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Abstract
With the tremendous success of deep learning models on computer vision tasks, there are various emerging works on the Natural
Language Processing (NLP) task of Text Classification using parametric models. However, it constrains the expressability limit of the
function and demands enormous empirical efforts to come up with a robust model architecture. Also, the huge parameters involved in the
model causes over-fitting when dealing with small datasets. Deep Gaussian Processes (DGP) offer a Bayesian non-parametric modelling
framework with strong function compositionality, and helps in overcoming these limitations. In this paper, we propose DGP models for
the task of Text Classification and an empirical comparison of the performance of shallow and Deep Gaussian Process models is made.
Extensive experimentation is performed on the benchmark Text Classification datasets such as TREC (Text REtrieval Conference), SST
(Stanford Sentiment Treebank), MR (Movie Reviews), R8 (Reuters-8), which demonstrate the effectiveness of DGP models.
Keywords: Text Classification, Bayesian deep learning, Gaussian Process, Convolutional Gaussian Process.

1. Introduction and Related Work
Text classification is a primary task in NLP which helps in
solving multifold problems such as sentiment analysis (Le
and Mikolov, 2014, Socher et al., 2013), spam detection
(Wang, 2010) etc. Recently, deep learning models have
obtained significant performance in computer vision.
Inspired by which, there are some works on Deep learning
models for NLP tasks (Kim, 2014, Yih et al., 2014, Shen
et al., 2014, Kalchbrenner et al., 2014). However, deep
learning models involve millions of learnable parameters,
requires large dataset, does not make any uncertainty
estimates, and incurs a tedious model selection procedure.

Gaussian Processes (GPs) offers a Bayesian non-parametric
alternative framework to the existing parametric models.
(Neal, 1994) discusses the equivalence between a bayesian
neural network (with single hidden layer having infinite
hidden units) and gaussian process. As the number of
units in the hidden layer tend to infinity, the network
converges to a gaussian process. The stacking of GPs lead
to a Deep Gaussian Process (DGP) model (Damianou and
Lawrence, 2013a). That is, a model where the observations
are modelled as the output of the GP whose input is
facilitated by another GP is DGP and it helps to overcome
the aforementioned limitations.

There are many variants of DGP models with emphasis
on the inferencing techniques used. (Damianou and
Lawrence, 2013a) discusses on mean field variational
posterior over hidden layers with factorised form as in
(Titsias and Lawrence, 2010) and (Hensman and Lawrence,
2014) presents nested variational inference approach . (Dai
et al., 2016) discusses on amortized inference whereas (Bui
et al., 2016) uses approximate Expectation Propagation
approach. (Salimbeni and Deisenroth, 2017) extends
(Damianou and Lawrence, 2013a) with variational poste-
rior conditioned on the previous layer, thereby facilitating
parallelization of variational posterior computation as
mini-batches.

(Kumar et al., 2018a, Kumar et al., 2018b) introduces
the convolutional kernel (van der Wilk et al., 2017) into
DGP framework for the task of image classification on
benchmark datasets.

For the text classification task, the input sentence is repre-
sented as a matrix with rows representing the words and
columns their embeddings. Given the sentence embedding
matrix, the traditional RBF kernel fails to capture the
similarity of non-contiguous words but captures only
location-wise similarity. Alternatively, convolutional
kernel can be evaluated on the sentence embedding where
the patch size is decided based on the ngram feature
similarity to be learnt. It helps to capture the semantic
similarity of texts along with the syntactic similarity.
In this paper, we propose DGP models for solving the
task of Text Classification with various types of kernels
such as convolutional kernel and weighted convolutional
kernel. Weighted convolutional kernel is an extended
version of convolutional kernel which facilitates weighting
of sentence patches to capture semantic text similarity.
Several experiments are carried out using various shallow
and Deep Gaussian Process models evaluated on various
benchmark Text Classification datasets such as TREC
(Text REtrieval Conference), SST1 (Stanford Sentiment
Treebank), MR (Movie Reviews), R8 (Reuters-8), which
demonstrate the effectiveness of DGP models.

The rest of the paper is organized as follows: Section 2 in-
troduces the notations used in the paper. Section 3 presents
a background on Gaussian Process (GP) and Deep Gaus-
sian Process (DGP) models. Section 4 elaborates on the
Convolutional Deep Gaussian Process (CDGP) model for
Text Classification. Section 5 discusses about the experi-
mentation of various DGP models and analysis of results
and Section 6 concludes with future research directions.

2. Preliminaries
We consider the text classification task with K classes
and N training instances, X = {xi}Ni=1 and the corre-
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sponding labels y = {yi}Ni=1, where xi ∈ RH×W and
yi ∈ Y = {1, 2, . . .K}. Each xi denotes a sentence, where
each row h represents a word, H represents a sentence and
W represents the word embedding dimension. Let f be
a latent function f : RH×W → Y mapping the training
sentences to output classes. Gaussian processes offers a
Bayesian non-parametric approach to perform the task of
text classification.

3. Background
3.1. Gaussian Process (GP)
A GP is defined as a collection of random variables such
that any finite subset of which is Gaussian distributed (Ras-
mussen and Williams, 2005). A prior distribution of real
valued functions f is given by a Gaussian Process (GP),
denoted as f(x) ∼ GP(m(x), k(x,x′)) where m(x) rep-
resents the mean function and k(x,x′) represents the co-
variance of the function values at the data points x and x′.
A widely used traditional kernel function is the radial ba-
sis function (RBF) (squared exponential kernel), primarily
used for modelling any smooth function. It is expressed
as σ2

f exp(− 1
2δ ||x − x′||2) where the length scale δ cap-

tures the smoothness in function values across the inputs.
Thereby, the choice of kernel function helps to determine
various functional properties such as stationarity, smooth-
ness etc.

3.2. Deep Gaussian Process (DGP)
Recent success in deep learning relies heavily on the rep-
resentational power captured by stacking of layers in a
Deep neural network. Similarly, (DGPs) (Damianou and
Lawrence, 2013b, Damianou, 2015, Salimbeni and Deisen-
roth, 2017) stack GP layers resulting in a deep GP ar-
chitecture, thereby learning rich representational functions
along with uncertainty estimates. DGPs learn the func-
tion mapping of the input sentences to the output classes
using composition of functions represented as f(x) =
fL ◦ (fL−1 . . . ◦ (f1(x))), for given L layers. The lth

layer primarily comprises of Dl functions f l = {f lj}D
l

j=1

which maps the representations obtained from the previ-
ous layer l − 1 to obtain Dl representations for layer l.
For every jth representation and every layer l, indepen-
dent GP priors are used. For example, the function f lj has
prior as f lj(·) ∼ GP(m l

j (·), k l(·, ·)). The jth function in
layer 1, f1j is evaluated on the input data point xi to ob-
tain F 1

i,j = f1j (xi). Generalizing this to build the hierar-
chy of layers, the jth function of layer l, f lj(·) is evalu-
ated on the data representation xi obtained from the previ-
ous layer l− 1, F l−1i , thereby outputting the representation
F li,j = f lj(F

l−1
i ). Let f lj denote the jth representation of

layer l computed across all inputs. The final layer L will
have K functions with respect to all the output classes and
squashing of these functions values using a softmax func-
tion is done to obtain the final class probabilities.
The kernel hyper-parameters are learnt by maximizing the
evidence p(y) =

∫ ∏N
n=1 p(yn/Fn)p(F )dF . However,

computing the evidence is analytically intractable. There-
fore, the variational parameters {ml, Sl}Ll=1 correspond-
ing to the posterior distribution and the kernel hyper-

Figure 1: CDGP model for Text Classification

parameters are learnt by maximizing the variational Evi-
dence Lower BOund (ELBO) which is shown in the Equa-
tion 1. For faster computation of the inversion of kernel co-
variance matrix KXX among all the data points X in the
lower bound, variational sparse gaussian process approx-
imation technique (Hensman et al., 2013, Titsias, 2009)
is employed. It takes O(NM2) time complexity where
M � N and M represents the number of inducing points
and U l represents the inducing variables across the dimen-
sions Dl in the layer l.

L({ml, Sl}Ll=1) =

N∑
n=1

Eq(FL
n )[log p(yn|FLn )]−

L∑
l=1

KL[q(U l)||p(U l)]

(1)

Details on the variational lower bound, “reparameteriza-
tion trick”, and doubly stochastic variational inference tech-
nique are discussed in (Salimbeni and Deisenroth, 2017).

4. Convolutional Deep Gaussian Process
(CDGP) model for Text Classification

In recent literature, convolutional kernel was employed in
the covariance function of GPs and DGPs (van der Wilk
et al., 2017, Kumar et al., 2018a, Kumar et al., 2018b)
and it performed well for object recognition tasks and
image classification task (Kumar et al., 2018a, Kumar et
al., 2018b). For the NLP task of Text Classification, both
syntactic and semantic similarity need to be captured in
order to obtain a better generalization performance. And
the convolutional kernel in the CDGP framework aids to
better capture the semantic and syntactic text similarity.

Figure 1 shows the Convolutional Deep Gaussian Process
(CDGP) model for Text Classification task. The kernel sim-
ilarity between the sentences is obtained by the summation
of the base kernel across various patches of the sentence.
CGP performs the function evaluation on the input text data
as sum of functions over the patches of the text input. Let
P denote the number of patches in the input text x with
each text patch x[p] having h×w dimensions where h rep-
resents the number of words in the patch and w represents

the embedding size. CGP is given as f(x) =
P∑
p=1

g(x[p])

with GP prior over the function g(x[p]) is represented as
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g(x[p]) ∼ GP(0, kg(x[p]
i ,x

[p]
j ))which produces a GP prior

on the function f(x) with zero mean and a convolutional
kernel (Conv kernel) kf given as,

f(x) ∼ GP(0, kf (xi,xj)),

kf (xi,xj) =

P∑
p=1

P∑
p′=1

kg(x
[p]
i ,x

[p′]
j ).

(2)

kg is called as the base kernel. Exploiting a convolutional
kernel in computing the sentence similarity helps to
capture non-local similarities between the sentences. That
is, the convolutional kernel compares an n-gram region in a
sentence xi with n-gram regions of the other sentence xj ,
and could result in a high similarity even when sentences
are syntactically different but semantically same. Whereas
with conventional RBF kernel, only respective location-
wise similarity across sentences can be computed.

Convolutional DGP uses multiple functions from a GP prior
with convolutional kernels to obtain a representation of the
text in the first layer. The function corresponding to 0th

representation for layer 1 is obtained as

f10 (x) =

P∑
p=1

g10(x
[p]);

g10(x
[p]) ∼ GP(m1

0(x
[p]), k1g(x

[p]
i ,x

[p]
j ))

f10 (x) ∼ GP(m1
0(x), k

1
f (xi,xj));

k1f (xi,xj) =

P∑
p=1

P∑
p′=1

k1g(x
[p]
i ,x

[p′]
j ).

(3)

Each output of layer 1 is meant to capture specific represen-
tational features of the text. These feature representations
of the text obtained in the initial layer are then subsequently
mapped by making use of a GP with RBF kernel to obtain
complex representations. In general, the 0th function rep-
resentation of layer l is represented as

f l0(F
l−1) ∼ GP(ml

0(F
l−1), klf (F

l−1
i , F l−1j ))

klf (F
l−1
i , F l−1j ) =

P∑
p=1

P∑
p′=1

klg(F
l−1
i

[p]
, F l−1j

[p′]
).

(4)

All kernel matrices Kl
F l−1F l−1 , Kl

F l−1Zl and Kl
ZlZl used

in the conditional distribution computation (Kumar et al.,
2018a, Kumar et al., 2018b) use the convolutional kernel as
defined in the Equation 4. Zl denotes the inducing points
in layer l with the same dimension as that of F l−1.

A variant of the convolutional kernel such as weighted con-
volutional kernel (Wconv kernel) (van der Wilk et al., 2017)
is also considered. It associates a differential weightage
to each patch which facilitates better generalization. The
function f(x) for any layer l is generally written as

f(x) =

P∑
p=1

wpg(x
[p]);

kf (xi,xj) =

P∑
p=1

P∑
p′=1

wpwp′kg(x
[p]
i ,x

[p′]
j ).

(5)

Table 1: Data Statistics for R8 Dataset
R8 Data Statistics

Class name #Train Docs. #Test Docs. #Total Docs.

acq 1596 696 2292
crude 253 121 374
earn 2840 1083 3923
grain 41 10 51
interest 190 81 271
money-fx 206 87 293
ship 108 36 144
trade 251 75 326

Total 5485 2189 7674

5. Experimentation and Results
5.1. Datasets used for experimentation
We validate variants of Gaussian Process models both shal-
low and deep models on the following benchmark datasets:

1. TREC 1: Text REtrieval Conference Question Classi-
fication dataset (Li and Roth, 2002) with 1000 labelled
train samples and 500 test samples.

2. TREC 5: Text REtrieval Conference Question Clas-
sification dataset (Li and Roth, 2002) consists of 5452
train and 500 test instances, and 6 labels representing
the question types.

3. MR: Movie Reviews dataset (Pang and Lee, 2005) is a
binary classification dataset with positive and negative
labels, and 10662 instances in total.

4. SST1: Stanford Sentiment Treebank dataset (Socher
et al., 2013) contains 10,754 instances.The train split
is 8544 and test split is 2210 and the corresponding
multi-class labels represent sentiments as very nega-
tive, negative, neutral, positive, and very positive.

5. R8: It is a subset of Reuters-21578 (Lewis, 1992), a
commonly used text categorization dataset. R8 (De-
bole and Sebastiani, 2005, Cardoso-Cachopo, 2007)
contains the top 8 classes with frequent number of
data samples. It is a highly skewed dataset and its
data statistics are presented in Table 1. This dataset
is chosen to primarily analyze the behaviour of gaus-
sian process models on skewed datasets.

5.2. Pre-processing
For the generation of word vectors for all the datasets
aforementioned, we used the pre-trained word2vec vectors
trained using 100 billion words from Google news. The
word vectors are of 300 dimensions and trained by using
C-BOW (Mikolov et al., 2013). The words which are not
in pre-trained list are randomly initialized. For uniformity
across all sentences, the row length for every input embed-
ding is fixed to be the maximum length among all given
sentences.
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Table 2: Hyper-parameter values after training the CDGP
models

Dataset Layer 1 (conv/wconv) Layer 2 (RBF)
δ σ δ σ

TREC1 9.95 2.10 10.21 2.13
TREC5 10.16 3.06 11.19 3.90
MR 8.49 11.01 9.31 0.37
SST1 9.24 22.13 9.99 7.68
R8 24.30 11.15 35.00 32.13

5.3. Experimental Details

For our experiments, SGP denotes a shallow GP with sin-
gle layer. DGP denotes a deep GP model with multiple
(2/3) layers. The inducing points are taken as the cen-
troids obtained by clustering the training data samples. The
kernels used for evaluation are RBF, convolutional, and
weighted convolutional kernels. RBF kernel is used as
the base kernel in the convolutional/weighted convolutional
kernels for CDGP models. The models were experimented
with various initializations of kernel hyper-parameters such
as lengthscales and variance in the scale of 0.1 to 20. The
learnt hyper-parameter (lengthscale δ, variance σ) values
for each layer of the best performing CDGP models for all
the datasets are shown in the Table 2. The evaluation re-
sults of various Gaussian Process (GP) models are reported
in the Table 3. The bracketed terms next to the model type,
represents the kernel used in each layer separated by a ′+′

sign respectively. For CDGP models, experiments were
performed on varying patch sizes h ∗ w where h denotes
the ngram filter size and w denotes the word embedding
size i.e., Empirical evaluation on various filter sizes (such
as 2, 3) were done and the best results are reported in the
Table 3. The number of hidden units in the second/third
layers were varied in the scale of 10 to 50. The number of
outputs in the final layer is determined by the number of
classes of each dataset. The parameters of the model are
learnt by ADAM optimizer with a step size ranging from
0.01 to 0.1 and varying mini-batch sizes in the scale of
100 to 1000. The number of epochs taken for training for
TREC1 dataset is 200, TREC5 dataset ranges from 200 to
1000, SST1 dataset ranges from 1600 to 2500, MR dataset
ranges from 3800 to 4200, and R8 dataset ranges from 1600
to 5500. The performance metrics used for comparison are
Accuracy, and Negative Log-likelihood Predictive Proba-
bility (NLPP) to account for uncertainty in predictions.

Table 4 compares the text classification performance of
Gaussian Process models with the existing Deep Learn-
ing models for TREC5, SST1, MR, and R8 datasets. For
TREC5 dataset, CDGP 2 performs better than most of the
models and almost similar to the (Cer et al., 2018) model.
For SST1, MR, and R8 datasets, deep learning models such
as (McCann et al., 2017, Zhao et al., 2015, Tellez et al.,
2018) perform correspondingly better. Since SST1 is a
fine-grained multi-class sentiment classification dataset, it
remains a challenging task for all the models to achieve no-
table performance as in TREC5 dataset.

Table 3: Experimental results of various Gaussian Process
models. Performance metrics: Accuracy (higher the better)
and Negative Log-likelihood Predictive Probability (lower
the better)
Dataset Model Acc NLPP

TREC1 SGP (RBF) 94 0.25
CDGP 1 (conv+RBF) 94.80 0.21
CDGP 2 (wconv+RBF) 94.60 0.22

TREC5 SGP (RBF) 97.40 0.10
CDGP 1 (conv+RBF) 97.40 0.15
CDGP 2 (wconv+RBF) 97.40 0.08
CDGP 3 (wconv+RBF+RBF) 97.20 0.10

SST1 SGP (RBF) 36.29 4.19
CDGP 1 (conv+RBF) 35.02 3.84
CDGP 2 (wconv+RBF) 41.45 2.86

MR SGP (RBF) 70.95 0.60
CDGP 1 (conv+RBF) 68.42 0.60
CDGP 2 (wconv+RBF) 77.13 0.49

R8 SGP (RBF) 73.02 1.25
CDGP 1 (conv+RBF) 79.23 1.59
CDGP 2 (wconv+RBF) 89.86 0.68

Table 4: Comparison of Gaussian Process models with
deep learning models. Performance metric: Accuracy
(higher the better)

Model/Dataset TREC5 SST1 MR R8

Accuracy

CDGP 2
(wconv+RBF) 97.40 41.45 77.13 89.86
DCNN
(Kalchbrenner et al., 2014) 93.0 48.5 - -

CNN non-static
(Kim, 2014) 93.6 48.0 81.5 -

TBCNN
(Mou et al., 2015) 96.0 51.4 - -

AdaSent
(Zhao et al., 2015) 92.4 - 83.1 -
TWS
(Escalante et al., 2015) - - - 91.35
Multi-task
(Liu et al., 2016) - 49.6 - -

DSCNN
(Zhang et al., 2016) 95.6 50.6 82.2 -

BLSTM-2DCNN
(Zhou et al., 2016) 96.1 52.4 82.3 -

CoVe
(McCann et al., 2017) 95.8 55.2 - -
USE T+CNN
(Cer et al., 2018) 98.70 - 82.70 -
TextEnt
(Yamada et al., 2018) - - - 96.7
µTC
(Tellez et al., 2018) - - - 96.98
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Figure 2: Histogram of location-wise word frequency for the
word ’animal’

5.4. Empirical Observations
From Table 3, the following insights are drawn:

1. For small scale datasets such as TREC1, CDGP mod-
els are able to perform better than SGP models by uti-
lizing the benefits of convolutional kernel to capture
location independent similarity across texts.

2. For medium size dataset such as TREC5 which
is a Question-Answering dataset, both SGP and
CDGP models perform comparatively but CDGP 2
(wconv+RBF) model has better NLPP estimate. To
analyze the reasoning behind this, the top keywords in
the dataset are chosen and its count of occurrence in
the data with respect to location in the sentence are
plotted. It was found that words occur with higher
frequency in the initial location slots as shown in the
Figure 2 for the example word ’animal’. Hence, even
SGP (RBF kernel [location-based]) is able to perform
relatively.

3. For binary classification task of MR dataset, CDGP
with weighted convolutional kernel better captures the
sentiment associated with the text and hence achieves
higher accuracies and better NLPP estimates when
compared to other gaussian process models.

4. For fine-grained and multi-class sentiment classifi-
cation task such as SST1, CDGP 2 (wconv+RBF)
model achieves higher accuracy and better NLPP es-
timate when compared to SGP (RBF) and CDGP 1
(conv+RBF) models. This behaviour is caused by
weighting of patches done by the weighted convolu-
tional kernel in CDGP 2 model.

5. For a highly skewed dataset such as R8, CDGP 2
(wconv+RBF) achieves higher accuracy and better
NLPP estimate than other gaussian process models.
The CDGP 2 model captures the double-fold bene-
fits of bayesian modelling and weighted convolutional
kernel.

Figure 3: TREC5: original data, samples from SGP and
CDGP models

Figure 4: TREC5:inducing points of SGP (RBF) and origi-
nal data samples

5.5. Samples Visualization
Figure 3 shows the UMAP embedding of the original
TREC5 data points, mean sample from RBF layer of SGP
model, and mean sample from the first layer with convolu-
tional kernel and second layer with RBF kernel of CDGP
model. Since TREC5 dataset has comparable results for
SGP and CDGP, it is treated for such visualization. Convo-
lutional kernel in the first layer of CDGP brings in a better
class separability, and the RBF layer of SGP looks compa-
rable to CDGP’s RBF layer. Figure 4 shows the UMAP
embedding of sample patches from original text embed-
ding, and that of the inducing points which is widely spread
across the original text.

6. Conclusion
In this paper, we have proposed CDGP models for the
task of Text Classification. It is mainly motivated by
the advantages of bayesian non-parametric models, such
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as unconstrained expressability limit of the function, au-
tomated model selection, better generalization even for
smaller datasets, and uncertainty estimates. An extensive
empirical evaluation of various shallow and DGP models
is performed on the benchmark text classification datasets,
which demonstrate the performance of DGP models. As a
future work, we would like to explore the benefits of un-
certainty estimates given by CDGP for text classification in
medical and legal domain applications.
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