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Abstract

We show that the count-based Script Induc-
tion models of Chambers and Jurafsky (2008)
and Jans et al. (2012) can be unified in a gen-
eral framework of narrative chain likelihood
maximization. We provide efficient algorithms
based on Association Rule Mining (ARM) and
weighted set cover that can discover interest-
ing patterns in the training data and combine
them in a reliable and explainable way to pre-
dict the missing event. The proposed method,
unlike the prior work, does not assume full
conditional independence and makes use of
higher-order count statistics. We perform the
ablation study and conclude that the inductive
biases introduced by ARM are conducive to
better performance on the narrative cloze test.

1 Introduction

The goal of this paper is to demonstrate how the
efforts in Script Induction (SI), up until recently
dominated by statistical approaches (Chambers
and Jurafsky, 2008; Jans et al., 2012; Pichotta
and Mooney, 2014; Rudinger et al., 2015a,b), can
be productively framed and extended as a special
case of Association Rule Mining (ARM), a well-
established problem in Data Mining (Agrawal et al.,
1993, 1994; Han et al., 2000).

We start by introducing SI and ARM and then
demonstrate a unification under a general chain
likelihood maximization framework. We discuss
how the existing count-based SI models tackle this
maximization problem using naı̈ve Bayes assump-
tions. We provide an alternative: mining higher-
order count statistics using ARM and picking the
most reliable rules using the weighted set cover
algorithm. We validate the proposed approach
and demonstrate improved performance over other
count-based approaches. We conclude with a dis-
cussion on the implications and potential exten-
sions of the proposed framework.

ARM term SI term

Transaction t Narrative chain
Itemset I Co-occurring events
sup({i1, i2}) C(i1, i2)

int({a} → {e}) P (a|e) = C(a,e)
C(∗,e)

sup(I), |I| > 2 Eq. 5
int(A→ {e}), |A| > 1 Eq. 12

Table 1: Mapping between ARM and Count-based SI
terminology. Bolded are contributions of this paper.
Namely, we make use of frequent itemsets and inter-
esting rules, or higher-order count statistics that can be
efficiently mined and used in the narrative cloze test.

Our intent in this work is not to establish new
state of the art results in the area of SI. Rather, our
primary contribution is retrospective, drawing a
connection between a sub-topic in Computational
Linguistics (CL) with a major pre-existing area of
Computer Science, i.e., Data Mining. In the case
one approached SI through counting co-occurrence
statistics, then the existing tools of ARM lead nat-
urally to solutions that had not been previously
considered within CL.

2 Background

2.1 Association Rule Mining

ARM is a prevalent problem in Data Mining, in-
troduced by Agrawal et al. (1993). The task is
often referred to as market basket analysis due to
its widespread usage for discovering interesting
patterns in consumer purchases. The applicabil-
ity of ARM extends far beyond this specific sce-
nario, where examples of ARM usage for NLP
applications include detecting annotation incon-
sistencies (Novák and Razı́mová, 2009), discov-
ering strongly-related events (Shibata and Kuro-
hashi, 2011), adding missing knowledge to the KB



56

(Galárraga et al., 2013), as well as understanding
clinical narratives (Boytcheva et al., 2017).

ARM aims to extract interesting patterns from a
transactional database D. A transaction is a set of
items, and a non-empty subset of a transaction is
called an itemset. We define support as the number
of transactions we observe an itemset I in:

sup(I) = |{t|t ∈ D, I ⊆ t}|. (1)

We say that an itemset I is frequent, if its support
(on a given database D) exceeeds a user-defined
threshold tsup: sup(I) ≥ tsup.

A pair of itemsets A,B is called a rule if A ∩
B = ∅ and is denoted as A → B. We say that a
rule A → B is interesting if 1) both A and B are
frequent, 2) the interestingess of the rule exceeds
a user-defined threshold tint: int(A → B) ≥ tint.
The definition of the interestingness function int(·)
is problem-specific.

ARM is thus concerned with:

1. mining frequent itemsets from a transactional
database,

2. discovering interesting rules from frequent
itemsets.

2.2 Script Induction

The concept of script knowledge in AI, along with
early knowledge-based methods to learn scripts
were introduced by Minsky (1974); Schank and
Abelson (1977); Mooney and DeJong (1985).

With the rise of statistical methods, the next gen-
eration of algorithms made use of co-occurrence
statistics and distributional semantics for script
learning (Chambers and Jurafsky, 2008, 2009; Jans
et al., 2012; Pichotta and Mooney, 2014). Our
primary focus is on drawing connections between
ARM and this body of work.

Following Chambers and Jurafsky (2008), we de-
fine a narrative chain as “a partially ordered set of
narrative events that share a common actor”, where
the partial ordering typically represents temporal
or causal order of events, and a narrative event is
“a tuple of an event and its participants, represented
as typed dependencies”. Formally, we define a nar-
rative event e := (v, d), where v is a verb lemma,
and d is a dependency arc between the verb and the
common actor (dobj or nsubj). An example of a
narrative chain is given in Figure 1.

Figure 1: Graphical depiction of a Prosecution narra-
tive chain learned by Chambers and Jurafsky (2008).
Arrows indicate partial temporal ordering.

SI is thus concerned with:

1. automatic mining of commonly co-occurring
sets of narrative events from text,

2. partially ordering those sets.

The narrative cloze test (Chambers and Jurafsky,
2008) is a standard extrinsic evaluation procedure
for Task 1 of SI. In this test, a sequence of narrative
events is automatically extracted from a document,
and one event is removed; the goal is to predict
the missing event. Formally, given an incomplete
narrative chain {e1, e2, . . . , eL} and an insertion
point k ∈ [L], we would like to predict the most
likely missing event ê to complete the chain:

{e1, e2, . . . , ek, ê, ek+1, . . . eL}.

Although the recent work in SI (Rudinger et al.,
2015b; Pichotta and Mooney, 2016; Peng and Roth,
2016; Weber et al., 2018) has focused on a Lan-
guage Modeling (LM) approach for the narrative
cloze test, it is fundamentally different from ARM
in that it makes use of the total ordering of events
and is thus incomparable to ARM, which does not
assume any ordering of events within a chain.

In the next section, we survey two of the most
influential count-based SI models, showing how
each of them is related to ARM.
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3 Count-based Script Induction

3.1 Unordered PMI model

The original model for this task by Chambers and
Jurafsky (2008) is based on the pointwise mutual
information (PMI) between events.

pmi(e1, e2) ∝ log
C(e1, e2)

C(e1, ∗)C(∗, e2)
, (2)

where C(e1, e2) is defined as the number of narra-
tive chains where e1 and e2 both occurred and

C(e, ∗) :=
∑
e′∈E

C(e, e′),

where E is a fixed vocabulary of narrative events.
The model selects the missing event ê in the

narrative cloze test according to the score

ê = argmax
e∈E

L∑
i=1

pmi(e, ei), (3)

assuming that the missing event ê is inserted at the
end of the existing chain (k = L).

From (2) and (3) we observe that

ê = argmax
e∈E

L∑
i=1

pmi(e, ei)

= argmax
e∈E

L∑
i=1

log
C(e, ei)

C(e, ∗)C(∗, ei)

= argmax
e∈E

log
L∏
i=1

C(e, ei)

C(e, ∗)

= argmax
e∈E

log
L∏
i=1

P (ei|e)

= argmax
e∈E

L∏
i=1

P (ei|e). (4)

One way to interpret Eq. 4 is to say that it was
obtained from the following model with the naı̈ve
Bayes assumption:

ê = argmax
e∈E

P (e1, e2, . . . , eL|e). (5)

Importantly, in the above equation, no assump-
tions are made about the order in which events
e1, . . . , eL happened and we treat the narrative
chain as a document, where individual events are
features (the “bag of events” assumption).

3.2 Bigram Probability model
The bigram probability model was proposed by
Jans et al. (2012) and was also used by Pichotta and
Mooney (2014). It utilizes positional information
between co-occurring events. It selects the missing
event ê according to the score

ê = argmax
e∈E

(
k∏

i=1

P (e|ei)

)
·

(
L∏

i=k+1

P (ei|e)

)
,

where k is the insertion point of the missing event
ê, P (e2|e1) = Cord(e1,e2)

Cord(e1,∗) , and counts Cord(e1, e2)

are ordered, e.g. Cord(e1, e2) 6= Cord(e2, e1).
Similarly to the Unordered PMI model, we can

relax the conditional independence assumption.
However, to apply Bayes’ theorem, we would need
(e1, e2) and (e2, e1) to be the same events in the
outcome space, thus we have to assume unordered
counts: C(e1, e2) = Cord(e1, e2) + Cord(e2, e1).
Proceeding with this, we get:

ê = argmax
e∈E

(
k∏

i=1

P (e|ei)

)
·

(
L∏

i=k+1

P (ei|e)

)

= argmax
e∈E

(
L∏
i=1

P (ei|e)

)
· (P (e))k

= argmax
e∈E

log

((
L∏
i=1

P (ei|e)

)
· (P (e))k

)
= argmax

e∈E
logP (e1, . . . , eL|e) + k · logP (e),

(6)

where the last equality is obtained by relaxing the
full conditional independence assumption (simi-
lar to Eq. 5). It follows that the Bigram Proba-
bility model with unordered counts is exactly the
Unordered PMI model augmented with the prior
probability of a missing event multiplied by its po-
sition in a chain. Additionally, note that if k = 1,
this model is equivalent to maximizing the poste-
rior probability of a missing event (rather than the
likelihood of a narrative chain in Eq. 5):

ê = argmax
e∈E

logP (e1, . . . , eL|e) + logP (e)

= argmax
e∈E

log (P (e1, . . . , eL|e) · P (e))

= argmax
e∈E

logP (e|e1, . . . , eL). (7)

Similar to Eq. 5, we view the narrative chain
e1, . . . , en as a set, and thus Eq. 6 is not a language
model in the traditional NLP sense.
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4 SI as ARM

The models defined by Eqs. 5, 6, and 7 are hard to
compute directly: without simplifying assumptions,
they would require huge number of parameters and
large training sets (Jurafsky and Martin, 2019). A
common approach in the existing Count-based SI
work is to assume full conditional independence.
A viable and less restrictive alternative, as we show
in this section, is estimating higher-order count
statistics via mining association rules (Section 4.1)
and combining the most confident rules to predict
the missing event with a simple weighted set cover
algorithm (Section 4.2).

More formally, during the training phase, we
would like to populate the set of interesting rules
S = {S → {e}}, whose antecedents are sub-sets
of the event space S ⊂ E, and consequents are
single events e, e 6∈ S. We denote as Se all the
rules with the same consequent event e.

During the test phase, where we have an incom-
plete narrative chain {e1, e2, . . . , eL} and want to
predict a missing event, we will use rules from Se
to efficiently decompose P (e1, e2, . . . , eL|e) into
P (S1|e) · P (S2|e) · . . . · P (St|e) for each candi-
date event e. Naturally, this means selecting a set
of rules whose antecedents {S1, S2, . . . , St} (we
call this set a candidate cover) are pairwise disjoint
(Si∩Sj = ∅ ∀i, j ∈ [t]), and cover the event chain
fully (S1 ∪ S2 ∪ . . . ∪ St = {e1, e2, . . . , eL}).

To quantify the goodness of the decomposition,
we define a score function for a candidate cover
{S1, . . . , St} and a candidate event e as follows:

score(S1, S2, . . . , St; e) =

t∏
i=1

P (Si|e). (8)

For each candidate event e, we select the best
candidate cover Ŝe according to the score function:

Ŝe = argmax
{S′1,...,S′t}∈Se

score(S′1, . . . , S
′
t′ ; e). (9)

This allows to rewrite Eq. 5 as:

ê = argmax
e∈E

Ŝe. (10)

In Section 4.1, we explain how the set of rules S
is populated from the SI training corpus. In Section
4.2, we provide a randomized algorithm that solves
problem 9 with a provably bounded error.

4.1 Mining interesting rules

As discussed in Section 2.1, in order to discover the
set of interesting rules S, we need to mine frequent
itemsets first. This can be achieved by any frequent
itemset mining algorithm, such as Apriori (Agrawal
et al., 1994), Eclat (Zaki, 2000), or FP-growth (Han
et al., 2000).

Next, for the rule mining step we define an in-
terestingness function int(S → E) over a rule
S → E:

int(S → E) =
sup(S ∪ E)∑

S′
sup(S′ ∪ E)

, (11)

where S′ ranges over all itemsets of size |S| and is
disjoint with E.

Note that int(S → E) provides a maximum
likelihood estimate of P (S|E) for the probability
space defined over sets of events, and sup(·) is a
generalization of the previously defined C(·, ·) for
event sets of size larger than two.

The denominator of (11) requires calculating the
support over exponentially many itemsets. We can
instead use the following simpler formula:

wsupk(I) =
∑
t∈D

(
|t| − |I|

k

)
· 1I⊆t,

where D is a transactional database of narrative
event chains.

Lemma 1.
∑
S′

sup(S′ ∪ I) = wsupk(I), where S′

ranges over all itemsets of size k, disjoint with I .

Proof. By definition of support from Eq. 1,∑
S′

sup(S′ ∪ I)

=
∑
S′

|{t|t ∈ D, S′ ∪ I ⊆ t}|

=
∑
S′

|{t|t ∈ D, (S′ ⊆ t/I) ∧ (I ⊆ t)}|

=
∑
t∈D

1I⊆t ·
∑
S′

1S′⊆t/I

=
∑
t∈D

1I⊆t ·
(
|t| − |I|

k

)
= wsupk(I).
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Algorithm 1 Mining interesting rules

1: Input: A set of high-support itemsets I,
2: Output: A set of interesting rules S.
3: Initialization: S = ∅
4: for I ∈ I do
5: for e ∈ I do
6: S = I\{e}
7: if int(S → {e}) ≥ tint then
8: S = S ∪ {S → {e}}
9: end if

10: end for
11: end for
12: Return S.

Our intent is to use the above interestingness
function to score rules from S that have a single
event as a consequent, and thus Eq. 11 can be
further simplified:

int(S → {e}) = sup(S ∪ {e})
wsup|S|({e})

. (12)

Assuming that for each rule S → {e} the an-
tecedent is bounded in size and small, we can pre-
compute wsupk({e}) for each e ∈ E and each
k ∈ [|S|] in a single pass over the database. Note
also that wsup0(I) = sup(I) and thus wsupk(·) is
a generalization of support (1).

Given an interestingness function, we can now
proceed to mine interesting rules over frequent
event sets. The rule mining process is shown in
Algorithm 1.

After a set of interesting rules S is populated, we
can perform test-time inference on new narrative
chains with Eqs. 9 and 10. To facilitate this, we
frame the inference problem as the weighted set
cover problem. The latter was known to be NP-
complete by Karp (1972), but there is a simple
greedy algorithm by Chvatal (1979) that provides
an approximate solution. To make it applicable
to the search problem 9, we will run it (for each
candidate event e) on the set S, mined by Algorithm
1, with the following weight function:

w(S) = − ln int(S → {e})
= − lnP (S|e).

The following lemma provides a lower bound
on the score of the candidate cover obtained by
Algorithm 2.

Algorithm 2 Greedy weighted set cover
1: Input:

• A set of interesting rules Se,
• A narrative chain e1, e2, . . . , eL.

2: Output: An approximation (within a O(logL)
factor) of the best cover {S1, S2, . . . , St}.

3: Initialization:
4: U0 = {e1, e2, . . . , eL}
5: t = 0
6: while Ut 6= ∅ do
7: t = t+ 1
8: St = argmax

S′∈Se

|S′∩Ut−1|
w(S′)

9: Ut = Ut−1\St

10: end while
11: Return {S1, S2, . . . , St}.

4.2 Score estimation via weighted set cover
Lemma 2. Algorithm 2 finds a candidate
cover {S1, . . . , St} for a narrative chain
{e1, . . . , eL} and a candidate event e, such that
score(S1, . . . , St; e) ≥ OPT lnL+1, where OPT
is the score of the best candidate cover Ŝe.

Proof. Chvatal (1979) showed that Algorithm 2
finds a weighted set cover {S1, . . . , St}, such that

OPTcover ≤
t∑

i=1
w(Si) ≤ (lnL + 1)OPTcover.

Since the weight w(·) is a negative log probability:

t∑
i=1

w(Si) = −
t∑

i=1

lnP (Si|e)

= − ln score(S1, . . . , St; e)

≤ (lnL+ 1)OPTcover.

By exponentiating left and right-hand sides and
noting that OPT = e−OPTcover (by definition of
the weight and score functions), we get:

score(S1, . . . , St; e) ≥ e−(lnL+1)OPTcover

≥ OPT lnL+1.

If we group the rules S → {e} by the consequent
event and order by |S|

w(S) within each group, then
step 8 in Algorithm 2 becomes equivalent to iterat-
ing over ordered rules in Se. The overall running
time to score the candidate event e is O(L+ |Se|).

Additionally, O(
∑
e∈E
|Se| log |Se|) preprocessing

time is needed to group and order the rules in S.
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5 Experiments

5.1 Dataset

We perform experiments on the New York Times
part of the Annotated Gigaword dataset by
(Napoles et al., 2012). Chains of narrative events
are constructed from the (automatically generated)
in-document coreference chains: from each doc-
ument in the dataset, we extract all coreference
chains and retain the longest one, with length two
or greater. We also filter top-10 occurring events
which are mostly reporting verbs such as “say” and
“think” and convey little meaning for SI task.

Training is done on the 1994–2006 portion
(1.3M chains with 8.7M narrative events), devel-
opment set is a subset of 2007–2008 portion (10K
chains with 62K narrative events), and test set is a
subset of 2009–2010 portion (5K chains with 31K
narrative events).

5.2 Model setup

We implement and compare models described in
Sections 3 and 4, along with a strong baseline Uni-
gram model by Pichotta and Mooney (2014), which
ranks each event according to its unigram probabil-
ity in the training corpus.

For testing the Unordered PMI and Bigram mod-
els, we use implementations from the Nachos soft-
ware package (Rudinger et al., 2015a). Both mod-
els are tuned to use skip-grams (as defined by Jans
et al. (2012)) of size up to the chain length, which
allows to reduce data sparsity and is consistent with
the set of rules (of size two) generated by ARM.

ARM consists of 1) mining frequent itemsets
and 2) obtaining interesting rules from those item-
sets. For frequent itemsets mining, we use the
FP-growth algorithm by Han et al. (2000) with a
tsup = 100 threshold. For rule mining, we imple-
ment Algorithm 1. Since the rule mining step is
much less computationally intensive than itemset
mining, we can use a more permissive tint = 10−5

threshold. We use the same thresholds across all
models by applying the following back-off strategy
in the Unordered PMI and Bigram models:

P (ei|e) =

{
C(ei,e)
C(∗,e) if C(ei, e) ≥ tARM ,
1

|E|+1 otherwise,

where tARM = max (tsup, C(∗, e) · tint).

Ablation R@50

ARM (posterior, (7)) 0.36
ARM (bigram, (6)) 0.34
ARM (UOP, (5)) 0.30

ARM (UOP, binary rules only, (4)) 0.28
UOP (both tsup & tint pruning, (4)) 0.28

UOP (only tsup pruning, (4)) 0.28
UOP (only tint pruning, (4)) 0.03
UOP (no tint & tsup pruning, (4)) 0.03

Table 2: Ablation experiments on NYTimes dev set.
R@50 stands for Recall@50.

6 Experimental Results

We perform two experiments, comparing existing
count-based SI models with three variants of the
proposed ARM model. The performance is mea-
sured using Recall@50 and Mean Reciprocal Rank.

In the first experiment, we establish that the
count-based pruning, introduced by ARM support
and interestingness thresholds (tsup and tint, re-
spectively) for reducing the search space during
rule mining, does contribute to better performance
on the narrative cloze test. We also validate empiri-
cally that the ARM model with binary (of size two)
rules is equivalent to the UOP model by Chambers
and Jurafsky (2008). Finally, we compare variants
of the ARM model, which vary in a way of incorpo-
rating a prior probability of the missing event. We
conclude that the posterior ARM model, given by
Eq. 7, achieves the best performance. The results
of this experiment are outlined in Table 2.

In the second experiment, we compare the best-
scoring ARM model and other baseline models on
5,000 test chains. We achieve 5% relative improve-
ment for Mean Reciprocal Rank (MRR) and 10%
for Recall@50, which can be attributed to using
higher-order count statistics and the selection of
the prior for the missing event. The scalability of
both rule mining and inference algorithms suggests
that the performance may be further improved as
the training corpus size grows and more reliable
higher-order statistics become available. The re-
sults of this experiment are shown in Table 3.

Similar to Rudinger et al. (2015b), we also note
that all models tend to improve their performance
on longer chains, which may be explained by the
availability of additional contextual information.
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Len UNI UOP BG ARM Tests

1 0.050 0.034 0.047 0.060 642
2 0.044 0.040 0.060 0.061 764
3 0.045 0.046 0.058 0.063 659
4 0.053 0.047 0.065 0.070 568
5 0.068 0.059 0.087 0.076 423
6 0.067 0.048 0.074 0.074 324
7 0.051 0.050 0.056 0.063 288
8 0.074 0.054 0.088 0.075 205
9 0.048 0.048 0.068 0.066 179

10+ 0.044 0.064 0.062 0.068 948

ALL 0.051 0.049 0.063 0.066 5000

(a) Mean Reciprocal Rank (MRR)

Len UNI UOP BG ARM Tests

1 0.34 0.17 0.24 0.36 642
2 0.28 0.22 0.28 0.32 764
3 0.30 0.28 0.32 0.34 659
4 0.32 0.29 0.34 0.36 568
5 0.33 0.30 0.35 0.36 423
6 0.33 0.33 0.36 0.37 324
7 0.30 0.32 0.33 0.35 288
8 0.33 0.34 0.36 0.39 205
9 0.35 0.35 0.37 0.37 179

10+ 0.32 0.36 0.35 0.36 948

ALL 0.32 0.29 0.32 0.35 5000

(b) Percent Recall at 50

Table 3: Narrative cloze results bucketed by incomplete narrative chain length for each model and scoring function
with best results in bold. The models are Unigram Model (UNI), Unordered PMI (UOP), Bigram Probability
Model (BG), and proposed ARM model (ARM).

7 Conclusion

Our decision to approach count-based SI as ARM
was motivated by a previously under-explored sim-
ilarity of these well-established areas, which we
outlined in this paper. Drawing similarities from
the existing work on Classification using Associa-
tion Rules (CAR) (Liu et al., 1998; Thabtah et al.,
2005), we proposed a scoring function that uses
ARM-based count statistics to reliably predict the
missing event in the narrative cloze test.

One downside of relying solely on count-based
statistics is the low support of longer itemsets
due to data sparsity. On the other hand, modern
contextual encoders (Devlin et al., 2018) mitigate
this via parameter sharing. Reliably mining rules
whose support and interestingness are based on
both counts and properties of dense embeddings
can be a promising direction of future work.
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