – 1830 (71.1M) 1895 – 1903 (110.8M) KubHist (Adesam et al., 2019)

Table 1: The English, German, Swedish, and Latin datasets used in the SemEval shared task.

1. Language-model-based embedding setup: We train fasttext (Bojanowski et al., 2017) em-
beddings using the skip-gram architecture for each pair of language and time period separately. In the
training of fasttext, we set the window size to c = 7 and the embedding size of d = 100. In the
presence of a validation set, both c and d can be optimized as the hyper-parameters for each setting. It
is known that a larger c is favorable for semantics representation of words and a smaller c for a syntax-
related representation (Lison and Kutuzov, 2017).
2. Pivot resamples creation: We firstly prepare a set of frequent words existing in both t1 and t2 for
each language considering the α (relative freq.) as a way to select the top frequent words. Next, we
filter this set to keep the words with the property that the ratio of their normalized frequencies is not
substantially changed in t1 and t2, 2

3 <
freqt1(w)
freqt2(w) <

3
2 resulting in our VP set. Subsequently, we draw

N = 10 resamples from VP with the size of M = 5000 for each language.
3. Query profiles creation: In the next step, as presented in §2 step 3, for each query word we create t1
and t2 profiles for each of the N = 10 pivot resamples as in the previous step.
4. Profile divergence calculation: Next, for each of the N resamples V (i)

P , we calculate the λi and scale
them to λ̂i using K = 5 resamples of size M ′ = 5000 words from Vexplore. Subsequently, for the binary
detection of changes, we apply different thresholds h over the average of scaled divergences (the average
of λ̂i’s = λ̄ ) of V (i)

P ’s and assign λ̄ > h to the category of lexical semantic change.
Evaluation: For evaluation purpose, in the case of binary detection (Subtask 1) the accuracy metric is
used to compare the given ground-truth and the predicted lexical semantic changes. For the ranking
setting (Subtask 2), we report both the Spearman rank-order correlation coefficient (proposed by the task
organizers) and Kendall-τ (with more accurate p-values for the smaller sample sizes (Bonett and Wright,
2000)) to measure the correspondence between calculated divergences (λ̄’s) and the provided ground-
truth scores. In addition, we repeat the experiments without resamplings (N = K = 1) to investigate
the effect of resampling.

5 Results

The results of EmbLexChange in the detection and the quantification of changes in the lexical se-
mantics in English, German, Swedish, and Latin are provided in Table 2. After the competition,
we had the chance to perform further optimizations of the hyperparameters leading to the current
results, slightly improved from those submitted to the competition leaderboard. The scores re-
ported by the organizers during the evaluation phase are also provided in bold in parentheses. Our
results show that resampling improves both accuracy and Spearman’s rank correlation coefficient
in all 4 languages. The EmbLexChange scores of the test set for all languages are available at
http://language-lab.info/emblexchange/. Upon obtaining the required approvals the code will be available
at https://github.com/ehsanasgari/EmbLexChange.
Binary detection: EmbLexChange could detect the semantic changes in English, German, Swedish, and
Latin with the accuracy of 70.3%, 75.3%, 77.4%, 60% respectively. The selected h value, the thresholds
to assign the positive or the negative class for each language, are also provided in Table 2.
Ranking: The Kendall-τ p-values for English, German, and Swedish show that there is a significant
correspondence between the EmbLexChange scores and the ground truth scores in those languages.
The Spearman rank-order correlation coefficient is also calculated for all languages, with an average of
0.357 over the four languages. The case of Latin has been more challenging in both binary and graded
prediction of lexical semantic change.
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EmbLexChange w/o resampling EmbLexChange with resampling
Languages Accuracy Spearman-ρ Accuracy Spearman-ρ Kendall-τ Kendall-τ -p-value h

English 67.5 0.15 70.3 (70) 0.30 (0.30) 0.22 0.114 0.5
German 66.0 0.41 75.0 (75) 0.47 (0.21) 0.315 0.009 0.5
Swedish 71.0 0.41 77.4 (74) 0.63 (0.39) 0.383 0.0115 0.4
Latin 55.0 -0.02 60.0 (55) 0.028 (-0.02) 0.161 0.222 0.15

Average 64.87 0.238 70.7 (68) 0.357 (0.22)

Table 2: The summary of post evaluation results for the detection and quantification of lexical-semantics
changes in English, German, Swedish, and Latin in SemEval 2020. The competition results during the
evaluation period are bold in parentheses. The results without resamplings (N=K=1) are also provided.

6 Discussion and Conclusions

In this paper, we proposed EmbLexChange, a framework for the detection of lexical semantic changes in
an unsupervised manner. We defined EmbLexChange as the divergence between the embedding-based
profiles of word w (calculated for a set of pivot words) in the source and the target domains (e.g. between
two historical time-frames). With the selection of pivot words by a resampling framework, we raise the
reliability of this divergence. The underlying assumption of our method is that the changes in lexical
semantics of word w would affect its co-occurring words and subsequently alters the neighborhoods in
the embedding spaces.

We showed that EmbLexChange can reliably detect lexical-semantic changes in English, German,
Swedish, and Latin achieving the second place in the binary detection of semantic changes in the
SemEval-2020. The detection of semantic changes in Latin has been more challenging than for other
languages. One reason behind this can be the imbalance of embedding training instances for Latin t1 and
Latin t2 as well as the overall smaller corpora for Latin in comparison to the other languages (shown in
Table 1). Another reason can be the split of time frames, where t2 in Latin spans a large period of 2000
years.

The SemEval overall results show that EmbLexChange works better in the binary detection of semantic
changes versus its performance in the ranking problem setting (Schlechtweg et al., 2020). However, we
should note that the manual creation of ranking ground truth is a much more challenging task than the
creation of binary classification ground truth. Thus, we believe that the classification results might be
more reliable than the ones for the ranking.

The EmbLexChange requires only the raw texts in the time-frames/domains of interest. Then the se-
mantic changes can be detected based on the divergence between the embedding-based profiles of words
of source and target domains. One advantage of using an embedding-based profile is that by increasing
the window size in the embedding training we can move from syntactic changes toward semantic changes
which can be investigated in more depth as a future direction of research.
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