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Abstract

We discuss automatic creation of medical re-
ports from ASR-generated patient-doctor con-
versational transcripts using an end-to-end
neural summarization approach. We ex-
plore both recurrent neural network (RNN)
and Transformer-based sequence-to-sequence
architectures for summarizing medical con-
versations. We have incorporated enhance-
ments to these architectures, such as the
pointer-generator network that facilitates copy-
ing parts of the conversations to the reports,
and a hierarchical RNN encoder that makes
RNN training three times faster with long
inputs. A comparison of the relative im-
provements from the different model architec-
tures over an oracle extractive baseline is pro-
vided on a dataset of 800k orthopedic encoun-
ters. Consistent with observations in literature
for machine translation and related tasks, we
find the Transformer models outperform RNN
in accuracy, while taking less than half the
time to train. Significantly large wins over a
strong oracle baseline indicate that sequence-
to-sequence modeling is a promising approach
for automatic generation of medical reports, in
the presence of data at scale.

1 Introduction

There has been an increase in medical documen-
tation requirements over the years owing to in-
creased regulatory requirements, compliance for
insurance reimbursement, caution over litigation
risk, and more recently towards increased patient
participation. According to a study on 57 U.S.
physicians, for every hour with a patient, a physi-
cian takes an additional hour of personal time do-
ing clerical work (Sinsky et al., 2016). Increased
documentation burden has been identified as one
of the main contributing factors for physician
burnout (Wright and Katz, 2018). In another, larger
study, U.S. physicians who used electronic health

records (EHRs) or computerized physician order
entry (CPOE) were found to be less satisfied with
the time spent on administrative work (Shanafelt
et al., 2016).

Increased physician burnout not only affects the
health and well-being of the physicians, it can
also lead to increased medical errors, increased job
turnover, reduced productivity, and reduced qual-
ity of patient care (Panagioti et al., 2017). Factors
related to physician burnout and its consequences
have been studied in detail in the literature (Patel
et al., 2018b).

Use of automatic speech recognition (ASR) to
dictate medical documentation has contributed sig-
nificantly to the efficiency of physicians in creating
narrative reports (Payne et al., 2018). However the
content of the report has already been discussed
with the patient during the encounter. Medication
list and orders entered into the EHRs are also dis-
cussed with the patient. In other words, creation
of medical documentation by the physician may be
viewed as a redundant task given that the content
is already discussed with the patient.

There has been a surge in research on automatic
creation of medical documentation from patient-
doctor conversations. A lot of it is focused on
extracting medical information and facts from the
patient-doctor conversation (Happe et al., 2003;
Quiroz et al., 2019). This could involve extracting
clinical standard codes (Leroy et al., 2018), clin-
ical entities such as symptoms, medications, and
their properties (Du et al., 2019a,b), or medical reg-
imen (Selvaraj and Konam, 2020). This extracted
information could then be used to generate a re-
port (Finley et al., 2018a,b). Such information
extraction systems require creating an annotated
conversation corpus (Patel et al., 2018a; Shafran
et al., 2020).

For example, the NLP pipeline described by Fin-
ley et al. (2018a) first extracts knowledge from an
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ASR transcript and then generates the report. The
knowledge extraction consists of tagging speaker
turns and sentences with certain classes using RNN-
based models, and using techniques such as string
matching, regular expressions, and data-driven su-
pervised and unsupervised approaches to extract
information from the tagged sentences. This is
followed by data-driven templates and finite state
grammars for report generation.

We take a different approach where the problem
is cast as translation (source language is conversa-
tional in nature and target language is clinical) and
summarization (input contains redundant and irrele-
vant information, and target is a concise and precise
note) at the same time. Given recent advances in
neural transduction technology (Bahdanau et al.,
2015; See et al., 2017; Vaswani et al., 2017), we ex-
plore the end-to-end paradigm for generating medi-
cal reports from ASR transcripts. This eliminates
the need for annotated corpora that are required for
training intermediate processing steps. As a result
this approach is scalable across various medical
specialties.

Sequence-to-sequence models have been used
for summarizing radiology notes into the short Im-
pressions section, possibly incorporating also other
domain-specific information (Zhang et al., 2018;
MacAvaney et al., 2019). In contrast, our system
creates a report directly from the conversation tran-
script. Disadvantages of the end-to-end approach
include that it limits the ability to inject prior knowl-
edge and audit system output, and may potentially
result in inferior performance.

2 Dataset

We use data consisting of ambulatory orthopedic
surgery encounters. Speaker-diarized conversation
transcripts corresponding to the audio files were ob-
tained using an automatic speech recognizer. The
reports for orthopedic surgery are organized un-
der four sections—history of present illness (HPI),
physical examination (PE), assessment and plan
(AP), and diagnostic imaging results (RES). The
HPI section captures the reason for visit, and the
relevant clinical and social history. The PE section
captures both normal and abnormal findings from
a physical examination. The RES section outlines
impressions from diagnostics images such as X-ray
and CT scans. Finally, the AP section captures the
assessment by the doctor and treatment plan e.g.
medications, physical therapy etc.

Size Source Target
Avg Max Avg Max

Ortho HPI 802k 961 7,008 116 2,920
Ortho RES 444k 993 6,873 48 878
Ortho PE 769k 970 7,008 128 1,456
Ortho AP 811k 967 7,008 160 2,639
CNN&DM 287k 681 2,496 48 1,248
XSum 204k 431 33,161 23 432

Table 1: Statistics of our orthopedic report creation
task and two other summarization tasks. Number of
training examples and average and maximum number
of tokens in the source and target sequence.

Experimental results are reported on a dataset
that consists of around 800k encounters from 280
doctors. The dataset is partitioned chronologically
(date of collection) into train, validation and evalu-
ation partitions. The evaluation partition includes
4,000 encounters from 80 doctors. The doctors
present in the evaluation set are present in the train
set. Since the models do not require supervision
outside the workflow, this paradigm is scalable,
though future work will assess generalization to
unseen doctors. We only use non-empty examples
for training and evaluation. The RES section is
empty in about 50 % of the examples.

Table 1 shows more detailed statistics of our
dataset in terms of the number of training exam-
ples and source and target sequence lengths. The
table also shows corresponding statistics for two
prominent datasets for abstractive summarization
that were not used in this study: CNN and Daily
Mail, as processed by Nallapati et al. (2016), and
XSum (Narayan et al., 2018). As shown in the table
both the source and target sequences in our data are
significantly longer than in the standard databases.

3 Modeling

We use neural sequence-to-sequence models for
summarizing the doctor-patient conversations. The
input to the model is a sequence of tokens gener-
ated by the speech recognizer. The medical reports
consist of four sections, and we produce each sec-
tion using a separate sequence-to-sequence model.

The task closely resembles machine translation,
so we use models that are similar to neural machine
translation models. There are, however, several
differences from a typical machine translation task:

1. The source and target sequences are in the
same language, thus we can use the same vo-
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cabulary for input and output.

2. Report generation may require reasoning over
a long span of sentences. The sequences, espe-
cially the source sequences, are significantly
longer, since we cannot translate sentences
separately.

3. Information may be incomplete (patient ges-
turing where it hurts), redundant (patient or
doctor repeating information), or irrelevant
conversation. In translation the semantic con-
tent in both the source and the target sequence
is the same.

The models that we use are based on the encoder-
decoder architecture that is well known from neural
machine translation (Sutskever et al., 2014). All the
models rely on attention (Bahdanau et al., 2015).
The encoder creates context-dependent representa-
tions of the input tokens, and the decoder produces
the next-token probability from those representa-
tions. During inference the output is generated
autoregressively using the next-token probabilities.

Very long sequences increase the memory usage
and training time, and make it more difficult to
learn the model parameters. We truncate the source
sequences to 2,000 tokens and the target sequences
to 500 tokens during training. 10 % of the source
sequences and 0.1 % of the target sequences were
above this threshold. During inference we truncate
the inputs to 3,000 tokens. Only 4 % of the test
examples were originally longer than this limit.

In this work we compare models that are based
on recurrent neural networks and models based on
Transformer (Vaswani et al., 2017). The following
sections describe these models and the enhance-
ments that we have implemented.

3.1 RNN with Attention
The RNN sequence-to-sequence model with atten-
tion was introduced by Bahdanau et al. (2015). The
encoder creates context-dependent input represen-
tations using a bidirectional RNN. The decoder
produces the next-token probability using a uni-
directional RNN, since future information is not
available. We used LSTM (Hochreiter and Schmid-
huber, 1997) as the recurrency mechanism.

We included in the model some of the enhance-
ments from the RNMT+ model (Chen et al., 2018)—
dropout, residual connections, layer normalization,
and label smoothing. We also increased the number
of encoder and decoder layers to two, but further

increasing the number of layers did not give any
benefit. We did not see significant benefit from
using multi-head attention.

3.2 Hierarchical Encoder

Training the RNN model is slow due to their in-
herently sequential form precluding parallelization
within the long input and output sequences. With
longer input sequences it also becomes increasingly
difficult for the model to learn to attend to relevant
parts of the input.

Inspired by Cohan et al. (2018), we split the
input sequence into 8 equal-length segments that
are encoded independently. The segments can be
processed in parallel, speeding up training consid-
erably. The final LSTM hidden state from forward
and backward directions of each segment are con-
catenated and projected into a segment embedding.
After a stack of segment encoders, one more bidi-
rectional LSTM runs over the segment embeddings
of the previous layer (see Figure 1). The attention
distribution is computed using both the token-level
(second layer) and segment-level (third layer) out-
puts similar to Cohan et al. (2018)—the token-level
scores are weighted by the normalized segment-
level scores.

The hierarchical encoder sped up training by
a factor of three with little to no impact on the
summarization accuracy.

3.3 Pointer-Generator

To facilitate effective copying of parts of conver-
sations to the output we implemented the pointer-
generator network from See et al. (2017). It reuses
the encoder-decoder attention distribution as a
pointer for the copy mechanism. The same at-
tention distribution is still used for computing the
context vector and a probability distribution over
the output vocabulary. The attention distribution
is taken as a probability distribution over the in-
put tokens and interpolated with the vocabulary
distribution. The interpolation coefficient is learnt
from the context vector, decoder LSTM state, and
decoder input embedding. This mechanism also
enables handling of words that are not present in
the decoder vocabulary.

The pointer-generator network is illustrated in
Figure 1. The context vector from attention is fed
into a linear layer with the decoder state to produce
the vocabulary distribution. The attention distribu-
tion is interpolated with the vocabulary distribution,
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Figure 1: Illustration of the RNN sequence-to-
sequence model with hierarchical encoder and pointer-
generator copy mechanism. Segments of source con-
versation are encoded independently using two bidirec-
tional LSTM layers, and a third layer runs over the final
segment embeddings. The attention distribution is com-
puted using both the token-level and segment-level out-
puts. The final distribution is interpolated from the at-
tention distribution and the vocabulary distribution us-
ing a predicted coefficient.

although the connections for predicting the interpo-
lation coefficient have been omitted from the figure
for clarity.

The authors also introduce a coverage loss for
training. They define coverage as the sum of at-
tention weights over previous decoding steps. The
coverage loss penalizes for attending to positions
where the coverage is already high. The purpose
is to encourage the model to attend to all input
positions while decoding a sequence, and reduce
repetition. We found the coverage loss to be some-
what helpful with a small weight (0.001).

3.4 Transformer

Transformer uses self-attention (Vaswani et al.,
2017) in the encoder and decoder to create context-
dependent representations of the inputs. In our
experiments both encoder and decoder consist of
six layers of self-attention. Each decoder layer
attends to the top of the encoder stack after the
self-attention. Additionally each encoder and de-
coder layer contains a position-wise feed-forward
or convolutional network that consists of two trans-
formations and a ReLU activation in between. The

Source Conversation

Self-Attention

FFN FFN FFN

Self-Attention

FFN FFN FFN

Self-Attention

FFN FFN FFN

Summary

Self-Attention

Encoder Attention

FFN FFN FFN

Self-Attention

Encoder Attention

FFN FFN FFN

Self-Attention

Encoder Attention

FFN FFN FFN

Vocabulary Distribution

+

Final Distribution

Figure 2: Illustration of the Transformer sequence-to-
sequence model with pointer-generator copy mecha-
nism. Each encoder layer consists of self-attention and
a position-wise feed-forward network. Decoder layers
also attend to the top of the encoder stack. We take
one attention distribution from the penultimate decoder
layer and interpolate it with the vocabulary distribution
using a predicted coefficient. The final distribution in-
cludes the vocabulary tokens and the present source to-
kens. Layer normalization and residual connections are
omitted for clarity.

fact that these layers can be computed in parallel
for every position makes training more efficient
than training RNN models.

Following Vaswani et al. (2017), we use the base
model size, i.e. 8 attention heads with a total of
512 outputs and a 2048-dimensional feed-forward
network. Following Domhan (2018), we apply
layer normalization (Ba et al., 2016) before the self-
attention and feed-forward sub-layers. This greatly
stabilizes training and speeds up convergence with
long inputs, confirming observations earlier made
with deep networks (Wang et al., 2019).

Since the output of attention is independent
of the order of the inputs, we inject position-
dependent information into the inputs. In the origi-
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ROUGE-L RERR Fact F1 RERR
HPI RES PE AP HPI RES PE AP

RNN 4.5 38.8 50.1 18.7 27.5 44.6 64.9 24.2
Hierarchical RNN 9.2 43.3 56.3 21.4 29.7 49.7 68.4 26.8
Hierarchical RNN + PG 9.2 45.4 53.7 22.3 30.8 51.3 67.1 29.2
Transformer 18.6 49.6 65.4 40.2 39.1 55.0 74.6 46.8
Transformer + PG 19.2 51.0 65.4 42.0 39.5 56.7 74.2 49.4

Table 2: Relative error rate reductions calculated from ROUGE-L and fact extractor F1 scores. The scores are
relative to an oracle baseline model that produces the longest common subsequence between the input and the
reference output. The models labeled with PG use the pointer mechanism and coverage training loss.

nal paper, Vaswani et al. (2017) added sinusoidal
position information before the first layer. We
use relative position representations (Shaw et al.,
2018) that are added inside the attention mecha-
nism, which we found to work slightly better.

We also implemented a pointing mechanism in
the Transformer model, similar to the RNN pointer-
generator. For pointing we can use any distribution
over the source tokens. The Transformer model
creates several encoder-decoder attention distribu-
tions, one for each attention head in each layer. In
principle any single head or the average of heads
could be used for pointing. We argue that dedi-
cating a single attention head should be sufficient,
since the parameters of that head will be trained
to attend to the tokens that are good candidates for
copying. In this case the rest of the attention heads
will not be affected and will perform their usual
function, unlike when averaging over the attention
heads. The penultimate layer seems to naturally
learn alignments (Garg et al., 2019), so we use
its first attention head for pointing. A simplified
picture of the model is in Figure 2.

HPI RES PE AP
RNN 168 168 168 168
Hierarchical RNN 168 117 168 168
Hierarchical RNN + PG 168 131 168 168
Transformer 68 26 68 64
Transformer + PG 69 26 70 66

Table 3: Training time in hours on the four report sec-
tions for the various model architectures. Training time
was restricted to one week, causing most RNN jobs to
stop before reaching the maximum number of training
steps.

4 Experiments

We train the models on Azure cloud using NVIDIA
V100 GPUs. Each training job is distributed to 8
GPUs. We use data-parallel training, i.e. each GPU
processes their share of the mini-batch and then the
gradients are averaged over the GPU devices. The
batch size is set to a maximum of 7,000 source
tokens per GPU. NVIDIA NCCL library is used to
perform the communication efficiently.

We use a vocabulary consisting of the 10k most
frequent words. The same vocabulary is shared
between the source and target tokens.

We use Nesterov’s Accelerated Gradient (Nes-
terov, 1983) with the RNN models, while
Adam (Kingma and Ba, 2015) is found to perform
better with the Transformer models. We train the
models a maximum of 400k steps, excepting RES
section models, which are trained until 200k steps
due to their fewer examples and shorter targets.
This corresponds to approximately 25 epochs on
RES section and 30 epochs on other sections. Dur-
ing this time we observe that training has practi-
cally converged and training longer would not pro-
vide significant benefit. We also limit individual
model training to one week as a cost control.

Improved performance is obtained via averaging
model parameter from 8 checkpoints, with interval
length as a function of total training steps. Where
helpful, we use a cyclical learning rate schedule,
with the cycle length set to the checkpoint sav-
ing interval, so that the saved checkpoints would
correspond to the minimums of the learning rate
schedule (Izmailov et al., 2018).

4.1 Results

ROUGE (Lin, 2004) is a collection of metrics de-
signed for evaluation of summaries. We calculate
ROUGE-L, which is an F1 score that is based on
the lengths of the longest common subsequences
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Partial ASR Transcript

[doctor]: we’ll do a celebrex refill let me see
you back four to six months earlier if needed
okay hey good to see you good to see you
[patient]: thank you thank you thank you

Reference Output

i have refilled her celebrex to have available.
the patient will follow up in four to six months
or earlier if needed.

Baseline Model Output

celebrex four to six months earlier if needed

Transformer PG Model Output

i have provided the patient with a refill of cele-
brex. the patient will follow up in 4-6 months
or sooner if needed.

Figure 3: An excerpt of a speaker-diarized ASR tran-
script, its reference AP section output, the baseline
model output, and partial output of the Transformer
pointer-generator model (all lower-cased, without for-
matting). The baseline model produces the longest
common subsequence between the transcript and the
reference output.

between the reference and hypothesis sentences.
We have noticed that it measures the fluency of the
language well. However, we are also interested in
assessing factual correctness. For this we utilize
a proprietary machine-learning-based clinical fact
extractor. It is capable of extracting medical facts
such as conditions and medications, as well as their
attributes such as body part, severity, or dosage.
We extract facts from the model output and the
ground-truth report, and compute the F1 score from
these two sets.

We publish our scores relative to an oracle base-
line model, which extracts the longest common
subsequence between the input conversation and
the reference output. An example of such output
is in Figure 3. Table 2 shows the relative error
rate reduction (RERR) from ROUGE-L and fact
extractor F1 scores. We define the error rate as the
complement (1− s) of the original score.

The Transformer models clearly obtain better
scores than any of the RNN models. Partly this is
because most RNN experiments are limited by the

HPI RES PE AP
RNN 12.1 0.4 3.8 19.9
Hierarchical RNN 2.0 0.2 1.2 15.8
Hierarchical RNN + PG 3.6 0.1 1.3 16.9
Transformer 2.0 0.1 1.2 0.3
Transformer + PG 1.7 1.0 0.8 0.3

Table 4: Percentage of model output considered part
of a repetition. We define repetition as a sentence that
occurs at least four times in the same report, or an n-
gram of at least 16 tokens that repeats consecutively.

maximum training time. In the RES section both
hierarchical RNN and Transformer models reached
200k training steps, but Transformer performance
is still superior. An example output generated by
the Transformer pointer-generator model is shown
in Figure 3.

The training times are shown in Table 3. All
but one of the RNN experiments were stopped af-
ter reaching the one week limit. Normal RNN
training was terminated after approximately 50k
steps, while hierarchical RNN progressed 160k–
230k steps over the same duration. Performance
was similar at an equal number of steps, but given
fixed practical time and cost constraints, the hierar-
chical encoder yields improved results.

The pointer mechanism generally provided a
small performance boost, with the largest improve-
ments in RES and AP section quality. Interestingly,
the pointer mechanism can even hurt performance
in PE section. This is exaggerated with the RNN
models by the fact that the pointer-generator model
is slower to train and progressed only 175k steps,
while the same model without the pointer mecha-
nism and coverage loss progressed 225k steps in
the time limit. Generally the ROUGE-L and fact
F1 scores seem correlated, displaying similar dif-
ferences across models.

4.2 Repetition

By visual inspection of generated reports we no-
ticed that some models suffer from an excessive
amount of repetitions. We identified two main cat-
egories: sentences that occur multiple times in the
same report and consecutively repeating n-grams.
We try to assess the amount of repetition in model
output by detecting these two types of patterns. Not
all occurrences of such patterns are mistakes, how-
ever, and even the reference targets contain such
patterns. We limit to sentences that occur at least
4 times and repeating n-grams that are at least 16
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tokens long. Table 4 shows the repetition rates in
model outputs as the percentage of tokens that fall
into either of these categories. The table shows that
the problem diminishes when training longer.

In the reference reports there are only a few in-
stances of tokens that we consider repetitive, and
these appear to be mistakes by the writer of the
report. We should then aim at 0 % repetition rate.
Note that the purpose of this metric is not to de-
tect language where for example the same frequent
words are used more often than in natural language.
We rather wanted to assess how widely the models
suffer from artificial and clearly erroneous repeti-
tion of word sequences.

5 Conclusions

In this paper we compared RNN and Transformer-
based sequence-to-sequence architectures for med-
ical report generation from patient-doctor conver-
sations. This study demonstrates the ability of
sequence-to-sequence models, in particular Trans-
former, to not only extract relevant clinical conver-
sation excerpts, but abstractively summarize in a
relatively fluent and factually correct medical re-
port. Especially when working within compute and
time budgets, Transformer is superior to traditional
RNN-based models, and scalable to large datasets.

Visual inspection showed that commonly occur-
ring problems in the generated reports included
repeated sentences and hallucinated clinically con-
sistent sentences unfounded by the conversations.
Minimally a human would need to be in the loop
to verify or correct these machine-generated re-
ports. Future work includes comparing end-to-end
approaches with a pipeline of clinical information
extraction and natural language generation meth-
ods.
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