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Abstract

We present the systems we submitted for the
shared tasks of the Workshop on Scholarly
Document Processing at EMNLP 2020. Our
approaches to the tasks are focused on exploit-
ing large Transformer models pre-trained on
huge corpora and adapting them to the differ-
ent shared tasks. For tasks 1A and 1B of CL-
SciSumm we are using different variants of the
BERT model to tackle the tasks of “cited text
span” and “facet” identification. For the sum-
marization tasks 2 of CL-SciSumm, LaySumm
and LongSumm we make use of different vari-
ants of the PEGASUS model, with and without
fine-tuning, adapted to the nuances of each one
of those particular tasks.

1 Introduction

For scholars in every scientific domain, the ever
growing amount of articles published each year
has made the long-lasting challenge of keeping up
with the recent literature significantly harder. In
addition, there is an increasing need for making
research accessible and relevant to the general pub-
lic and not just a small group of researchers and
practitioners. For example, taxpayers want to know
where federal money supporting research goes. As
a result, there is a need for different types of sum-
maries that can either facilitate scientific research
by compressing the key ideas discussed in a scien-
tific paper or make scientific research more relevant
for a lay audience.

It is obvious that tasking the author of a pa-
per with writing multiple summaries of her work
for different audiences is time-consuming. Conse-
quently, the interest for methods that automatically
summarize scientific documents in different styles
and variations has increased significantly. Towards
this direction, the 1st Scholarly Document Process-
ing Shared Task (SDP 2020) (Chandrasekaran et al.,
2020) introduces a number of different tasks that

address these challenges. In addition to the origi-
nal CL-SciSumm sub-tasks of previous years, the
2020 version includes tasks that are targeting the
summarization of complete papers as well as the
generation of lay summaries. The different tasks of
SDP 2020 can be summarized as follows.

1. CL-SciSumm: The original CL-SciSumm
challenge includes three sub-tasks. Given a
set of reference papers (RP) and the corre-
sponding papers that cite them (CP), task 1A
requires for each citance (i.e. a sentence of the
CP that references the RP) the identification
of the “cited” text spans in the RP. In task 1B
participants have to tag each cited span with
the appropriate “facets” from a predefined set.
Finally, for the optional task 2 a summary of
the RP should be generated.

2. LaySumm: This task requires participants
to generate a short summary for each given
paper that accurately represents the content
and at the same time is comprehensible and
interesting to a lay audience.

3. LongSumm: In this task the requirement is to
generate an extensive and detailed summary
for each of the given scientific papers that
sufficiently covers all the salient information.

Exploiting large language models that are pre-
trained on huge corpora of unlabelled data and then
adapting them to solve NLP problems has proven to
be a very successful strategy. This type of approach
has yielded state-of-the-art results in a variety of
NLP tasks such as question answering, machine
translation and summarization and has proven to
be especially beneficial when the training data are
limited. In this work our main focus is to explore
large pre-trained Transformers like BERT (Devlin
et al., 2018) and PEGASUS (Zhang et al., 2019)
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and how they can be effectively used in the context
of the SDP 2020 shared task. For CL-SciSumm
task 1A we fine-tune a BERT pairwise classifier
that is able to identify “cited text spans” of the
RP given a number of “citing spans” from mul-
tiple CPs. We further improve the efficiency of
our system by adding a pre-filtering stage based
on TF-IDF that selects good “candidates” for the
BERT model. In task 1B we train a simple Lo-
gistic Regression classifier that uses embeddings
from another pre-trained model, SciBERT (Beltagy
et al., 2019), and is able to classify each cited text
span into one of five distinct facets. We show that
even an algorithm as simple as Logistic Regression
can effectively learn a fairly complex task with
very few training data when using features from a
powerful pre-trained model such as SciBERT.

We approach task 2 of CL-SciSumm as well as
LaySumm and LongSumm as abstractive summa-
rization tasks. More specifically, we employ the PE-
GASUS pre-trained model that has demonstrated
very good results in various abstractive summariza-
tion benchmarks. We use the pre-trained model
without any additional training to generate a com-
prehensive summary of an article given the abstract
as well as the information from the parts of the full
text that are cited by other articles for task 2 of CL-
SciSumm. For the LaySumm task, we fine-tune
the PEGASUS model to compress and re-write the
abstract of the given article in order to generate
a summary suited for a lay audience. Finally, for
the LongSumm task our approach makes use of
the Divide-ANd-ConquER (DANCER) (Gidiotis
and Tsoumakas, 2020) summarization method in
combination with the PEGASUS model aiming to
generate an accurate and detailed summary of the
article by separately summarizing important sec-
tions of the full text.

The rest of this work is structured as follows. In
section 2 we very briefly present different summa-
rization approaches focusing on academic articles
with emphasis on pre-trained Transformer models.
In sections 3 to 5 we describe our approaches to
each one of the three tasks and in section 6 we
discuss our experiments and results.

2 Related Work

The task of summarizing scientific articles has re-
ceived increased attention lately. Existing methods
usually approach the problem in one of two fun-
damental ways. Extractive methods (Cohan and

Goharian, 2015, 2018; Collins et al., 2017) focus
mainly on identifying key sentences of the text and
creating a summary by combining the extracted
sentences. On the other hand, abstractive meth-
ods (Cohan et al., 2018; Subramanian et al., 2019;
Zhang et al., 2019) are using language models con-
ditioned on the input text in order to generate a
summary.

Both extractive and abstractive methods when
applied to scientific articles are typically taking as
input the abstract and/or the full text of the arti-
cle and try to generate an abstract-like summary.
In contrast, DANCER (Gidiotis and Tsoumakas,
2020) learns to summarize different sections of the
full text separately and combines the individual
summaries into a single article summary.

Given the increased popularity and success of
large pre-trained Transformer models in various
NLP tasks, multiple approaches have decided to
use similar models for summarization. Such ap-
proaches have either used pre-trained Transformers
as encoders combined with a classification decoder
that selects sentences in an extractive manner (Sub-
ramanian et al., 2019; Liu and Lapata, 2019) or
have employed full encoder-decoder models that
are pre-trained on various tasks and fine-tuned for
abstractive summarization (Song et al., 2019; Dong
et al., 2019; Yan et al., 2020).

One notable such model is the Pre-training
with Extracted Gap-sentences for Abstractive
SUmmarization Sequence-to-sequence (PEGA-
SUS) (Zhang et al., 2019) model. PEGASUS is a
Transformer encoder-decoder model pre-trained on
massive corpora of documents (Web and news arti-
cles) that has demonstrated great potential on vari-
ous summarization benchmarks. The pre-training
of PEGASUS is based on optimizing the Gap Sen-
tence Generation (GSG) objective where whole
sentences of the input are masked and the model
attempts to generate these gap-sentences from the
rest of the input.

A number of summarization approaches we pro-
posed for the CL-SciSumm task B in the previous
years of the challenge, including extractive meth-
ods based on probabilistic models (Li et al., 2019)
and large pre-trained BERT models (Zerva et al.,
2019).
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3 CL-SciSumm

3.1 Data Processing
The corpus of the CL-SciSumm shared task is split
into two separate collections:

1. The manually annotated training set which
consists of 40 articles and citing papers. For
task 1A, we have multiple citances for each
RP and each of these citances corresponds to
a specific cited text span. For task 1B we are
given the facet annotations for each one of the
cited text spans and for task 2 human-written
summaries are provided.

2. The ScisummNet corpus (Yasunaga et al.,
2019), which consists of 1000 articles that are
paired with multiple automatically annotated
citing articles.

Out of the 40 articles in the manually annotated
dataset, we randomly select 30 articles for the train-
ing set and 10 articles for the test set. For task 1A
we created “positive” pairs of citing and reference
spans as well as “negative” pairs of citing spans
and randomly selected sentences from the RP. We
also included the whole ScisummNet dataset into
the training set of this task. For task 1B we are only
able to use the manually annotated data since the
ScisummNet dataset does not include facet annota-
tions. One important notice about the task 1B data
is the severe class imbalance which can potentially
be problematic for the training of machine learning
models.

The dataset for task 2 includes multiple human-
written summaries for each article of the manually
annotated dataset. Those summaries are annotated
as “author summary”, “community summary” and
“human” in the JSON schema. We decided to use
the summary labeled “human” as target summary
because it was the one out of the three that was
present in almost all articles of the dataset. In
this task we will not be performing any additional
training so we split the 40 articles into 20 for the
validation set and 20 for the test set.

3.2 Task 1A
Our approach for task 1A makes use of the pre-
trained BERT model (Devlin et al., 2018) and fine
tunes it for the task. More specifically, we formu-
late the task as a sequence classification problem,
where we are using the binary classification capa-
bilities of the BERT architecture. Our main fine-
tuning objective trains the model to take as input

pairs of text spans and tries to predict if the second
span is the corresponding span of the RP cited by
the first span. We are training using “positive” and
“negative” pairs with a 1:1 ratio. We found that
creating the same number of negative pairs as the
positive pairs yields the best results. The training
set for this objective includes both the training part
of the manually annotated dataset and the whole
ScisummNet dataset.

During the prediction phase, our system evalu-
ates each one of the given citing spans in a pairwise
fashion with different sentences from the RP and
selects at most two sentences that have the highest
probability of being the corresponding cited text.
If the probability difference between the top-2 sen-
tences is higher than a threshold T = 0.015 then
we only keep the first sentence. This way we are
able to identify text spans instead of single sen-
tences although we found that most of the time the
cited text span is indeed a single sentence. To fur-
ther improve the predictive power of our model we
are providing additional context for the model by
extending the both the citing and cited text spans
with the previous and next sentence. When making
predictions during the test phase we are using the
citing span as is and only extend the candidate cited
spans with the surrounding sentences.

Based on the findings by (Zerva et al., 2019) we
also employed an additional pre-processing step
before fine-tuning our model for the task specific
objective. In our approach, we further pre-train
BERT Base using the MLM objective on the ACL
Anthology Reference Corpus (Bird et al., 2008).

In order to increase the computational efficiency
of the pairwise evaluation, we are first using TF-
IDF similarity to select the top-20 most similar
sentences to the citing text span. Then we proceed
on evaluating those “candidate” sentences with the
pairwise model that we described previously.

3.3 Task 1B

For task 1B we decided to build a classification
model that uses as input features contextual embed-
dings from the pre-trained SciBERT model (Belt-
agy et al., 2019) in order to classify each cited
text into one of the five facets. Previous research
has explored the use of contextual embeddings ex-
tracted from different layers of Transformer lan-
guage models such as BERT (Devlin et al., 2018),
ELMo (Peters et al., 2018) and GPT (Radford et al.,
2019) as features for classification models. Also,
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(Ethayarajh, 2019) demonstrates some interesting
insights of how the outputs of the different layers
compare with each other. Here we decided to use
the last layer of SciBERT to get the embeddings,
because this model is more relevant to the domain
of the task articles and we did not experiment with
other model types. The contextual embeddings of
each cited text have been obtained from the CLS
vector of the last layer of SciBERT.

Although there are some occasions where multi-
ple facets apply to the same span the vast majority
of samples had a single facet. For this reason we
decided to treat the task as a simple multiclass se-
quence classification problem. We experimented
with multiple classification algorithms like Logis-
tic Regression and Random Forests. We opted for
simpler classification models due to the limited
amount of training data that were severely limiting
our ability to train more sophisticated models.

3.4 Task 2

We approach task 2 as an abstractive summarization
problem. It has been suggested by (Yasunaga et al.,
2019) that a combination of the abstract and the
cited text spans is sufficient content to cover the
main aspects and findings of an academic article.
We follow this idea and propose a summarization
scheme that takes those inputs and tries to generate
a comprehensive summary of the article.

More specifically, we are using the PEGASUS
model pre-trained on the arXiv dataset in order to
generate the summary given the abstract and cited
text spans identified from the previous tasks. Given
that the combined input sequences are much longer
than the maximum input size we can support for
PEGASUS (due to GPU memory limitations) we
decided to run the PEGASUS model twice, one
for the abstract and the second for the cited texts
and combine the two individual summaries into
the final summary. The combination is a simple
concatenation of the abstract summary with the
cited text summary. Due to the small size of the
manually annotated dataset we cannot expect to
sufficiently train a PEGASUS model so we opted
to use the model without any additional fine-tuning.

4 LaySumm

4.1 Data Processing

For the LaySumm task, the data are provided in
the form of plain text files that have already been
parsed from the paper PDFs. For each article in the

dataset we are given three text files, one with the
full text of the article, one with the abstract and one
with the target lay summary. The corpus covers
three distinct domains, namely epilepsy, archaeol-
ogy, and materials engineering and consists of 573
articles in total. We split the dataset in three parts
using 338 samples for the training set, 113 sam-
ples for the validation set and leaving 114 samples
for the test set. We focused our pre-processing on
cleaning noise and removing unwanted tokens and
artifacts such as equations, tabular elements and
references.

The PEGASUS model uses tokenization with the
SentencePiece Unigram algorithm (Kudo, 2018)
and required us to have all the text lowercased. The
particular pre-trained model we are using comes
with the Unigram 96k vocabulary that was created
during the pre-training of the model. We identified
that this vocabulary misses several symbols that
appear quite frequently in the LaySumm data (e.g.
Greek letters) so we decided to encode those sym-
bols with other “complex” tokens from the vocabu-
lary before tokenization in order for the model to be
able to parse them. For example, the Greek letter
α is replaced with the complex token “greekalpha”
before being tokenized. This allows the model to
successfully encode and learn the symbol and gives
us the ability to backwards replace it to the original
symbol during the decoding phase.

4.2 Lay Summary Generation

Our approach for the LaySumm task focuses on
re-writing selected parts of the article in order to
make them more relevant and easier to understand
for the lay audience. Our main system uses the PE-
GASUS Large model and fine-tunes it on the task
dataset. We are based on the idea that a lot of the
key information that we want to include are present
in the abstract of the article and we focus our meth-
ods to the task of re-writing and compressing the
abstract. Our fine-tuning objective involves feeding
the abstract as input to the PEGASUS model and
using the provided lay summary as target for the
summarization training.

We experimented with different variants of the
pre-trained PEGASUS model. Those variants in-
clude: 1) the pre-trained PEGASUS model, 2) a
model fine-tuned on the arXiv dataset and 3) a
model fine-tuned on the PubMed dataset. All pre-
trained models were open sourced by the authors of
the PEGASUS paper. We further fine-tuned the dif-
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ferent models on the specific LaySumm task using
the provided dataset.

5 LongSumm

5.1 Data Processing

The abstractive dataset for the LongSumm corpus
was given in the form of JSON files including arti-
cle metadata, target summary and URLs to down-
load the article PDFs. We used the provided scripts
to download a total of 497 out of the 528 PDFs (we
did not have access to the rest) and then extracted
the abstract and section text from the downloaded
files using Science-Parse1. We ended up with a
total of 497 JSON files with the combined full text,
abstract and target summaries. Out of these arti-
cles, 297 were used in the training set, 100 in the
validation set and 100 in the test set.

The pre-processing steps followed in this dataset
were similar to the ones we have described in the
previous section and involve basic cleaning, nor-
malisation and filtering operations. Again we use
the same strategy for the tokens that are not sup-
ported by the PEGASUS vocabulary.

5.2 Long Article Summarization

Our approach for the LongSumm task is based
on the Divide-ANd-ConquER (DANCER) summa-
rization method which processes each section in a
distributed way. The method uses text similarities
between sentences of the summary and sections
of full text in order to create better alignment dur-
ing training and learns a summarization model that
is able to summarize each section of the article
separately.

More specifically, our system selects “types” of
sections, namely the introduction, methods, results
and conclusion, and uses the PEGASUS model to
generate a summary for each section. The corre-
sponding summaries are then concatenated to form
the complete summary of the article. When train-
ing this system we use as input the full text of the
section and as target the part of the summary that
is most similar to that particular section.

We first use ROUGE-1 recall as a similarity met-
ric in order to assign each sentence of the summary
to one of the selected sections of the full text and
then we group all the sentences assigned to each
section to form the target summary corresponding

1https://github.com/allenai/
science-parse

section keywords
introduction introduction, case
literature background, literature, related
methods method(s), techniques, methodology
results result(s), experimental, experiment(s)
conclusion conclusion(s), concluding
acknowledgments acknowledgments

Table 1: The different section types and the common
keywords that are used in order to identify them using
heuristics. If the header of a section includes any of
the keywords associated with a specific section type it
is assigned to that section type. Sections that can’t be
matched with any section type are ignored.

to this section. The complete system architecture
is shown in Figure 1.

5.3 Section Tagger

In order to select the aforementioned types of sec-
tions we employ a classification model that classi-
fies each section of a given article into one of six
distinct categories (introduction, literature, meth-
ods, results, conclusion, acknowledgments). Based
on our experiments we found that the combination
of introduction, methods, results and conclusion
gives us the best summaries overall.

This classifier has a single LSTM (Hochreiter
and Schmidhuber, 1997) layer with additive atten-
tion (Bahdanau et al., 2015) and takes as input sub-
word level BPEmb embeddings (Heinzerling and
Strube, 2019). This model is trained on full text
sections from the arXiv dataset. To train this model,
we select sections of the corpus where the heading
includes specific keywords that are characteristic
of the section type. These keywords are shown in
Table 1. We skip sections where the heading does
not match this pattern. The model is trained to take
as input the text of the section (without the heading)
and tries to predict the section category.

6 Results and Discussion

6.1 Experimental Setup

In our experiments for task 1A we are using the Ten-
sorflow implementation of BERT Base provided by
huggingface 2. After pre-training for 20k steps on
the ACL corpus we proceed on fine-tuning for an-
other 4k steps on the pairwise classification objec-
tive for task 1A. When we are building the TF-IDF
model we are only based on the manually annotated

2https://github.com/huggingface/
transformers

https://github.com/allenai/science-parse
https://github.com/allenai/science-parse
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Figure 1: The main DANCER summarization framework combined with PEGASUS and the Section Tagger. Dur-
ing the training phase each section of the full text is paired with a part of the target. During the prediction phase
important sections are selected with the help of the section tagger and each one is summarized separately. The
individual summaries are then combined to form the article summary.

dataset. For task 1B we are using the SciBERT ver-
sion open sourced by the authors of the original
paper which is similar to the BERT Base model
architecture. We are using the SciBERT model to
get sentence level embeddings of size 768 which
are then used as input to the classifiers.

All of our summarization methods are using the
PEGASUS Large model which was pre-trained
on the C4 and HugeNews dataset and was open
sourced by the authors of the original paper. We
also used two variations of this model that were
fine-tuned for abstractive summarization. The first
was fine-tuned for 74k steps on the arXiv dataset
and the second for 100k steps on the PubMed
dataset.

For task 2 of CL-SciSumm we are using the
arXiv version of PEGASUS without any additional
fine-tuning. We are running the model twice and
generate summaries of up to 256 tokens for the
abstract and the cited text spans identified from
task 1A.

When fine-tuning our models on the LaySumm
task we follow a very basic setup without exten-
sive hyper-parameter tuning. More specifically,
we used an input size of 1,024 tokens and an out-
put size of 256 tokens since the evaluation scripts
provided by the competition constrained the sum-
mary length to 150 words. We fine-tuned for 10k
steps and monitor the ROUGE-1 F1 on the vali-
dation set in order to avoid overfitting. For the

Macro Micro
Model P R F1 P R F1
TF-IDF 14.64 10.45 12.20 15.23 9.30 11.55
BERT 17.19 22.04 19.32 17.10 19.19 18.08

Table 2: Results on our test set for task 1A. TF-
IDF uses sentence similarities to select top-3 sentences.
BERT is the proposed method.

LongSumm task we are using the arXiv PEGASUS
model and we further fine-tune it for 10k steps
using the DANCER method on the dataset of the
task. The hyper-parameters used are identical to
the ones used for the LaySumm model. Detailed
hyper parameters can be found in Appendix A.1.

6.2 Results

6.2.1 CL-SciSumm
We are evaluating task 1A on our test set (including
only the manually annotated data) and measure the
standard micro and macro precision, recall and F1
score. These metrics are shown in Table 2. For
reference we are also comparing our method with
a simple baseline that uses only TF-IDF to select
the top-3 sentences for citing each span.

It can be seen clearly that the BERT based model
is definitely superior to the baseline model and is
able to correctly retrieve a fair amount of the cited
text spans.

For task 1B we are evaluating our methods us-
ing 10-fold cross validation on the whole manually
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Model Precision Recall F1 score
Random Forest 40.71 34.98 33.84
Logistic Regression 49.84 41.08 40.83

Table 3: 10-fold cross validation results on the devel-
opment set for task 1B. This results are independent of
the outputs of task 1A.

Macro Micro
Task P R F1 P R F1
1A 13.47 18.20 15.48 14.03 17.49 15.57
1B 94.72 20.89 34.22 91.89 20.36 33.33

Table 4: Shared evaluation results on our test set using
the best performing models for both tasks. Spans that
are incorrectly retrieved in the first task are not being
scored by the second task.

annotated dataset. In Table 3 we show the macro
precision, recall and F1 of our Logistic Regression
classifier versus a Random Forest classifier.

These results show that very simple algorithms
like Logistic Regression and Random Forests with
SciBERT features perform well on this task with
very few training examples. On the other hand,
training more sophisticated models like neural net-
works was simply not feasible due to the small size
of the dataset and the severe class imbalance. For
example when we attempted to train neural net-
works for the task we ended up with models that
only predicted the “methods” facet.

One should keep in mind that the previous re-
sults only measure the performance of the task 1B
model, assuming that all “cited text spans” have
been correctly identified by the task 1A model. We
are also evaluating the combination of our best
performing methods on our test set using the evalu-
ation scripts provided by the competition. We use
the text spans retrieved from task 1A as input for
task 1B. The scores from the shared evaluation are
shown in Table 4.

Finally, the evaluation of the summarization
task 2 is done comparing the generated summary
of each article with the “human” summary using
ROUGE metrics (Lin, 2004). In Table 5 we present
the results of our proposed approach on our test set.
Those scores demonstrate the “zero-shot” capabili-
ties of the PEGASUS pre-trained model which is
able to perform well on a new task without any
additional training.

6.2.2 LaySumm
When evaluating the results we used the offi-
cial evaluation script provided by the competi-

F1 Recall
Model R-1 R-2 R-L R-1 R-2 R-L
arXiv 47.93 25.36 31.66 46.13 23.85 30.17

Table 5: ROUGE scores of the proposed method for
task 2 on the whole manually annotated dataset.

F1 Recall
Model R-1 R-2 R-L R-1 R-2 R-L
pre-trained 44.33 20.73 29.73 42.40 19.68 28.25
arXiv 45.59 20.68 29.84 45.38 20.53 29.59
PubMed 45.29 21.26 30.29 45.10 21.03 29.92

Table 6: Method comparison on our hold-out test set
of LaySumm. Pre-trained is based on the original PE-
GASUS model while PubMed and arXiv are first fine-
tuned on the PubMed and arXiv dataset respectively be-
fore additional fine-tuning on the LaySumm task.

F1 Recall
Model R-1 R-2 R-L R-1 R-2 R-L
pre-trained 41.14 16.01 25.16 37.75 14.57 23.04
arXiv 44.56 19.36 27.72 42.98 18.60 26.73
PubMed 44.25 19.91 29.70 42.06 18.76 28.15

Table 7: Method comparison on the blind test set of
LaySumm.

tion which measures ROUGE-1, ROUGE-2 and
ROUGE-L recall and F1-score. The results on our
hold-out test set are shown in Table 6.

As expected, both of the fine-tuned models out-
perform the model without any prior fine-tuning
since they are better adapted to summarizing aca-
demic articles. However, the differences between
the two models are very small with the arXiv
model achieving a better ROUGE-1 score while
the PubMed one achieving better ROUGE-2 and
ROUGE-L F1 scores.

In Table 7 we show the results on the blind test
set of the competition. Similarly to the numbers on
our own test set, the arXiv model performs slightly
better in terms of ROUGE-1 while the PubMed
model is better in terms of ROUGE-2 and ROUGE-
L. Once again, both models have a clear advantage
compared to the model without prior summariza-
tion fine-tuning.

6.2.3 LongSumm
Based on the LaySumm results the model fine-
tuned on the arXiv dataset had superior perfor-
mance to both the model without fine-tuning and
the model fine-tuned on PubMed so we decided to
use this variant for the LongSumm task.

In order to evaluate the impact of the section
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F1 Recall
Model R-1 R-2 R-L R-1 R-2 R-L
notrain 24.64 6.18 16.29 33.10 8.01 23.12
arXiv 25.81 8.09 18.01 29.52 8.91 21.20
notrain-notag 24.47 4.72 15.07 28.03 7.95 21.48
arXiv-notag 24.26 4.58 15.15 25.53 4.68 16.28

Table 8: Section level comparison between methods on
the LongSumm test set. Notrain uses the model fine-
tuned on arXiv without additional training. ArXiv is
additionally fine-tuned on LongSumm. Notrain-notag
and ArXiv-notag are the same models but using heuris-
tics instead of the section tagger for section selection.

F1 Recall
Model R-1 R-2 R-L R-1 R-2 R-L
notrain 41.88 10.66 17.46 45.94 11.42 19.79
arXiv 43.52 12.12 18.67 42.27 11.59 18.43
notrain-notag 30.97 6.94 14.45 26.38 5.67 12.49
arXiv-notag 31.36 7.47 15.40 25.75 5.91 13.10

Table 9: Article level comparison between methods on
the test set of LongSumm.

tagger model we repeated the same experiments
but this time instead of using the section tagger
to help us select the appropriate sections we used
the section headings and the heuristics described in
5.3.

First, we evaluated the performance at a section
level using ROUGE-1, ROUGE-2 and ROUGE-L
recall and f1-scores between the input section and
the target section summary. Results for this eval-
uation are shown in Table 8. Second, we evaluate
at an article level computing the same metrics be-
tween the full generated summary of each article
and the full target summary. For this evaluation we
use the official evaluation script provided by the
competition and the results are shown in Table 9.

Looking at the section level results, we can see
that fine-tuning the model with DANCER improves
the results in every metric since it is better tuned
for section level summarization compared to the
model that is trained on whole articles. We should
note that in this setup it is hard to have a direct
comparison between the systems using the section
tagger and the systems that use heuristics because
using the section tagger results in a much larger
test set.

The article level results can give us a better idea
about the performance of the system on the Long-
Summ task itself. Here we run our summarization
system to generate the section summaries, combine
the summaries by concatenation to create the arti-
cle level summary and compare it with the target

F1 Recall
Model R-1 R-2 R-L R-1 R-2 R-L
notrain 49.91 14.23 19.19 50.04 14.29 19.24
arXiv 50.11 15.37 19.59 46.93 14.23 18.18
notrain-notag 38.89 10.65 17.12 31.32 8.54 13.64
arXiv-notag 38.27 9.48 16.93 29.20 7.14 12.79

Table 10: Article level comparison between methods
on the blind test set of LongSumm.

article summary. The results on our test set show
that once again DANCER training improves per-
formance across the board. It is also clear that the
section tagger has a very large effect as it improves
both the trained and un-trained system by more
than 10 ROUGE-1 points. This is clearly due to
the fact that using the section tagger we include in
the summary a lot more sections from the text that
might not have a heading following the patterns
from the heuristic approach.

Results on the test set of the competition are
shown in Table 10. Similar to the results from
our test set, we can see that the system trained
with DANCER combined with the section tagger
is clearly superior to all other systems.

7 Conclusion

We have presented the systems we developed for
the SDP 2020 shared task. For task 1A we imple-
mented an efficient pairwise classification approach
based on the BERT model that tackles the “cited
text identification” problem. For task 1B we show
how a simple Logistic Regression classifier using
pre-trained SciBERT embeddings as features can
effectively learn to solve the problem of facet clas-
sification.

For the summarization tasks we employ different
variants of the PEGASUS model and adapt them
to the nuances of each particular task. For task 2
we use of the pre-trained PEGASUS model in a
zero-shot setting to generate a summary given the
abstract of an article along with the cited text spans.
For LaySumm we propose a re-writing strategy
based on the PEGASUS model that works on the
abstract and generates a lay summary. Finally, we
showcase how the PEGASUS model can be used
to summarize an academic paper in a distributed
way and we demonstrate an end-to-end system that
generates a “long” summary by selecting key sec-
tions, summarizing each section independently and
combining them to form the final summary.
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A Appendix

A.1 Model Hyper Parameters

Here we report detailed hyper parameters for the
used for the training and evaluation of our models.
For task 1A we pre-train on the ACL corpus for
20k steps with a batch size of 32 and a learning rate
of 0.00003. Then we fine-tune on on the pairwise
classification objective for another 4k steps with
a batch size of 32 and a learning rate of 0.00001.
For task 1B the Logistic Regression classifier was
trained for 100 iterations with a C value of 0.1 and
L1 regularization. Our Random Forest classifier
has 100 estimators and uses the “Gini impurity”
criterion.

The PEGASUS model used is an encoder-
decoder model based on Transformers and has 16
Transformer blocks for the encoder and decoder
with hidden size of 1,024 units, 16 self-attention

heads and feed-forward layer size of 4,096 units.
The model is pre-trained with MLM and GSG on a
combination of the C4 and HugeNews datasets. For
the LaySumm task the model is fine-tuned for 10k
steps with a learning rate of 0.0001 and a batch size
of 6 (mainly due to GPU memory constraints). For
the LongSumm task the PEGASUS model is fine-
tuned for 10k steps using the DANCER method,
batch size of 6 and a learning rate of 0.0001.

A.2 Summarization Examples
In order to demonstrate the quality of the sum-
maries generated by our methods, we present sum-
maries of this paper generated by the arXiv and
PubMed DANCER PEGASUS models.

DANCER arXiv: The 1st Scholarly Document
Processing shared task (SDP 2020) is a new num-
ber of tasks that automatically summarize scien-
tific documents in different styles and variations.
In addition to the original CL-SciSumm sub-tasks
of previous years, the 2020 version includes addi-
tional tasks that are targeting the summarization of
complete papers as well as the generation of lay
summaries. We present the systems we developed
for the SDP 2020 shared task.

DANCER PubMed: For every scientific do-
main, the ever growing amount of articles pub-
lished each year has made the long-lasting chal-
lenge of keeping up with the recent literature sig-
nificantly harder. In addition to this, there is an
increasing need for making research accessible
and relevant to the general public and not just re-
searchers and practitioners. For example, taxpayers
want to know where federal money supporting re-
search goes. There is a need for different types
of summaries that can either facilitate scientific re-
search compressing the key ideas discussed in a
scientific paper or make scientific research relevant
for a lay audience. We developed systems for a
SDP 2020 shared task that use a pairwise approach
to solve the cited text span identification problem,
a pre-trained model to solve the problem of facet
classification, and models to summarize academic
papers.
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