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Abstract
Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically
addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual pre-training
approaches such as MASS (MAsked Sequence to Sequence) are extremely effective in boosting NMT quality for languages with
small parallel corpora. However, they do not account for linguistic information obtained using syntactic analyzers which is known
to be invaluable for several Natural Language Processing (NLP) tasks. To this end, we propose JASS, Japanese-specific Sequence to
Sequence, as a novel pre-training alternative to MASS for NMT involving Japanese as the source or target language. JASS is joint
BMASS (Bunsetsu MASS) and BRSS (Bunsetsu Reordering Sequence to Sequence) pre-training which focuses on Japanese linguistic
units called bunsetsus. In our experiments on ASPEC Japanese–English and News Commentary Japanese–Russian translation we show
that JASS can give results that are competitive with if not better than those given by MASS. Furthermore, we show for the first time that
joint MASS and JASS pre-training gives results that significantly surpass the individual methods indicating their complementary na-
ture. We will release our code, pre-trained models and bunsetsu annotated data as resources for researchers to use in their own NLP tasks.
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1. Introduction
Encoder-decoder based neural machine translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2015), and in par-
ticular, the Transformer model (Vaswani et al., 2017) have
led to a large jump in the quality of automatic transla-
tion over previous approaches such as Statistical Machine
Translation (Koehn, 2004). One of the drawbacks of NMT
is that it requires large parallel corpora for training robust
and high quality translation models. This strongly limits its
usefulness for many language pairs and domains for which
no such large corpora exist.
The most popular way to solve this issue is to leverage
monolingual corpora, which are much easier to obtain (as
compared to parallel corpora) for most languages and do-
mains. This can be done either by backtranslation (Sen-
nrich et al., 2016a; Hoang et al., 2018; Edunov et al., 2018)
or by pre-training. Pre-training consists in initializing some
or all of the parameters of the model through tasks that only
require monolingual data. One can pre-train the word em-
beddings of the model (Qi et al., 2018) or the encoder and
decoders (Zoph et al., 2016). Pre-training has recently be-
come the focus of much research after the success of meth-
ods such as BERT (Devlin et al., 2019), ELMO (Peters
et al., 2018) or GPT (Radford, 2018) in many NLP tasks.
However, these methods were not designed to be used for
NMT models in the sense that BERT-like models are es-
sentially language models and not sequence to sequence
models. (Song et al., 2019) have obtained new state-of-the-
art results for NMT in low-resource settings by address-
ing these issues and providing a pre-training method for se-
quence to sequence models: MASS (MAsked Sequence to
Sequence).
Another way to overcome the scarcity of parallel data is to

? represents equal contribution to this work

provide the model with more “linguistic knowledge”, such
as language-specific information. Works such as (Sennrich
and Haddow, 2016; Murthy et al., 2019; Zhou et al., 2019)
have shown that such information could improve results.
However, because NMT models are end-to-end sequence
to sequence models, the manner in which such linguistic
hints should be provided is not always clear.
In this paper, we argue that pre-training provides an ideal
framework both for leveraging monolingual data and im-
proving NMT models with linguistic information. Our
setting focuses on the translation between language pairs
involving Japanese. Japanese is a language for which
very high quality syntactic analyzers have been developed
(Kurohashi et al., 1994; Morita et al., 2015). On the other
hand, large parallel corpora involving Japanese exist only
for a few language pairs and domains. As such it is critical
to leverage both monolingual data and the syntactic analy-
ses of Japanese for optimal translation quality.
Our pre-training approach is inspired by MASS, but with
more linguistically motivated tasks. In particular, we add
syntactic constraints to the sentence-masking process of
MASS and dub the resulting task BMASS1. We also add a
linguistically-motivated reordering task that we dub BRSS
(Bunsetsu Reordering Sequence to Sequence). We com-
bine these two tasks to obtain a novel pre-training method
tailored for Japanese that we call JASS (Japanese-specific
Sequence to Sequence).
We experiment on the ASPEC Japanese–English dataset in
a variety of settings ranging from 1000 to 1,000,000 parallel
sentences. We also experiment with a realistic setting for
a difficult language pair, namely, Japanese-Russian. Our
results show that JASS by itself is already at least as good

1For Bunsetsu-MASS, bunsetsus are one of the elementary
syntactic components of Japanese
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構成 さ れて いる 。よってプロジェクト に三 つ のラブライブ は 、

構成よってにプロジェクトのつ三、はラブライブ さ れて いる 。

Word-level : 

Bunsetsu-level : 

makebasedof_,(theme)LoveLive _ (passive) _ .three project on

LoveLive (theme) , three _ of project on based make _ (passive) _ . 

Figure 1: Word and bunsetsu segmentations for a Japanese sentence with the meaning “LoveLive is made of three projects.”
Below is the English version translated word-for-word, where “ ” represents the meaningless segmented parts.

as and often better than using the state-of-the-art MASS
pre-training. Furthermore, we show that combining MASS
and JASS lead to further improvements of up to +1.7 BLEU
in low resource settings.
To the best of our knowledge, this is the first time that syn-
tactic information is used in such a pre-training setting for
NMT. We make our code and pre-trained models publicly
available2.
The contributions of this paper are as follows:

• JASS: a novel linguistically motivated pre-training
method for NMT involving Japanese.

• Showing how MASS and JASS complement each
other indicating that combining multiple types of pre-
training techniques can yield better results than using
only one type of pre-training.

• An empirical comparison of MASS and JASS for AS-
PEC Japanese–English translation in several data size
settings to identify situations where each technique
can be most useful.

• Verifying that pre-training is a good way to feed lin-
guistic information into to a model.

• Pre-trained models, code and annotated data as re-
sources for reproducibility and public use.

2. Related Work
Pre-training based approaches are essentially transfer learn-
ing approaches where we leverage an external source of
data to train a model whose components can be used for
NLP tasks which do not have abundant data. In the con-
text of NMT, cross-lingual transfer (Zoph et al., 2016) was
shown to be most effective to improve Hausa-English trans-
lation when a pre-trained French-English NMT model was
fine-tuned on Hausa-English data. While this work focused
on strongly pre-training the English side decoder, (Dabre et
al., 2019) showed that pre-training the encoder is also use-
ful through experiments on fine-tuning an English–Chinese
model on a small multi-parallel English–X (7 Asian lan-
guages) data. All these works rely on bilingual corpora but
our focus is on leveraging monolingual corpora that are or-
ders of magnitude larger than bilingual corpora.
Pre-trained models such as BERT (Devlin et al., 2019),
ELMO (Peters et al., 2018), XLNET (Yang et al., 2019)
and GPT (Radford, 2018) have proved very useful for

2https://github.com/Mao-KU/JASS

tasks such as Text Understanding, but have a limited ap-
plication to NMT, as they only pre-train the encoder side
of a transformer. Pre-training schemes more suitable to
NMT have been proposed by (Lample and Conneau, 2019),
(Ren et al., 2019) and (Song et al., 2019). In particular,
(Song et al., 2019) obtained state-of-the-art results with
their “MASS” pre-training scheme. MASS allows for the
simultaneous pre-training of the encoder and decoder and
hence is the most useful for NMT. However, MASS does
not consider the linguistic properties of language when pre-
training whereas our objective is to show that linguistically
motivated pre-training can be complementary to MASS.
Our research is motivated by previous research (Kawahara
et al., 2017) for Japanese NLP which showed that linguis-
tic annotations from the syntactic analyzers such as Juman
(Morita et al., 2015) and KNP (Kurohashi et al., 1994) are
extremely important.
Pre-ordering consists of pre-processing a sentence so that
its word-order is more similar to that of its expected transla-
tion. It has been a popular technique for Statistical Machine
Translation since the early work of (Collins et al., 2005).
Although initial research (Du and Way, 2017) had con-
cluded that pre-ordering had limited usefulness for NMT,
it has been shown more recently that it can improve trans-
lation quality, especially in the case of low-resource lan-
guages. (Murthy et al., 2019) showed that pre-ordering
English to Indic language word order is beneficial when
performing transfer learning via fine-tuning. (Zhou et al.,
2019) showed that leveraging structural knowledge for cre-
ating the psuedo Japanese-ordered English by pre-ordering
English from SVO to SOV improves Japanese–English
translation. Our work will try to incorporate similar ideas
directly in the pre-training process. On the related matter of
the usefulness of linguistic information for NMT, (Sennrich
and Haddow, 2016) also showed how linguistic annotations
can help improve German–English translation.

3. Background: MASS and Bunsetsu
Central to our work are Bunsetsu and MASS which we ex-
plain as below.

3.1. Bunsetsu
Bunsetsus are syntactic components of Japanese sentences.
They are roughly equivalent to the noun chunks or verb
chunks in English syntax. They constitute a minimal unit of
meaning. Japanese segmenters can segment a Japenese sen-
tence in words or in bunsetsus, but the concept of “word”

https://github.com/Mao-KU/JASS
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Encoder Attention Decoder

x1 x8[M] x4 x7 x1 x1x1 x2 x3 x1 x5 x6

x1 x1x2 x3 x1 x5 x6 x1

[M] [M] [M] x1

x1

[SOS] [M] [M] [M] [M]

[EOS][M][M][M][M]

Figure 2: Sequence to Sequence Structure for MASS, where xi represents a token and x2, x3 and x5, x6 are consecutive
tokens to be masked/predicted. In the case of BMASS pre-training, x2, x3 and x5, x6 are bunsetsus.

is ambiguous for writing systems that do not use word-
separators (like spaces), like Japanese. Bunsetsus are also
more likely to correspond to a well-defined entity or con-
cept than words. The conceptual difference between using
word level and bunsetsu level segmentation is shown in Fig-
ure 1 for the Japanese sentence with the meaning “Love-
Live is made of three projects.” Note that each bunsetsu
contains some self contained information and some case
marker which can indicate its relation with another bun-
setsu.

3.2. MASS
MASS is a pre-training method for NMT proposed by
(Song et al., 2019). In MASS pre-training the input is a
sequence of tokens where a part of the sequence is masked
and the output is a sequence where the masking is in-
verted. Consider x ∈ X which is a sequence of to-
kens where X is a monolingual corpus. Consider C =
[[p1, p2], [p3, p4], ...[pn, pn+1]] where 0 < p1 ≤ p2 ≤ p3 ≤
p4 ≤ ...pn ≤ pn+1 ≤ len(x) and len(x) is the number
of tokens in sentence x. We denote by xC the masked se-
quence where tokens in positions from p1 to p2, p3 to p4
and so on until pn to pn+1 in x are replaced by a special
token [M ]. x!C is the invert masked sequence where tokens
in positions other than the aforementioned fragments are
replaced by the mask token [M ]. MASS is a pre-training
objective that predicts the masked fragments in x using an
encoder-decoder model where xC is the input to the en-
coder and x!C is the reference for the decoder. The log
likelihood objective function is:

Lmass(X ) =
1

|X |
∑
x∈X

logP
(
x!C |xC ; θ

)
(1)

=
1

|X |
∑
x∈X

log
∏
t∈C

P
(
x!Ct |x!C<t, x

C ; θ
)

where xC<t indicates the preceding tokens before t in xC

and θ is set of model parameters. The hyper-parameter for
MASS is the number of tokens to be masked. Refer to Fig-
ure 3-b for a training pair example for MASS.

4. Proposed Method: JASS
JASS (Japanese-specific Sequence to Sequence pre-
training) is an extension of the original MASS method to
incorporate linguistic information in addition to reordering

based pre-training (Zhang and Zong, 2016). It is a com-
bination of two sub-methods, BMASS (Bunsetsu-based
MAsked Sequence to Sequence pre-training) and BRSS
(Bunsetsu Reordering Sequence to Sequence pre-training).

4.1. BMASS
In MASS, a NMT model is trained by making it predict
random parts of a sentence given their context. Instead of
random parts we are interested in making the model pre-
dict a set of bunsetsus given the contextual bunsetsus. We
expect this will let the model learn about the important con-
cept of bunsetsu, as well as focus its training on predicting
meaningful subsequences instead of random ones.
More precisely, we propose BMASS (Bunsetsu-based
MAsked Sequence to Sequence pre-training), which lever-
ages syntactic parses of Japanese monolingual data for se-
quence to sequence pre-training. To perform BMASS, we
modify the mask C in Equation 1 where the position spans
p1 to p2, p3 to p4 and so on until pn to pn+1 indicate the
start and end of bunsetsus in a Japanese sentence. Conse-
quently we denote the BMASS loss as Lbmass. The main
difference between MASS and BMASS is that in MASS
we mask random token spans whereas in BMASS we mask
tokens spans that only cover bunsetsus. The number of
bunsetsus to be masked constitutes a hyper-parameter for
BMASS.
Refer to Figure 3-c for a training pair example for BMASS,
which may be contrasted with the MASS example in fig-
ure 3-b.

4.2. BRSS
BRSS (Bunsetsu Reordering based Sequence to Sequence)
roughly consist in training the NMT system with re-ordered
Japanese. We expect that this will let the system learn the
structure of Japanese language, as well as prepare it for the
reordering operation it will have to perform when translat-
ing to a language with different grammar.

4.2.1. Bunsetsu-based Reordering
We first define here a simple process for re-ordering a
(typically SOV) Japanese sentence into a “SVO-ordered
Japanese” pseudo-sentence. We will then use this reordered
sentence in section 4.2.2. for our BRSS pre-training.
There exist several previous works about reordering a SOV-
ordered sentence to a SVO-ordered sentence (Katz-Brown
and Collins, 2008; Hoshino et al., 2014). In our case,
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構成よってにプロジェクトのつ三、はラブライブ さ れて いる 。

よってにプロジェクト、はラブライブ

構成のつ三 さ れて いる 。[M] [M][M][M][M]

Src.

Tgt.

: Bunsetsu : Token : Chunking Signal Token

(c) BMASS

(a) Origin

(d) BRSS
よって のつ三、はラブライブ 構成 さ れて いる 。Src.

構成よってにプロジェクトのつ三、はラブライブ さ れて いる 。Tgt.

[M][M]はラブライブ れて いる 。

よってにプロジェクトのつ[M]

、

[M]

Src.

Tgt.
(b) MASS

[M] [M]

[M]

にプロジェクト

[M]三

[M]

[M] [M]

[M] [M] [M]

[M] 構成 [M] [M][M]さ

[M]

[M]

[M] [M] [M][M][M] [M]

[M][M]

English version
of BRSS

Src.         LoveLive    (theme) ,          make      _    (passive)      _               based                project       on     three   _      of       .        

Tgt.         LoveLive    (theme) ,       three  _     of                project             on          based           make _     (passive)       _         .         

Figure 3: An example of source and target for MASS, BMASS, BRSS with the meaning “LoveLive is made of three
projects.”

in order to leverage bunsetsu units in Japanese consis-
tently with BMASS, we propose Bunsetsu-based Reorder-
ing, which is able to generate a SVO-ordered Japanese sen-
tence while retaining syntactic information at the bunsetsu-
level. Bunsetsu-based Reordering is implemented by the
following steps:

• Split the Japanese into several chunks by chunking
signal tokens. Specifically, chunking signal tokens in-
cludes the punctuation and ‘は’ which mentions the
theme in a Japanese sentence

• Reverse the order of the bunsetsus in each chunk

4.2.2. Bunsetsu Reordering Sequence to Sequence
Pre-training

We build up our BRSS (Bunsetsu Reordering Sequence to
Sequence) pre-training on the basis of Bunsetsu-based Re-
ordering as mentioned above. Refer to Figure 3-d for a
training pair example for BRSS. The pre-training objec-
tive here is a deshuffling or un-reordering task which recon-
structs the original sentence from the reordered sentence.
The bunsetsu reordering process described above in sec-
tion 4.2.1. allows us to produce an artificial “SVO-
Japanese” sentence for each sentence in a training monolin-
gual corpora. We then have two choices for the pre-training
procedure. We can make the NMT system predict the ar-
tificial reordered SVO sentence given the original. Alter-
natively, we can make it predict the original given the re-
ordered one.

We experiment with both options in the following section.
These 2 pre-training directions are denoted as BRSS.F (re-
ordered to original) and BRSS.R (original to reordered).
Following the notation in MASS, we define the log like-
lihood objective function of BRSS as follows:

Lbrss(X ) = Lbrss.f (X ) or Lbrss.r(X ) (2)

Lbrss.f (X ) =
1

|X |
∑
x∈X

logP
(
x|xreordered; θ

)
(3)

Lbrss.r(X ) =
1

|X |
∑
x∈X

logP
(
xreordered|x; θ

)
(4)

Note that the equivalent reordering based pre-training
mechanism is one where we randomly shuffle a sentence
at the word level. However, this does not focus on learning
any kind of specific linguistic reordering and so we do not
explore it in this work.

4.3. JASS
In the previous sections, we have defined two pre-training
procedures: BMASS and BRSS. Our actual pre-training
will consist in a joint execution of these two pre-training.
We call the resulting pre-training JASS (JApanese-specific
Sequence to Sequence) pre-training. The pre-training ob-
jective for JASS is therefore:

Ljass(X ) = Lbmass(X ) + Lbrss(X ) (5)

where X represents the monolingual corpus of Japanese.
We expect BMASS to learn syntactic knowledge and BRSS
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Language Dataset Size

Mono
Ja Common Crawl 22M
En News Crawl 22M
Ru News Crawl 22M

Parallel Ja-En ASPEC-JE 3M
Ja-Ru JaRuNC 10K

Table 1: Overview of data

to learn word ordering knowledge.
Because JASS has been specifically designed for Japanese,
and we have not yet considered equivalents for other lan-
guages, we also mix JASS pre-training for Japanese with
MASS pre-training for the other language involved in the
translation.
In practice, we therefore designate by JASS the pre-training
of the NMT system that uses Japanese monolingual data
with BMASS and BRSS objectives, and “other language”
monolingual data with MASS objective.
We can also consider using Japanese monolingual data with
a combination of BMASS, BRSS and MASS objectives,
which we dub MASS+JASS in the following sections.

5. Experimental Settings
In this section, we evaluate our pre-training methods
on 4 translation directions: Japanese-to-English (Ja-En),
English-to-Japanese (En-Ja), Japanese-to-Russian (Ja-Ru)
and Russian-to-Japanese (Ru-Ja). Specifically, we moni-
tor the performance of our pre-training methods on both
simulated low-resource and high-resource scenarios involv-
ing ASPEC Japanese–English translation (Nakazawa et al.,
2015). We also test our methods on a realistic low-resource
scenario involving News Commentary Japanese–Russian
translation3 (Imankulova et al., 2019).

5.1. Datasets and Pre-processing
We use both the monolingual data and parallel data for pre-
training and the parallel data for fine-tuning. Refer to Ta-
ble 1 for an overview.

5.1.1. Parallel Data
We use scientific abstracts domain ASPEC parallel corpus
(Nakazawa et al., 2016) for Japanese–English translation
and the news commentary domain JaRuNC parallel corpus
(Imankulova et al., 2019) for Japanese–Russian translation.

5.1.2. Monolingual data
We use monolingual data containing 22M Japanese, 22M
English and 22M Russian sentences randomly sub-sampled
from Common Crawl dataset and News crawl4 dataset

3Neither Japanese nor Russian are low-resource languages, but
Ja-Ru can be regarded as a low-resource language pair because of
the limited amount of the parallel data.

4The pre-training will be very effective if the domains of
the pre-training and fine-tuning dataset are similar(Raffel et al.,
2019). However, in order to obtain a general pre-trained model
for NMT, we choose the monolingual data from Common Crawl
and News Crawl.

from the official WMT monolingual training data5 for pre-
training. Each side of the parallel data used in fine-tuning
is also incorporated into the monolingual data for pre-
training. Specifically, for Japanese and English, 3M sen-
tences from each side of the parallel data is added to the
monolingual data while for Japanese and Russian, 10K sen-
tences from each side of the parallel data is also used in
pre-training. This results in 50M monolingual sentences for
Japanese and English, and 45M monolingual sentences for
Japanese and Russian. Given that our pre-training objective
works at the monolingual level and that the three languages
have different scripts and thus have few common words, we
believe this to be a fair pre-training data setting.

5.1.3. Pre-processing
We tokenize the monolingual data by using the Moses to-
kenizer6 for En and Ru, and the Jumanpp tokenizer7 for
Ja. We get the bunsetsu information by using KNP8. Sen-
tences with length over 175 tokens are removed. For each
language pair, we built a joint vocabulary with 60,000 sub-
word units via Byte-Pair Encoding(Sennrich et al., 2016b).
Considering the discrepancy of the domain between pre-
training dataset and fine-tuning dataset, we oversample the
fine-tuning dataset when learning BPE codes. Since some
English alphabets appear in the Japanese and Russian cor-
pora, the BPE codes are learned jointly from the concatena-
tion of the corpora for each language pair. As we do multi-
task pre-training, each sentence is prepended with a task
token [MASS], [BMASS] or [RSS] and a language to-
ken [Ja], [En], or [Ru]. This ensures that the model learns
to distinguish between different pre-training objectives and
languages.

5.2. Model Training and Evaluation Settings
For the NMT model, we experiment with a Transformer
(Vaswani et al., 2017) having 6 layers for both the encoder
and the decoder. We implement our approaches on top of
the OpenNMT9 transformer implementation.

Model 1K 10K 20K 100K 1M

Transformer-big 0.40 2.56 9.53 22.72 29.50
Transformer-base 0.33 1.79 8.21 21.34 29.06

Table 2: BLEU on Ja-En (ASPEC-JE)

OpenNMT provides two default hyperparameters settings
that differ in the size of layer used and the number of atten-
tion heads, namely, “base” and “big”. Although we could
have expected the smaller model to be a better fit for low-
resource training, we found out the opposite. Table 2 con-
tains our preliminary experiments where the Transformer

5http://www.statmt.org/wmt19/
translation-task.html

6https://github.com/moses-smt/
mosesdecoder

7https://github.com/ku-nlp/jumanpp
8https://github.com/ku-nlp/pyknp
9https://github.com/OpenNMT/OpenNMT-py

http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/ku-nlp/jumanpp
https://github.com/ku-nlp/pyknp
https://github.com/OpenNMT/OpenNMT-py
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in the big setting outperforms Transformer in the base set-
ting for both high-resource and low-resource scenarios for
Japanese–English translation.
Therefore, we implement our pre-training methods and
fine-tuning using the Transformer-big setting, which con-
sists of a 6-layer encoder and a 6-layer decoder, with the
length of 1024 for hidden size, the length of 4096 for feed-
forward size, dropout rate of 0.3 and attention heads of 16.
A learning-rate of 10−4 is used both for pre-training and
fine-tuning, and all the pre-training tasks are implemented
on 8 TITAN X (Pascal) GPU cards until convergence with a
batch-size of 2048 for each GPU while single GPU is used
for fine-tuning. The checkpoint with the highest accuracy
is selected for fine-tuning. We use BLEU (Papineni et al.,
2002) to implement the evaluation. We do early stopping if
no improvement on development-set within 5 checkpoints,
and the checkpoint with the best BLEU performance on
development-set is selected for evaluation.
For multi-task pre-training, data is randomly shuffled so
that even in each mini-batch, different pre-training objec-
tives will appear, corresponding to a real joint pre-training.
We evaluate the statistical significance of our BLEU scores
by bootstrap resampling (Koehn, 2004).

5.3. Pre-trained models
We pre-train our NMT models by leveraging the monolin-
gual data of the source and target languages. For Japanese
we use MASS as well as JASS, while for English and Rus-
sian, we only use MASS as the pre-training objective. In
particular we pre-train the following models:

• MASS: We use the same settings as in (Song et al.,
2019) for pre-training.

• BMASS: Similar to MASS we mask half the bunset-
sus in a sentence during pre-training.

• BRSS: Using our approach in Section 4.2. we pre-
train on SVO–SOV (BRSS.F) Japanese sentence pairs.

• JASS: Multi-task training of BMASS and BRSS.

• MASS+BMASS: Multi-task training of MASS and
BMASS.

• MASS+BRSS: Multi-task training of MASS and
BRSS.

• JASS+MASS: Multi-task training of BMASS, BRSS
and MASS.

5.4. Fine-tuning on NMT
As mentioned above, we validate the effectiveness of our
pre-training methods by 4 fine-tuning tasks, which are Ja-
En, En-Ja, Ja-Ru, Ru-Ja. We train the following models by
fine-tuning the pre-trained models:

• ASPEC Ja–En and En–Ja: Japanese to English and
English to Japanese models using from 1K to 1M10

parallel sentences.

10We limit ourselves to 1M sentences because the remaining
2M sentences are relatively noisy and most of previous research
mainly relies on the best 1M sentences for best translation quality.

• NC Ja–Ru and Ru–Ja: Japanese to Russian and Rus-
sian to Japanese models using available 12,356 train-
ing pairs .

We compare these models with baselines which do not use
pre-training.

6. Results & Analysis
We now give the results for Japanese–English and
Japanese–Russian translation. All the results are reported
on the official test sets provided by the 2019 edition of the
Workshop on Asian Translation(WAT)11.

6.1. Pre-training Accuracy

Setting En+Ja Ru+Ja

MASS 71.18 72.35

BMASS 73.76 73.98
BRSS.F 84.82 84.89

JASS(BMASS+BRSS.F) 81.53 81.63

MASS+BMASS 72.33 -
MASS+BRSS.F 79.56 -

MASS+JASS 78.62 78.85

Table 3: Pre-training accuracy, which is the 1-gram accu-
racy of the pre-trained model

Pre-training accuracy can be an indicator of the learning
difficulty. The pre-training objectives should not be too
easy or too difficult. As shown in Table 3, for Japanese–
English pre-training, BRSS is the easiest for the neural net-
work while MASS is of the highest difficulty. Moreover,
it can be found that the accuracy of a pre-training objec-
tive does not vary a lot from one language pair to another.
As easy and difficult are subjective we use pre-training ac-
curacy as one of the indicators of the difficulty and hence
the usefulness of our pre-training approach. MASS+JASS
gives the best BLEU performance in most of our experi-
ments and thus we hypothesize that there is no perfect pre-
training method and thus one should explore a variety of
methods for a given language pair.

6.2. Fine-tuning Results
Tables 4, 5, 6 contain the results of fine-tuning the pre-
trained models for Japanese–English and English–Japanese
translation. Our pre-training methods, BMASS and BRSS,
clearly improved on the strictly-supervised baselines and
fine-tuning gives results comparable to those of MASS,
which validate the effectiveness of our Japanese-specific
objectives for pre-training. In Table 4, 5, we observe that
JASS significantly outperforms (p < 0.05) MASS, when
parallel corpora sizes from 3K to 50K are used. In other
size settings, JASS is competitive with if not significantly
better than MASS and this demonstrates that linguistically
motivated pre-training can be an alternative to language-
agnostic pre-training. In Table 4, 5, 6, the joint pre-training

11http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2019/index.html

http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/index.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/index.html
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Model 1K 3K 6K 10K 20K 50K 100K 200K 500K 1M

Supervised(Transformer-big) 0.40 1.30 1.55 2.56 9.53 17.56 22.72 25.51 27.92 29.50
MASS 5.34 9.89 12.28 15.16 18.65 22.28 24.86 26.67 28.85 29.63

BMASS 4.06 8.49 11.70 14.32 18.56 22.30 24.65 26.77 28.55 29.72
BRSS.F 3.29 8.61 12.12 14.75 18.40 22.07 24.55 26.53 28.71 29.53
BRSS.R 3.00 7.36 11.02 13.74 17.30 21.80 24.52 26.56 28.45 29.52

JASS(BMASS+BRSS.F) 5.18 10.06 13.49† 15.55† 19.12† 22.85† 25.20 26.88 28.62 29.67

MASS+BMASS 4.64 8.74 12.39 14.22 18.18 22.21 24.86 26.68 28.96 29.80
MASS+BRSS.F 5.88† 10.78† 13.53† 15.99† 19.01 22.67 24.90 26.75 28.98 29.88

MASS+JASS 6.28† 10.72† 13.97† 16.09† 19.34† 23.15† 24.99 27.09† 28.82 29.49

Table 4: BLEU scores for simulated low/high-resource settings for Ja-En ASPEC translation using 3K to 1M parallel
sentences for fine-tuning. Results better than MASS with statistical significance p < 0.05 are marked with †

Model 1K 3K 6K 10K 20K 50K 100K 200K 500K 1M

Supervised(Transformer-big) 0.75 1.49 2.21 3.68 11.52 20.95 27.94 32.71 38.89 40.26
MASS 5.81 11.02 15.29 18.11 21.57 27.91 31.62 34.88 38.97 41.16

BMASS 5.03 9.77 13.40 17.25 21.14 27.10 30.97 34.90 39.00 40.50
BRSS.F 3.54 10.30 14.86 17.67 21.64 27.48 31.22 34.88 38.21 40.43
BRSS.R 4.31 9.77 14.25 16.89 20.81 26.34 30.69 33.91 38.49 40.27

JASS(BMASS+BRSS.F) 5.54 11.37 15.91† 18.50† 22.18† 27.27 31.05 34.72 38.89 40.64

MASS+BMASS 5.20 10.00 14.37 17.44 21.53 27.24 30.98 35.14 39.40† 40.65
MASS+BRSS.F 6.53† 12.04† 15.79† 18.95† 22.32† 27.32 31.63 34.69 38.85 41.09

MASS+JASS 6.82† 12.57† 16.22† 19.20† 23.00† 28.09 31.43 34.81 38.43 40.79

Table 5: BLEU scores for simulated low/high-resource settings for Ja-En ASPEC translation using 3K to 1M parallel
sentences for fine-tuning. Results better than MASS with statistical significance p < 0.05 are marked with †

Model Ja-Ru Ru-Ja

Supervised(Transformer-big) 0.50 0.72
MASS 0.96 2.84

BMASS 0.97 2.77
BRSS.F 0.85 2.36

JASS(BMASS+BRSS.F) 1.20 3.08

MASS+JASS 1.07 3.45†

Table 6: BLEU scores for Ja-Ru translation on JaRuNC.
Results better than MASS with statistical significance p <
0.05 are marked with †

of MASS and JASS (BMASS+BRSS) leads to the highest
BLEU scores (p < 0.05) on most settings, which indicates
that JASS is not just a alternative to MASS, but could be
complementary to MASS. Human evaluation of the trans-
lations from both systems should shed more light on this.
We leave this for future work.
Finally, it can be seen that pre-training outperforms the
supervised baselines in almost all data scenarios which
shows that for neural machine translation, pre-training is
a valuable strategy especially for low-resource scenarios.
Moreover, since pre-training enables the encoder-decoder
to learn an implicit language model it can help overcome

the scarcity of language modeling information in parallel
corpora. Given the success of JASS in low-resource sce-
narios, we believe that it is absolutely necessary to leverage
language specific information during pre-training.
Unfortunately, in Table 6, the improvement contributed
by bilingual pre-training is limited on JaRuNC. Japanese–
Russian is a difficult language pair, the fine-tuning data is
small and the news commentary domain is much harder
than the ASPEC domain. As such we feel that multi-lingual
pre-training and fine-tuning mechanisms might help allevi-
ate this issue as shown by (Imankulova et al., 2019). This
too, we leave for future work.

6.2.1. BRSS.F or BRSS.R?
Although we mentioned 2 pre-training methods involving
reordering which are named as BRSS.F and BRSS.R, we
mostly experimented with joint pre-training using BRSS.F.
In order to demonstrate this choice, we give the fine-tuning
results of BRSS.F and BRSS.R on ASPEC as shown in Ta-
ble 4, 5. We observe that BRSS.F outperforms BRSS.R
in most cases, regardless of translation direction, which
is probably because BRSS.F is able to pre-train a better
decoder to generate natural language, even though the re-
ordering described by BRSS.R should be more appropriate
for Ja-En translation. Currently, we do not have any de-
tailed explanation why BRSS.F is consistently better than
BRSS.R and we will investigate this in the future.
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7. Conclusion
In this paper we proposed JASS (Japanese-specific se-
quence to sequence) pre-training which are novel pre-
training alternatives to MASS for neural machine transla-
tion involving Japanese as the source or target language.
Our work is aimed at leveraging abundant monolingual data
and syntactic analyses provided by analyzers so that the
pre-training stage becomes aware of language structure.
Our experiments on ASPEC Japanese–English translation
and News Commentary Japanese–Russian translation have
shown that JASS, which leverages syntactic parsing knowl-
edge from the KNP parser, outperform MASS, which is
language agnostic, in many low-resource settings. Further-
more, we show that the combination of MASS and JASS
yields significantly better results than the individual pre-
training methods. This demonstrates the effectiveness of
our methods and the necessity to inject language-specific
information into the pre-training objective. We have pub-
licly released our code and models. To the best of our
knowledge, this is the first time that linguistic information
has been used for pre-training a NMT system. Our posi-
tive results show that the pre-training step is an appropriate
place to provide linguistic hints to a NMT system.
We are now working on several directions for improving
and broadening our approach. Pre-training methods do not
often consider domain differences within the data and so
in the future, we will try to address domain adaptation in
order to enhance the impact of fine-tuning on in-domain
data. In particular we find the multi-stage training approach
(Imankulova et al., 2019; Dabre et al., 2019) most relevant
in this direction. We will also work on determining the
impact of multi-task pre-training using a combination of a
wide variety of pre-training approaches that focus on dif-
ferent aspects of language structure. We might also apply
ideas similar as the ones developped here to different lan-
guages. We also note that (Raffel et al., 2019) has recently
shown that many NLP tasks such as Text Understanding
could be reformulated as Text-to-Text tasks. This broadens
a lot the domain of usefulness of text-to-text pre-training
tasks such as ours, and we will be interested in evaluating
our approach on a wider range of NLP tasks.
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