IIITG-ADBU at SemEval-2020 Task 9: SVM for Sentiment Analysis of
English-Hindi Code-Mixed Text

Arup Baruah!, Kaushik Amar Das', Ferdous Ahmed Barbhuiya', and Kuntal Dey?*
'IIT Guwabhati, India
2 Accenture Technology Labs, Bangalore
arup.baruah@gmail.com, kaushikamardas@gmail.com,
ferdous@iiitg.ac.in, kuntal.dey@accenture.com

Abstract

In this paper, we present the results that the team IIITG-ADBU (codalab username ‘abaruah’)
obtained in the SentiMix task (Task 9) of the International Workshop on Semantic Evaluation
2020 (SemEval 2020). This task required the detection of sentiment in code-mixed Hindi-English
tweets. Broadly, we performed two sets of experiments for this task. The first experiment was
performed using the multilingual BERT classifier and the second set of experiments was performed
using SVM classifiers. The character-based SVM classifier obtained the best F1 score of 0.678 in
the test set with a rank of 21 among 62 participants. The performance of the multilingual BERT
classifier was quite comparable with the SVM classifier on the development set. However, on the
test set it obtained an F1 score of 0.342.

1 Introduction

Sentiment analysis has been defined as the computational study of opinions, sentiments, and emotions
expressed in the text (Liu, 2010). In its basic form, sentiment analysis is used to determine the polarity of
a given text where the polarity may be negative, neutral, and positive. Thus, sentiment analysis can be
viewed as a text classification problem.

With the advent of social media platforms, the use of non-standard language has increased. Now-
a-days, it is very common to use emoticons, mentions, acronyms, and ungrammatical sentences while
communicating in social media. All these factors make the traditional tools used for natural language
processing fail on social media text. Another new style of communication in social media is the use of
code-mixed text. Code-mixing means the mixing of words from more than one language in the same
sentence or between sentences. Code mixing makes the task of sentiment analysis more challenging.

The objective of SentiMix (Task 9), organized as part of the International Workshop on Semantic
Evaluation 2020 (SemEval 2020), is to detect the sentiment of code-mixed tweets (Patwa et al., 2020).
This task was a three-way classification problem with the labels being negative, neutral, and positive. The
task was held for both Hindi-English and Spanish-English code-mixed tweets.

We participated in this task for the Hindi-English language. In this task, we experimented with SVM
and multilingual BERT classifiers.

2 Related Work

Joshi et al. (2010) performed the first work on the detection of sentiment analysis of Hindi text. In their
work, unigram and bigram based SVM classifiers were used. As another approach, the Hindi text was
machine translated to English and the translated text was then classified using a classifier trained on
English text. This work also led to the creation of Hindi-SentiWordNet sentiment lexicon. The lexicon was
also used to perform a lexicon-based sentiment analysis. The classifier trained on the Hindi text performed
the best with an accuracy of 78.14%. Sharma et al. (2015) used a lexicon-based approach to determine the
" *This work was done when the author was affiliated with IBM Research India, New Delhi

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

946

Proceedings of the 14th International Workshop on Semantic Evaluation, pages 946-950
Barcelona, Spain (Online), December 12, 2020.

Negative | 533 Negative | 4102 Negative | 890 Negative | 4992
(29%) (29%) (30%) (29%)

Neutral | 754 Neutral | 5264 Neutral | 1128 Neutral | 6392
(40%) (38%) (38%) (38%)

Positive 582 Positive | 4634 Positive 982 Positive | 5616
(31%) (33%) (32%) (33%)

Total 1869 Total | 14000 Total 3000 Total | 17000

Table 1: Trial Table 2: Train Table 3: Development Table 4: Combined

sentiment of code-mixed Hindi-English text. The language of each word was first determined. The Hindi
words written using Roman scripts were then transliterated into Devanagari script. The sentiment of each
word was then determined through a lookup of the lexicons - Hindi SentiWordNet, Opinion Lexicon, and
AFINN. The sentiment of the text was then determined based on the count of positive and negative words.
Joshi et al. (2016) also worked on detecting sentiment on code-mixed Hindi-English text. A sub-word
level LSTM was used in their study. The sub-word level representations were generated by performing a
convolution operation on 128-dimensional character embeddings. The sub-word level LSTM was found
to perform better than character based LSTM.

3 Data Set

The Hindi-English data set for this task was provided in the CoNLL format. For each tweet, the following
information was provided: (1) the id for the tweet, (2) its label (negative, neutral, or positive), and (3) the
language id of each token (HIN for Hindi, ENG for English, and O if neither Hindi nor English). In our
experiments, we did not make use of the language id information provided in the data set.

Tables 1 to 4 show the statistics of the trial, train, development, and the combined data sets respectively.
The combined data set was obtained by combining the trial, train, and development data sets. The duplicate
entries were removed from the combined data set. The combined data set was used in our experiments.
As can be seen from the tables, the data sets were quite balanced.

4 Methodology

4.1 Preprocessing

In our work, before performing tokenization, the text was converted to lower case. This conversion
to lower-case was performed through the BERT tokenizer and the TFIDF vectorizer. In one of the
experiments, the URLs were removed from the text. Emoticons, hashtags, and mentions were not removed
from the text.

4.2 Classifiers

4.2.1 Multilingual BERT

BERT (Devlin et al., 2019) is a bi-directional model based on the transformer architecture. The transformer
architecture is an architecture based solely on attention mechanism (Vaswani et al., 2017). The transformer
architecture overcomes the inherent sequential nature of Recurrent Neural Networks (RNN) and hence
they are more conducive for parallelization.

Multilingual BERT is BERT trained for multilingual tasks. It was trained on monolingual Wikipedia
articles of 104 different languages. It is intended to enable multilingual BERT fine-tuned in one language
to make predictions for another language. In our study, we used the multilingual BERT model having
12 layers and 12 heads '. This model generates a 768-dimensional vector for each word. We used the
768-dimensional vector of the Extract layer as the representation of the tweet. Our classification layer
consisted of a single Dense layer. The dense layer consisted of 3 units and the softmax activation function

"nttps://github.com/google-research/bert

947

was used. The loss function used was sparse categorical crossentropy. The Adam optimizer with a
learning rate of 2e-5 was used for training the model. The model was trained for 15 epochs. Early stopping
with patience of 5 was used and Sparse categorical accuracy was monitored for early stopping.

4.2.2 SVM

We also used the Support Vector Machine (SVM) model for this task. The SVM implementation provided
by Scikit-learn library (Pedregosa et al., 2011) was used in our experiments. The SVM model was trained
using TF-IDF features of word and character n-grams. TF-IDF of n-grams in a document is calculated by
multiplying the term frequency (Luhn, 1958) of the n-gram in the document with the inverse document
frequency (Jones, 2004) of the n-gram. The term frequency of an n-gram in a document is the count of the
number of times the n-gram appears in the document. The count may be normalized by dividing the count
with the total number of n-grams in the document. The inverse document frequency of an n-gram ¢ is
calculated as log(N/N;), where N is the total number of documents and V; is the number of documents
in which the n-gram r appears. Word n-grams of size 1 to 3 and character n-grams of size 1 to 6 were
used in our study. The linear kernel was used for the classifier and hyperparameter C was set to 1.0.
The hyperparameter C is the regularization parameter. Larger values for C leads to a narrower margin
and less misclassified instances. However, C should be set to a smaller value to reduce overfitting. We
experimented using the SVM model on both the uncleaned data (SVM Run 1) and on the cleaned data
where the URLs were removed from the text (SVM Run 2).

5 Results

Table 5 shows the results of our classifier obtained on the development set. As was mentioned in section 3,
we combined the trial, train, and dev data sets. 20% of this combined data set was used as the development
set. Run 2 of the SVM classifier was on a cleaned data set where the URLs were removed. The uncleaned
data set was used for BERT and run 1 of the SVM classifier. As can be seen from the table, the best score
was obtained by the SVM classifier when the cleaned data set was used. SVM trained on the character
n-grams performed better than those trained on word n-grams or a combination of character and word
n-grams.

Metric SVM Run 1 SVM Run 2 BERT
Char Word Char + | Char Word Char +
n-gram n-gram Word | n-gram n-gram Word
(1to6) (Ato3) (1to6) ((1to3)

Precision | 0.6288 0.6127 0.6191 | 0.6379 0.6169 0.6204 | 0.6103
Recall 0.6209 0.6100 0.6183 | 0.6298 0.6135 0.6200 | 0.6104
F1 0.6241 0.6112 0.6186 | 0.6330 0.6150 0.6201 | 0.6101

Table 5: Dev Set Results

SVM1 (Char n-gram) | SVM1 (Word n-gram) | SVM1 (Char + Word n-gram)
Pred Pred Pred | Pred Pred Pred | Pred Pred Pred
NEG NEU POS | NEG NEU POS | NEG NEU POS

True NEG | 631 300 56 623 310 54 652 270 65

True NEU | 252 763 272 274 713 300 260 722 305

True POS 74 342 710 91 309 726 93 320 713

Table 6: Confusion Matrix for SVM Run 1 on Dev Set

Tables 6 to 8 show the confusion matrices for our classifiers on the development set. As can be seen,
the character n-gram based SVM classifier’s strength was its ability to predict the neutral class. The
word n-gram based classifier predicted the positive class better. Whereas the classifier trained using the
combination of character and word n-gram features predicted the negative category better.

948

SVM1 (Char n-gram) | SVM1 (Word n-gram) | SVM1 (Char + Word n-gram)
Pred Pred Pred | Pred Pred Pred | Pred Pred Pred
NEG NEU POS |[NEG NEU POS | NEG NEU POS

True NEG | 636 293 58 627 304 56 652 265 70

True NEU | 239 784 264 271 726 290 256 723 308

True POS 78 332 716 91 313 722 94 314 718

Table 7: Confusion Matrix for SVM Run 2 on Dev Set

BERT

Pred Pred Pred | SVM1 SVM2 BERT [Best System |

NEG NEU POS
True NEG 1 600 304 83 [FI 0674 0.678 0342 [075 |

True NEU | 247 699 341 | Rank - 21/62 - | ez]
True POS | 99 261 766 Table 9: Official Results on Test Set

Table 8: Confusion Matrix for BERT on Dev
Set

While comparing BERT with SVM, it can be seen that the BERT classifier predicted the positive
category better than SVM. However, it did not predict the negative and neutral classes well.

Table 9 shows the scores our classifier obtained on the official run. The SVM classifier trained on the
cleaned data using character n-gram features was our best performing classifier. It obtained F1 score
of 0.678 and obtained the 21% rank out of 62 participants. The BERT classifier’s performance on the
development set was quite comparable to the SVM classifiers. However, on the test data set, the BERT
classifier did not perform well and obtained an F1 score of only 0.342.

6 Conclusion

BERT has been a very successful model in many of the natural language processing tasks. In our study, we
used multilingual BERT for the detection of sentiment in code-mixed Hindi-English text. Its performance
on the development set was comparable with the SVM classifier. However, it produced an F1 score of
only 0.342 in the test data. The SVM classifier trained on character n-gram was our best performing
classifier on the test set with an F1 score of 0.678.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics, pages 4171-4186, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

Karen Spirck Jones. 2004. A statistical interpretation of term specificity and its application in retrieval. Journal
of Documentation, 60(5):493-502.

Aditya Joshi, Balamurali A R, and Pushpak Bhattacharyya. 2010. A fall-back strategy for sentiment analysis
in hindi: a case study. In Proceedings of the 8th International Conference On Natural Language Processing
(ICON).

Aditya Joshi, Ameya Prabhu, Manish Shrivastava, and Vasudeva Varma. 2016. Towards sub-word level compo-
sitions for sentiment analysis of hindi-english code mixed text. In Nicoletta Calzolari, Yuji Matsumoto, and
Rashmi Prasad, editors, COLING 2016, 26th International Conference on Computational Linguistics, Proceed-
ings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, pages 2482-2491. ACL.

Bing Liu. 2010. Sentiment analysis and subjectivity. In Nitin Indurkhya and Fred J. Damerau, editors, Handbook
of Natural Language Processing, Second Edition, pages 627-666. Chapman and Hall/CRC.

Hans Peter Luhn. 1958. The automatic creation of literature abstracts. IBM J. Res. Dev., 2(2):159-165.

949

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj Pandey, Srinivas PYKL, Bjorn Gambick, Tanmoy Chakraborty,
Thamar Solorio, and Amitava Das. 2020. Semeval-2020 task 9: Overview of sentiment analysis of code-mixed
tweets. In Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-2020), Barcelona,
Spain, December. Association for Computational Linguistics.

Fabian Pedregosa, Gagl Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Math-
ieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cour-
napeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn: Machine learning in
python. J. Mach. Learn. Res., 12:2825-2830.

Shashank Sharma, PYKL Srinivas, and Rakesh Chandra Balabantaray. 2015. Text normalization of code mix
and sentiment analysis. In Jaime Lloret Mauri, Sabu M. Thampi, Michal Wozniak, Oge Marques, Dilip Krish-
naswamy, Sartaj Sahni, Christian Callegari, Hideyuki Takagi, Zoran S. Bojkovic, Vinod M., Neeli R. Prasad,
Jose M. Alcaraz Calero, Joal Rodrigues, Xinyu Que, Natarajan Meghanathan, Ravi Sandhu, and Edward Au,
editors, 2015 International Conference on Advances in Computing, Communications and Informatics, ICACCI
2015, Kochi, India, August 10-13, 2015, pages 1468-1473. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan. N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. 2017. Attention is All you Need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30,
pages 5998-6008. Curran Associates, Inc.

950

