
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 7044–7052
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

7044

The xtsv Framework and the Twelve Virtues of Pipelines

Balázs Indig, Bálint Sass, Iván Mittelholcz
MTA Research Institute for Linguistics

Benczúr u. 33., H-1068, Budapest, Hungary
{LASTNAME.FIRSTNAME}@nytud.mta.hu

Abstract
We present xtsv, an abstract framework for building NLP pipelines. It covers several kinds of functionalities which can be implemented
at an abstract level. We survey these features and argue that all are desired in a modern pipeline. The framework has a simple yet
powerful internal communication format which is essentially tsv (tab separated values) with header plus some additional features. We
put emphasis on the capabilities of the presented framework, for example its ability to allow new modules to be easily integrated or
replaced, or the variety of its usage options. When a module is put into xtsv, all functionalities of the system are immediately available
for that module, and the module can be be a part of an xtsv pipeline. The design also allows convenient investigation and manual
correction of the data flow from one module to another. We demonstrate the power of our framework with a successful application: a
concrete NLP pipeline for Hungarian called e-magyar text processing system (emtsv) which integrates Hungarian NLP tools in xtsv.
All the advantages of the pipeline come from the inherent properties of the xtsv framework.
Keywords: xtsv, general framework, NLP pipeline, NLP tools, tsv

1. Introduction

Concerning NLP processing tools, there are big players and
small ones as well. Numerous small independent tools ex-
ist, their common value is that many of them implement
brilliant ideas in an elegant manner, however they may not
be acknowledged properly. The main reason for this is
one of the followings: they handle some corner cases in
their own way, they are language-dependent, they are im-
plemented in a less-known programming language or they
do not fit in a larger framework. When one starts to de-
velop a new tool, the creative part of the work is to devise
and realise one’s solution to the well-defined problem in
order to showcase the idea by comparing it to the state-of-
the-art alternative. However, in order to help this idea to
spread widely, one must augment the implementation with
a standard I/O interface to let others test it. In some cases,
a demo service is also needed to draw attention to the so-
lution, else the program – no matter how good it is – will
become obsolete and finally not used by anybody. What is
worse, it will probably be reinvented again, possibly in the
same way.

Usually, the developer concentrates on the inner-workings
that results in neglecting “the interface boilerplate’. Nowa-
days, the time left for the ideas to reach the market is shorter
than ever before. The responsibility of the used framework
is to reduce the number of steps needed for shipping a new
idea. This is one of the obvious reasons why only big com-
panies/universities/communities can keep up the pace in in-
venting new ideas that spread easily, while those who do not
recognise this are doomed to just follow them. In this paper,
we present a framework that helps to unleash the hidden
potential of creative ideas by doing all the hard work other
than creating the main logic of an NLP module. Hopefully,
the framework will prove to be helpful not just for us but
for others as well. We believe it will aid the good ideas to
find their way more easily to the users.

2. Background
After the deep learning revolution a few product (like
Keras/TensorFlow, PyTorch or fastText) tend to rule the
market (Sejnowski, 2018). They are backed with stable
funding, therefore the user interface is readily customised
and maintained while their back end is developed indepen-
dently at a great pace. When a small group of people stand
out with their new solution – that does not fit into the for-
mer ecosystems –, they often must choose between devel-
oping the back end or the front end. If they choose the back
end to be competitive, they will be doomed to small au-
diences/communities. If they opt for front ends, they can
get lost in the jungle of the developing standards and in-
terfaces. Pursuing greater user base by improving the user
experience at the level of front end will dwarf the signifi-
cance of the back end.
As the major “language-independent” tools are targeted to
big and resourceful languages and industrial usage sce-
narios, they may not fit for the numerous less- and mid-
resourced languages and the (linguistic) research-centric
scenarios. This gap is currently filled with many – some-
times old-fashioned – independent but viable solutions1 un-
til today. However, such solutions are often developed only
to showcase the core idea lying behind them for research
purposes not necessary with the goal of widespread us-
age. This fact makes it difficult for a researcher without
the proper knowledge (and time) to restructure them so that
they can be examined, compared to other tools and used
properly. Therefore, their viability can be rather limited in
comparison with the tools and pipelines developed by big
companies, universities or communities.
This is a recurring problem which does not only affect the
application and further development of such programs and
ideas, but also the continuation of research. The citation
count can be lower compared to tools that can be integrated
to greater frameworks. To sum up, innovation and good

1This gap is even more felt in the absence of direct compar-
isons between the old tools and the new popular ones.



7045

ideas are frequently lost and reinvented because of the lack
of interoperability, while the problems these tools solve or
handle better than the widespread alternatives are bound to
recur. As we will see, our solution targets these tools.

2.1. Standards
In the era of the expansive adoption of the CoNLL-U for-
mat and the UD standard, many of the newly developed
tools tend to respect these de facto standards which mark
the way for new tools. Still, we are left with one rather
important question: what happens to the old tools that are
good but lack the support of modern interfaces and stan-
dards? Their users do not possess the knowledge and re-
sources to reimplement or substantially modify them to fol-
low the new standards. Sometimes these tools address tasks
which do not fit into the aforementioned standards, i.e. they
are not handled by the majority of the other compliant tools.
Therefore, these tools have drawbacks, even though they
could present a viable solution.
When it comes to support smaller languages trying to adopt
standards developed for large languages, it is impossible
to do so without losing linguistic information (Vincze et
al., 2017). However, there are multiple possibilities for
workaround: sometimes it is better to do a fine-grained tag-
ging to get higher accuracy and then merge classes to get
the standard compliant representation (for our approach see
Section 7.3.). The other way is to hybridise methods with
rule-based components to overcome the too small size of
the training material. These strategies can hardly fit into the
conventionally used CoNLL-U format and therefore into
the compliant tools. One can not make a change in these
programs supporting the CoNLL-U format as the developer
and linguistic resources for these languages are rather lim-
ited.
Consequently, we are limited in probing and comparing dif-
ferent alternative tools to select the best one for our needs.
Individual solutions will come to a similar fate: they are not
usable for greater audiences and therefore may not be ac-
knowledged properly. In greater time frames, the pipeline
will become obsolete. New, better alternatives will be dis-
covered, but they can not be replaced due to tight integra-
tion.

2.2. Aim
The aforementioned problems are out of sight for the cur-
rent standards. In order to break the circle, we gathered the
requirements that a pipeline has to meet and developed a
framework that can satisfy these needs.
In this paper, we present our findings, the format and the
framework we have created to solve the aforementioned
problems. We describe our implementation of a truly mod-
ular pipeline which does not limit users in experimenting
with interchangeable modules, swapping them to the best-
performing alternatives and making new compatible ones
easily2. We also present its first successful application by
a language processing pipeline for Hungarian. Finally, we
compare this pipeline to the existing alternatives.

2Allowing a simple manner of creation of modules is very im-
portant as it attracts users to create modules in the ecosystem,
e.g. by modifying old ones.

3. The Twelve Virtues of Pipelines
We gathered numerous requirements during our practice.
Most of them were an actual limiting factor or a future ex-
pectation for an ideal pipeline. In the following sections,
we present these and argue for their importance. Our point
is that instead of having to deal with these aspects for every
module separately, they can and should have a general solu-
tion at the level of the pipeline providing their functionality
automatically for every module included.

3.1. A Pipeline Should Act as a Real Pipeline
First of all, we need to give a clear definition of pipelines,
because there is a tendency nowadays that monolith tools
handling multiple tasks are also called pipelines in the pub-
lic speech. The definition of the pipeline is the following:
“In software engineering, a pipeline consists of a chain of
processing elements (processes, threads, coroutines, func-
tions, etc.), arranged so that the output of each element is
the input of the next; the name is by analogy to a physi-
cal pipeline.”3 We must emphasize the differences between
monolith tools and pipelines. In the rest of the paper, we
follow the above definition for pipelines, while “pipelines”
implemented as monoliths will be referred to as tools.

3.2. A Pipeline Should Truly Work for Any
Language

There are many pipelines which are claimed to be
language-independent, although they are developed and
tested only for a few major languages. These languages
are rather different from the numerous smaller languages
which these pipelines are also expected to work with. As
these pipelines have too many prior assumptions and ex-
pectations that could not be met sometimes (e.g. a suitable-
sized UD treebank may not exist), they can not be used
for these smaller languages or only with a big performance
drop. In our view, the pipeline framework should be as ab-
stract as possible. We should not assume anything that has
nothing to do with the operation of the framework itself, in
other words, that is not at the abstract level. All kinds of
linguistic assumptions should be made at module level.

3.3. A Pipeline Should Handle Big Data and
Large Number of Requests as Well

One major limiting factor of the existing tools and pipelines
is the inability of handling both big and small data. This
concerns the handling of training material in those cases
when it can be generated automatically in large quantities
(e.g. diacritic restoration). One does not want to use dif-
ferent pipelines for numerous small requests (e.g. a web
service) and for one large request (e.g. big data queries),
one pipeline should be able to handle both cases well.

3.4. A Pipeline Should Allow Reusing Existing
Tools

A prominent limiting factor of the existing pipelines is that
they do not make it possible to use modules written in var-
ious different programming languages together. One may

3https://en.wikipedia.org/wiki/Pipeline_
(software)

https://en.wikipedia.org/wiki/Pipeline_(software)
https://en.wikipedia.org/wiki/Pipeline_(software)


7046

have to fully reimplement (or workaround) an existing well-
tested implementation of the tool to be included and main-
tain the modification if the module develops. The prob-
lem gets more serious when it comes to tightly coupled
pipelines where it is even harder to replace and maintain
modules without much effort. A pipeline framework should
offer general, easy-to-use, prefabricated wrapper solutions
for future modules regardless of their programming lan-
guage.

3.5. A Pipeline Should Allow Entry and Exit at
Any Point

When creating new training material or testing the robust-
ness of the pipeline, it is inevitable to be able to examine
the output of each module separately and modify it when
required – to reduce error amplification – before letting the
pipeline proceed. Beside that, it is not enough to test a mod-
ule – or any part of the pipeline consisting of one or more
modules – in itself, one may also test how robust the mod-
ule is in the pipeline, i.e. whether the modules can work
together or they need to be harmonised (e.g. the rules and
the training data). The former method is called in vitro and
the latter in vivo in biology.

3.6. Modules Should be Replaceable in the
Pipeline

To keep the pipeline at the state-of-the-art performance,
maintainers may need to replace modules in a timely man-
ner. Before this kind of change, one usually wants to per-
form measurements to verify that the new module is supe-
rior to the old one which is currently in the pipeline. Beside
that, the pipeline should allow to have multiple alternative
modules to be used when a confident decision could not be
made e.g. preferring speed or performance. In these cases,
the decision should be left for the user.

3.7. A Pipeline Should Exist as Docker
Container

Nowadays it is a requirement for most complex program
to support building as a Docker image and insertion into
an environment as a container. This is especially true for
distributed and service workloads. Be a single tool or a full-
featured pipeline, the framework should do all the heavy
lifting as it is possible to implement this functionality at the
level of the framework. The module developer should only
be concerned about the issues of creating or running the
Docker image.

3.8. A Pipeline Should Support Usage as Service
(REST API)

We are living in the age of microservices or in other words
software as a service (SaaS). When a dedicated service is to
be deployed in the cloud, it is an advantage if it is equipped
with a standard, instantly usable REST API. This is also
convenient for the non-technical user who “just wants to
use” the pipeline with minimal effort. With proper config-
uration, one can even use it for instant demonstration. This
is again a feature which boosts the viability of the pipeline,
and should not be written independently for every tool, but
can be addressed well at the level of the pipeline by a gen-
eral solution.

3.9. A Pipeline Should Allow Modification and
Extension with New Modules

By allowing modification and extension, not only existing
tools can be reused but new ones can be developed as well.
The developer only needs to solve the actual task and sim-
ply put the implementation into the pipeline. Modules can
be split into logically distinct parts. Smaller modules mean
speed, generality and more room for experiments, like ex-
perimenting with new features or specialising the final out-
put.

3.10. A Pipeline Should be Standard Compliant
and Comparable

Not just the individual tools but the pipeline as a whole
should be able to take input and yield output that is com-
parable. This does not necessarily mean that the inter-
modular data format should be constrained by any standard
as it is the “internal matter” of the pipeline itself. This al-
lows freedom, but keeps compatibility and comparability
using a simple converter – to transform the data to a stan-
dard compliant format – as the last element of the pipeline.
This property makes it possible to gain more insight into
the inner-workings of the data and the tools – e.g. by sub-
dividing the task as needed – because only the final result
is evaluated.

3.11. A Pipeline Should Support Distributed
Workloads

When dealing with multiple parallel users and big data, it is
an obvious requirement to be able to distribute the load to
multiple machines. This is not self-evident with old tools
where there is a need of special knowledge that the mod-
ule developer may not have. Fortunately, it is essentially
the same for all modules so it can and should be solved at
pipeline level.

3.12. The API and the Communication Format
Should Be Built to Last

When one builds a new, general framework that is expected
to be trusted and used by others, it is essential to design
the API as simple and extensible as possible to accommo-
date all unexpected future use cases without modification
and API breakage, else the future users would not trust and
adopt the framework and the API. One well-known exam-
ple of such an API is the Unix pipeline which has started 50
years ago4 and still spreading in the world, used by the gen-
eral public with only slight modifications throughout the
years.

4. Related work
The three main pipelines used today are SpaCy5 (Honni-
bal and Montani, 2017), StanfordNLP6 (Qi et al., 2018),
and UDPipe7 (Straka and Straková, 2017). They are all de-
signed around the CoNLL-U and Universal Dependencies

4https://www.bell-labs.com/unix50/
5https://spacy.io/
6https://stanfordnlp.github.io/

stanfordnlp/
7http://ufal.mff.cuni.cz/udpipe

https://www.bell-labs.com/unix50/
https://spacy.io/
https://stanfordnlp.github.io/stanfordnlp/
https://stanfordnlp.github.io/stanfordnlp/
http://ufal.mff.cuni.cz/udpipe


7047

(UD) ecosystem8 and they solve the minimal required steps
to comply. SpaCy has a rather simple API which is very
popular in the scene. Recently, there are wrappers for the
two other tools 9 to enable the usage with the same API.
These programs are language-agnostic (but somewhat
English-centered), downloadable and each of them has a
Python API. Only some of them allow splitting processing
into steps to allow corrections on the data. The divergence
from the strict series of modules is not possible and some of
them do not support creating new modules. This behaviour
satisfies the majority of the community, as most of the use
cases require these tools for standard preprocessing of text
prior to the actual work to be done. In these cases, speed is
the first priority.
To sum up, users mostly want to reach the output from the
input in the shortest and fastest way – that is, sometimes in
one big step. From this point of view, the majority of our
requirements (see Section 3.) could appear as unnecessary
constraints which just slow down the processing. We think
that thanks to our additional features xtsv surpasses other
approaches in cases when speed is not the only considera-
tion. To characterise the difference in speed, we present our
benchmarks in Section 8.
Our framework does more than just providing a trainable,
downloadable pipeline with pretrained models: we de-
signed it to enable usage as a service (see 3.8.). There-
fore we examined the available solutions that work in the
cloud as a service in asynchronous manner. Their source
codes are mostly not available, but some of them integrate
some open source tools to broaden their repertoire. Web-
Sty10 and Weblicht11 are two good examples of this type
of tools. There are three problems with this kind of archi-
tecture: a) the user depends on the administrators of the
system (e.g. integrating new modules); b) there is no feed-
back for module developers; c) the user must give (possibly
sensitive) data to a third party. We tried to eliminate these
drawbacks when designing xtsv.
The third group of tools to mention is the language-specific
tools which are often tightly coupled. Even though they
are open source, it is almost impossible for an outsider to
improve their speed or accuracy. For example Hungarian
Magyarlánc (Zsibrita et al., 2013) is such a tool to name.
There is a great need for creating and comparing proto-
types, but in a fast moving workflow it is not feasible to
rewrite the best candidate for the final product.
xtsv competes with these types of tools but it puts the
emphasis on other aspects: modularity, stable API and fast
development over speed. Thanks to this fact it can be an
ideal test bed for NLP and also for linguistic experiments
that could evolve and be even integrated into the aforemen-
tioned pipelines.
Regarding the possible data format, we found that CoNLL-
* format family (Stranák and Štepánek, 2010) has been
shaped by many experience and has matured a lot over the

8https://universaldependencies.org/
9https://github.com/explosion/

spacy-stanfordnlp and https://github.com/
TakeLab/spacy-udpipe

10http://ws.clarin-pl.eu/websty.shtml
11https://weblicht.sfs.uni-tuebingen.de

years. Still, we found it a no-go because it presumes a
global knowledge of the possible fields that is hard-wired
into each module by the order of the fields. This constraint
is somewhat compensable with extra fields used beyond the
eleven mandatory fields. Beyond that, although there is a
CoNLL-U validator program12, major programs that claim
to support the CoNLL-U format do not produce “valid” out-
put. They produce mostly minor errors, but this shows that
the format is somewhat overregulated and some of the tools
or treebanks do not bother to adapt to these standards.
There are already a few extensions of the CoNLL-U for-
mat. One of them is the CoNLL-U plus format13. It passes
our requirements on the format (see 3.12.), but we have not
found a working implementation for this format. It also
tries to keep compatibility and therefore follows the regu-
lated format inherited from CoNLL-U which is not neces-
sary and not general enough in our opinion.
In the following section, we describe the format chosen for
our framework. It builds upon the good features found in
the CoNLL-U format, but has also differences to leverage
the latter one’s overregulated nature.

5. The Communication Format of xtsv
The inter-module communication format of xtsv is essen-
tially tsv with headers. This general format follows the
principles of vertical format where each token is written
vertically, one item per line, and the features of the tokens
are separated by a tabulator character as columns in the
same line. It is important that this simple format is aug-
mented with a header in the first line to label the columns.
As the header identifies the columns, they can be in arbi-
trary order. In fact, the header is what controls the operation
of the whole pipeline: it defines input and output columns.
Additionally, we support fixed column order without header
as well, and modules can choose between the two formats.
The pipeline delegates the decision to choose between these
(and the possible introduction of further constraints on the
content) to the two consecutive modules.
To be compliant to the CoNLL format family, we use empty
lines as sentence separators, and we added the possibility of
having CoNLL-style comments – starting with a hashmark
and a space – directly before sentences. These modifica-
tions somewhat break the principles of tsv but we decided
to use them as CoNLL formats are de facto standards.
We wanted the format to be neutral to all fields to priorise
generality and extensibility instead of priorising the (nowa-
days) frequent use cases. With this design decision we
opened the way to divide or extend the classical steps of
the pipeline on demand to adhere the underlying logic. The
order of the new columns is generally not set, but each mod-
ule is advised to augment new columns to the right of the
existing columns.

12https://github.com/
UniversalDependencies/tools/blob/master/
validate.py

13Available at https://universaldependencies.
org/ext-format.html, but without the proper bibliographi-
cal references we can only suspect the creation date (2018-01-17)
and status (draft).

https://universaldependencies.org/
https://github.com/explosion/spacy-stanfordnlp
https://github.com/explosion/spacy-stanfordnlp
https://github.com/TakeLab/spacy-udpipe
https://github.com/TakeLab/spacy-udpipe
http://ws.clarin-pl.eu/websty.shtml
https://weblicht.sfs.uni-tuebingen.de
https://github.com/UniversalDependencies/tools/blob/master/validate.py
https://github.com/UniversalDependencies/tools/blob/master/validate.py
https://github.com/UniversalDependencies/tools/blob/master/validate.py
https://universaldependencies.org/ext-format.html
https://universaldependencies.org/ext-format.html


7048

With this layout we opened up numerous possibilities
which previously were not possible. One of them is the
locality of the specifics of the format that can be converted
from module to module if needed. The other is the coexis-
tence of alternative modules that do the same task yielding
non-linear “pipeline” if needed. Generally, modules may
require zero or more fields as input columns and produce
zero or more output fields as columns on the output. To syn-
chronise naming conventions between modules from differ-
ent sources, an abstract rename module can be implemented
at framework level for renaming columns.
It is not strictly required for input and output data to be in
the above defined format. This is an advantage that shows
itself mostly at the beginning and at the end of a pipeline.
The first step is usually a tokeniser which creates xtsv
format from raw text, while the last step is often a finaliser
which aggregates data, e.g. printing out result of evaluation
or data in appropriate format for plotting directly.
The execution order is determined by the order of the mod-
ules. Prior to execution, the framework checks whether the
produced and required fields yield a feasible sequence of
modules, i.e. whether all required fields are available at all
points of the pipeline, taking the input data into account as
well. This makes it possible to compute execution paths
from the input and the desired output using the available
modules with constraint satisfaction.
With the design presented above, we allow new possibili-
ties – that could not be achieved with CoNLL-U format –
from processing multilingual texts with the same pipeline14

to tasks even outside of the domain of natural language
processing, essentially using any kind of vertical data. In
the next section, we emphasise the importance of the xtsv
framework. We present how this framework facilitates the
insertion of new modules and what can be done with these
modules at the pipeline level.

6. The xtsv Framework
xtsv is a general-purpose, multi-functional tsv-based
processing framework for NLP. It connects different mod-
ules, manages I/O using the format described in the previ-
ous section, handles and checks input and output columns
and, most importantly, adds several functionalities to the
pipeline. The main idea is to implement every feature
which works the same way for all modules at framework
level, and thereby, to provide them automatically for every
module and pipeline built with the framework.
We wanted to support the vast majority of the available
tools in the research community. So, we not only designed
our API in Python (which can be easily integrated with C
and C++ libraries), but also added the possibility to insert
Java applications into the pipeline using PyJNIus 15 doing
all the heavy lifting. PyJNIus is not a direct dependency of
xtsv, but detected and used if some module needs it. The
pipeline delegates the appropriate tasks to the format (see
Section 5.) and the modules (Section 6.2.).

14This can be achieved by adding a language identifier column
by the first module to set the path for appropriate follow-up mod-
ules for parts of the input written in different languages.

15https://github.com/kivy/pyjnius

Another design decision was to reuse as many available
general-purpose software components as possible if they
are adopted by the community. With this trick, xtsv itself
consists of only about 400 lines of Python code. Despite
of its numerous features that we describe in the follow-
ing paragraphs, it is a lightweight system, easy to maintain
thanks to its small size.
Before reading the data, the pipeline checks the feasibility
of the list of the tools required to be run and the supplied
input data. As any module can require and produce zero
or more input fields, this is a directed acyclic hypergraph.
All the data is handled as a stream of tokens – except of the
raw text before tokenisation and sentence splitting which
is handled as a stream of characters. We currently process
data sentence-by-sentence16 which enables the parallelisa-
tion of the processing and distributing it among multiple
computer nodes with the same API.
We defined the following API for using a pipeline put to-
gether in xtsv– this is similar to the existing alternatives:

• build pipeline(...) to initialise the defined pipeline and
process the input stream in one step;

• pipeline rest api(...) to initialise the REST API object
that will initialise the tools on the first query when they
are needed;

• process(...) low level function to process a stream with
a preinitialised module (e.g. for training);

• download(...) download the models if needed

• tools (a list) and presets (a dictionary) for configu-
ration along with miscellaneous properties and func-
tions.

Suitable tools can run as in multiple instances with different
parameters – e.g. loading different models. We defined an
object to store the initialised tools. Having this object, other
streams can reuse the tools immediately. One frequent use
case of this is the REST API.

6.1. Usage options: Docker, REST API, etc.
Beyond the programmatic usage described above, there are
two orthogonal dimensions concerning other usage possi-
bilities of xtsv. On the one hand, the framework can be
used as a CLI (command line) tool, as a REST API or by a
generic web front end built on the top of the REST API. On
the other hand, it can be used by cloning the repository – to
be able to modify the source code directly –, by installing
via pip or by running its Docker container as a black box
(see Table 1).
We encourage our users to use Docker container technology
to create prepacked, standalone and easy-to-use software
packages that have batteries included and can be put into
larger environments by a few commands. Using our frame-
work, instead of complicated installing procedures, one can
simplify the setup to one

16The API can be extended when lower or higher processing
units are needed. For details, see the module specification in Sec-
tion 6.2.

https://github.com/kivy/pyjnius


7049

clone pip Docker
CLI 3 3 3
REST API 3 3 3
web front end 3 3 3

Table 1: Usage options of xtsv.

docker pull IMAGE NAME

command. The system can be run from docker – just like a
common CLI application running in JVM, called runnable
docker – or like a traditional container, as a service with
the provided general REST API. We also provide a simple
generic web front end from xtsv which helps human in-
teraction with the REST API and enhances user experience
e.g. at a demo session, if some ideas need to be quickly
showcased.
We created a front end for the REST API to enable non-
technical users to select the required modules and use
the service provided by xtsv without knowing CLI or
docker at all. As some modules can run in multiple copies
(e.g. with different parameters or modes) the same front end
code also provides a way to choose between these param-
eter configurations or modes and return a JSON structure
with the processed output. This scenario is good for run-
ning small microservices in the cloud which require human
readable, still machine parsable output e.g. to look-up – and
possibly post-process – some input text by typing an URL
into a browser. The very same API can be used to handle
batch queries if needed. The practical use cases are de-
scribed in Section 7.1.
The framework uses lazy-initialisation to only load mod-
ules that are really needed. This is useful for running ser-
vices as the user does not have to to modify anything if he
or she wants to run (and load) only one tool in the lifetime
of the service, or – as another case – wants to use different
worker computers for different services systematically. The
list of modules has are to be supplied in a form of a simple
config that lists the appropriate values17. In the following
section, we describe the specific API that is required of any
module to implement, to show how easy it is to insert a
module into an xtsv pipeline.

6.2. Module Specification
In order to create a new xtsvmodule to put into a pipeline,
one must create a Python module with a class implement-
ing the module API which consists of six properties and
three functions18. As a matter of fact, this includes han-
dling modules with Java classes.
The modules have the following six properties which can
be omitted if default values are appropriate for a particular
use:

1. source fields: the set of expected input field names if
there are any;

17For details see the documentation at
https://github.com/dlt-rilmta/xtsv#
creating-a-module-that-can-be-used-with-xtsv

18See emDummy example module for detailed documentation
at https://github.com/dlt-rilmta/emdummy

2. target fields: the list of the names for the output fields
created by the module in order of appearance;

3. fixed order tsv input: tells the pipeline if it should ex-
pect headers for the module input or not;

4. pass header: tells the pipeline if it should pass the
header before the module output or not (e.g. header
should not be passed for finalisers – see Section 5.);

5. class path: needed for the JVM to include special
classes;

6. vm opts: additional JVM options when needed.

These properties determine the pipeline-level properties of
the actual module. The main idea on the behaviour of each
module – be it rule-based, statistic-based or hybrid – is that
it is enough for them to have:

1. an initialisation phase: init (...), where the
module can read the trained model or data files and
make modifications prior to processing;

2. a function to process the input token-wise:
process token(...);

3. a function to process the input sentence-wise:
process sentence(...).

In the future, we may add a function to process the in-
put paragraph-wise and another one to process the input
document-wise.
These functions have strict signature as the part of the API,
except the initialisation function which is allowed to have
the custom elements needed for the actual module. Each
module is allowed to define any further extension in its API
as long as it does not interfere with the expected API of
xtsv.
To sum up, we emphasise that xtsv will fulfil all require-
ments described in Section 3. in the near future19. If the
API described in the current section is implemented by a
module, it can be simply inserted into an xtsv pipeline
and, by that, all features which we mentioned will be avail-
able for this module, and of course for the whole pipeline
which contains the module. This is possible because all
pipeline functionalities are implemented in xtsv at frame-
work level and in a generic way.

7. An Application: e-magyar (emtsv)
In this section, we present the advantageous properties of
xtsv in practice through an application. This is the new
version of e-magyar codenamed emtsv (Indig et al.,
2019), a processing pipeline for Hungarian. We will ref-
erence it as emtsv in the rest of the paper.
Hungarian is an agglutinative language. There are several
specific processing tools for this language, many of them
producing high quality output. For example, Hunspell is
an open-source spell checker, lemmatiser and morphologi-
cal analyser, developed primarily to handle Hungarian and

19The only exception is parallelisation that has not been imple-
mented yet.

https://github.com/dlt-rilmta/xtsv#creating-a-module-that-can-be-used-with-xtsv
https://github.com/dlt-rilmta/xtsv#creating-a-module-that-can-be-used-with-xtsv
https://github.com/dlt-rilmta/emdummy


7050

other languages with rich morphology, and also, there are
some other NLP tools (Halácsy et al., 2004). Since then
some of these tools were substituted for better alternatives,
some has been reimplemented, fixed and extended yielding
different pipelines competing with each other.
In order to accelerate the development of the tools and re-
sources, we came up with the original idea of xtsv earlier
(Indig et al., 2019). Back then, it was only a part of the
system, but as we realised its importance we separated it
as an independent tool. Then, we formalised the desirable
properties of this kind of framework in general (see Section
3.).
In this section, we justify the legitimacy of xtsv by pre-
senting how it helped emtsv to become a full-fledged pro-
totyping ecosystem for Hungarian NLP. We also present
some loosely connected applications built around emtsv
to show how simple ideas can substantially extend the ex-
isting tools in practice by using xtsv. In Section 9., we
present our future plans regarding further applications of
our framework.

7.1. Morphological Analyser as a Service
(MAaaS)

emtsv uses the rule-based morphological analyser
emMorph (Novák et al., 2016) and the lemmatiser emLem
together as a module20 to overcome the sparse data prob-
lem introduced by the nature of the language and to assist
the ML algorithm in the POS tagger21. To be able to verify
the output (e.g. if there is a putative problem in the morpho-
logical analyser) one needs a preinstalled environment that
is not always available or convenient for standalone usage.
For this purpose, we created a microservice22 from the the
morphological analyser with just a few extra lines of code
using xtsv (Indig et al., 2019). This enables the users
to check possible analyses of a specific word form by just
typing a special URL into their browser23. To make the
interface more user-friendly, we introduced a web form to
allow the user to choose from available modes with one
click. The output is in JSON format which is readable by
humans and also by machines.
Since then, we have integrated Hunspell into emtsv as a
module and set up a similar service24 for fast spellcheck-
ing and to provide another lemmatiser and morphological
analyser for the users to choose from.
With these at hand, even non-technical users can check the
spelling and possible analyses of a word, even from their
smartphones. We recommend these tools for accelerating
the building of a new training corpus for Hungarian, which
we will introduce in the following section.

20https://github.com/dlt-rilmta/emmorphpy
21Actually, this module does morphological disambiguation

and lemmatisation as well, in our case.
22A demo service running in the cloud is available at https:

//emmorph.herokuapp.com/.
23https://hunspellpy.herokuapp.com/

analyze/terem where “terem“ (room, yield, produce) is
the word to analyse.

24https://hunspellpy.herokuapp.com/

7.2. Creating a New Training Corpus
The Szeged treebank is the largest, manually annotated tree-
bank (Vincze et al., 2010) in Hungarian at the time of writ-
ing which contains 82,000 sentences, 1.2 million words and
250,000 punctuation marks, while KorKorpusz (31,492 to-
kens) is a recent pilot to create a new one (Vadász, 2020)
and therefore it is not included in the examined tools yet.
Due to copyright reasons, the Szeged treebank is not pub-
licly available. Only a small part of it can be downloaded25

in UD format with 42,000 tokens and 1,800 sentences. This
corpus is the base of the Hungarian models in Section 4. As
these tools do not use rule-based components to improve
their decisions, this explains their inferior performance on
Hungarian and the issue could only be solved with more
training material.
However, creating gold standard quality training materials
for Hungarian is a cumbersome task. The point is that we
can make the work easier for annotators with xtsv. They
can bootstrap the annotation with high-quality components
and only a few errors remain and have to be be corrected
(Indig et al., 2019). This accelerates the annotation process
because annotators can work step-by-step. They only have
to stop after running the desired module, correct the out-
put and continue running the pipeline on the corrected data.
Using this strategy, they can avoid the error amplification in
the pipeline and prevent larger modifications e.g. the need
for renumbering every dependency relation because of a to-
kenisation mistake.

7.3. The Particular Module Hierarchy in emtsv
to Improve POS Tagging

In this section, we describe how we broke down the module
hierarchy in order to further enhance annotation experience
and to give more fine-grained control to the annotators and
other users. With xtsv, we had the opportunity to redefine
classical NLP modules in emtsv to enhance future usage
scenarios and to lay out the foundations for future mod-
ules (see Section 9.). We divided the “POS tagger” into
four components (Indig et al., 2019): a) the morphologi-
cal analyser to provide morpheme level analyses for words,
b) the lemmatiser to simplify the morpheme level analy-
sis to lemmas and (emMorph specific) tags suitable for the
OOV handling in the next step, c) disambiguate the lemmas
and tags using the simplified morphological information, d)
convert the disambiguated tags into UD POS tags and fea-
tures to be able to continue with any standard UD depen-
dency parser, while the computed fine-grained morphologi-
cal information can be used to do other tasks independently.
This layout allows the fine-grained classification and dis-
ambiguation of words before losing morphological infor-
mation at the conversion step to the coarse UD representa-
tion. Only the third step – see c) in the previous paragraph
– is done by machine learning, the rest of the steps are rule-
based. The cooperation of these modules gives the user
freedom of choice and high quality annotation at the same
time.

25https://universaldependencies.org/
treebanks/hu_szeged/index.html

https://github.com/dlt-rilmta/emmorphpy
https://emmorph.herokuapp.com/
https://emmorph.herokuapp.com/
https://hunspellpy.herokuapp.com/analyze/terem
https://hunspellpy.herokuapp.com/analyze/terem
https://hunspellpy.herokuapp.com/
https://universaldependencies.org/treebanks/hu_szeged/index.html
https://universaldependencies.org/treebanks/hu_szeged/index.html


7051

7.4. Foreign Pipeline Elements as Modules in
emtsv

To keep up with the state of the art, we have to try new
methods and substitute the old ones with them from time
to time. In this section, we show how we integrated a full
pipeline into emtsv in order to provide alternatives for cer-
tain tasks.
As the xtsv implementation made it possible, we started
to search for new opportunities for interoperability with
other modules. Simon et al. (2020) have successfully inte-
grated UDPipe which shows how our modules correspond
to the standard pipeline elements and allows combining al-
ternative tools in the pipeline, either it is speed or quality
that is in the user’s mind26. We also offer additional speed-
up as multiple modules of UPDipe can be run as a single
xtsv module if the user does not want to interact with the
data between the modules.

7.5. Loosely Connected and Experimental
Modules in emtsv

It is not rare that other frameworks and software ecosystems
(like tensorflow-keras and sci-kit learn) in-
tegrate – and usually reimplement – modules which are
only loosely connected to the original core task. Designing
emtsv Simon et al. (2020) created three such modules to
conveniently conduct everyday tasks like performance eval-
uation and to support interoperability with the CoNLL-U
ecosystem. For a further example, the module of emconll
(Indig et al., 2019) converts the output to CoNLL-U format
which has specific columns in a fixed order27. It allows
e.g. connecting emtsv with visual dependency graph edi-
tors to help correcting annotation.
Taking advantage of the new possibilities of xtsv, some
experimental modules were implemented, for example
emTerm. It is not a traditional, but a useful pipeline el-
ement. emTerm can be used to find and mark multi-word
phrases (e.g. legal terms, proper names, etc.) in POS tagged
text, from a simple predefined list.

8. Comparing xtsv with Other NLP
Pipelines

Simon et al. (2020) compared the speed of vanilla xtsv,
emtsv and other mentioned NLP pipelines to get an in-
sight on their throughput. We used UDPipe’s own Hun-
garian model and an unofficial model for HuSpaCy28. We
compared two scenarios, all starting from raw text (see Ta-
ble 2). The first is ended at POS tagging and the second
is ended at dependency Parsing. All measurements were
run on RAM disk to eliminate the artefacts due to I/O and
the numbers are averaged from three measurements on 1
million tokens. For dependency parsing, emtsv and Mag-
yarlánc has only a slight difference in speed, while the
other competitors are significantly faster. We note that HuS-
paCy simplifies the task of POS-tagging (creating the main

26It must be noted that, there are some incompatibilities be-
tween the tools because the different training material (UDv1 and
UDv2).

27http://universaldependencies.org/format
28https://github.com/oroszgy/

spacy-hungarian-models/

CoNLL-U POS tags only), so its task is much simpler. As
emtsv and Magyarlánc have the same dependency parser
which appears to be a bottleneck.

pipeline POS DEP
emtsv (CLI) 2.320 300
emtsv (REST) 2.600 310
Magyarlánc 5.550 450
UDPipe 9.280 3.300
HuSpaCy 33.980 15.000

Table 2: The speed of the different compared systems in
token per sec.

1 2 3 4
1 825 719 677 618
2 483 412 395 373
3 342 294 283 269
4 265 227 214 207
5 211 186 176 166

Table 3: The vanilla throughput of xtsv in thousand to-
kens per sec with emDummy as the only module. The
columns shows the number of columns in the tsv, while the
rows show the number of consecutive modules.

In Table 3, one can see the raw throughput on emDummy
– a module which echoes input without modification. We
can see that there is a room for improvement on the raw
speed, but the optimisation should start at the modules as
they clearly are the real bottleneck.

9. Conclusion and Future Work
We collected the desirable properties of pipelines, then we
designed an open source pipeline framework called xtsv29

which meets these requirements. We emphasise that it is
completely modular: the pipeline can be extended by new
modules easily and modules can be replaced at any time,
every module or combination of modules can be run sep-
arately. Besides, the framework has a convenient inter-
modular communication format and adds useful function-
ality to the pipeline automatically, e.g. Docker container,
REST API or a web front end. We proved the usefulness
of xtsv in practice, investigating the emtsv pipeline built
with it for Hungarian.
We have many ideas we plan to implement as new modules
beyond the aforementioned ones we have already realised,
thanks to the possibilities of xtsv: diacritic restorer hy-
phenator (to be used after the morphological analyser), the
jump and stay algorithm (Sass, 2019) (to be used after the
dependency parser) to find proper verb-centered construc-
tions, disambiguate the morpheme level analyses to enable
task dependent lemmatisation, or reuse implemented met-
rics e.g. for stylometry analysis30. Integration, use and
evaluation of all these is now quite straightforward using
xtsv.

29Available under LGPL 3.0 license https://github.
com/dlt-rilmta/xtsv or pip install xtsv.

30https://github.com/tsproisl/Linguistic_
and_Stylistic_Complexity

http://universaldependencies.org/format
https://github.com/oroszgy/spacy-hungarian-models/
https://github.com/oroszgy/spacy-hungarian-models/
https://github.com/dlt-rilmta/xtsv
https://github.com/dlt-rilmta/xtsv
https://github.com/tsproisl/Linguistic_and_Stylistic_Complexity
https://github.com/tsproisl/Linguistic_and_Stylistic_Complexity


7052

10. Bibliographical References

Honnibal, M. and Montani, I. (2017). spacy 2: Natural
language understanding with bloom embeddings. Con-
volutional Neural Networks and Incremental Parsing.

Indig, B., Sass, B., Simon, E., Mittelholcz, I., Vadász, N.,
and Makrai, M. (2019). One format to rule them all –
the emtsv pipeline for Hungarian. In Proceedings of the
13th Linguistic Annotation Workshop, pages 155–165,
Florence, Italy, August. Association for Computational
Linguistics.

Novák, A., Siklósi, B., and Oravecz, C. (2016). A
new integrated open-source morphological analyzer for
Hungarian. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 1315–1322, Portorož, Slovenia, May.
European Language Resources Association (ELRA).

Qi, P., Dozat, T., Zhang, Y., and Manning, C. D. (2018).
Universal dependency parsing from scratch. In Proceed-
ings of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
160–170, Brussels, Belgium, October. Association for
Computational Linguistics.

Sass, B. (2019). The “jump and stay” method to discover
proper verb centered constructions in corpus lattices. In
Proceedings of the International Conference Recent Ad-
vances in Natural Language Processing, RANLP 2019,
Varna, Bulgaria. INCOMA Ltd.

Sejnowski, T. J. (2018). The Deep Learning Revolution.
MIT Press, Cambridge, MA.

Simon, E., Indig, B., Kalivoda, A., Mittelholcz, I., Sass,
B., and Vadász, N. (2020). Újabb fejlemények az
e-magyar háza táján. In Gábor Berend, et al., edi-
tors, XVI. Magyar Számı́tógépes Nyelvészeti Konferen-
cia (MSZNY 2020), pages 29–42, Szeged. Szegedi Tu-
dományegyetem, TTIK, Informatikai Intézet.

Straka, M. and Straková, J. (2017). Tokenizing, POS Tag-
ging, Lemmatizing and Parsing UD 2.0 with UDPipe. In
Proceedings of the CoNLL 2017 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependencies,
pages 88–99, Vancouver, Canada. Association for Com-
putational Linguistics.

Stranák, P. and Štepánek, J. (2010). Representing layered
and structured data in the conll-st format. In Proceedings
of the Second International Conference on Global Inter-
operability for Language Resources, pages 143–152.

Vincze, V., Simkó, K., Szántó, Z., and Farkas, R. (2017).
Universal dependencies and morphology for Hungarian
- and on the price of universality. In Proceedings of the
15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Volume 1, Long
Papers, pages 356–365, Valencia, Spain, April. Associa-
tion for Computational Linguistics.

Zsibrita, J., Farkas, R., and Vincze, V. (2013). A Toolkit
for Morphological and Dependency Parsing of Hun-
garian. In International Conference on Recent Ad-
vances in Natural Language Processing, pages 763–771,
Shoumen, Bulgária. INCOMA Ltd.

11. Language Resource References
Halácsy, P., Kornai, A., Németh, L., Rung, A., Szakadát, I.,

and Trón, V. (2004). Creating open language resources
for Hungarian. In Proceedings of the Fourth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’04), Lisbon, Portugal, May. European Lan-
guage Resources Association (ELRA).

Vadász, N. (2020). KorKorpusz: kézzel annotált,
többrétegű pilotkorpusz épı́tése. In Gábor Berend, et al.,
editors, XVI. Magyar Számı́tógépes Nyelvészeti Konfer-
encia (MSZNY 2020), pages 141–154, Szeged. Szegedi
Tudományegyetem, TTIK, Informatikai Intézet.

Vincze, V., Szauter, D., Almási, A., Móra, Gy., Alexin,
Z., and Csirik, J. (2010). Hungarian Dependency Tree-
bank. In Proceedings of LREC 2010, Valletta, Malta,
May. ELRA.


	Introduction
	Background
	Standards
	Aim

	The Twelve Virtues of Pipelines
	A Pipeline Should Act as a Real Pipeline
	A Pipeline Should Truly Work for Any Language
	A Pipeline Should Handle Big Data and Large Number of Requests as Well
	A Pipeline Should Allow Reusing Existing Tools
	A Pipeline Should Allow Entry and Exit at Any Point
	Modules Should be Replaceable in the Pipeline
	A Pipeline Should Exist as Docker Container
	A Pipeline Should Support Usage as Service (REST API)
	A Pipeline Should Allow Modification and Extension with New Modules
	A Pipeline Should be Standard Compliant and Comparable
	A Pipeline Should Support Distributed Workloads
	The API and the Communication Format Should Be Built to Last

	Related work
	The Communication Format of xtsv
	The xtsv Framework
	Usage options: Docker, REST API, etc.
	Module Specification

	An Application: e-magyar (emtsv)
	Morphological Analyser as a Service (MAaaS)
	Creating a New Training Corpus
	The Particular Module Hierarchy in emtsv to Improve POS Tagging
	Foreign Pipeline Elements as Modules in emtsv
	Loosely Connected and Experimental Modules in emtsv

	Comparing xtsv with Other NLP Pipelines
	Conclusion and Future Work
	Bibliographical References
	Language Resource References

