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Abstract

Language model based pre-trained models
such as BERT have provided significant gains
across different NLP tasks. In this paper, we
study different types of transformer based pre-
trained models such as auto-regressive models
(GPT-2), auto-encoder models (BERT), and
seq2seq models (BART) for conditional data
augmentation. We show that prepending the
class labels to text sequences provides a simple
yet effective way to condition the pre-trained
models for data augmentation. Additionally,
on three classification benchmarks, pre-trained
Seq2Seq model outperforms other data aug-
mentation methods in a low-resource setting.
Further, we explore how different data aug-
mentation methods using pre-trained model
differ in-terms of data diversity, and how well
such methods preserve the class-label informa-
tion.

1 Introduction

Data augmentation (DA) is a widely used technique
to increase the size of the training data. Increas-
ing training data size is often essential to reduce
overfitting and enhance the robustness of machine
learning models in low-data regime tasks.

In natural language processing (NLP), several
word replacement based methods have been ex-
plored for data augmentation. In particular, Wei
and Zou (2019) showed that simple word replace-
ment using knowledge bases like WordNet (Miller,
1998) improves classification performance. Further,
Kobayashi (2018) utilized language models (LM)
to augment training data. However, such methods
struggle with preserving class labels. For example,
non-conditional DA for an input sentence of senti-
ment classification task “a small impact with a big
movie” leads to “a small movie with a big impact”.
Using such augmented data for training, with the
original input sentence’s label (i.e. negative senti-

ment in this example) would negatively impact the
performance of the resulting model.

To alleviate this issue, Wu et al. (2019) pro-
posed conditional BERT (CBERT) model which
extends BERT (Devlin et al., 2018) masked lan-
guage modeling (MLM) task, by considering class
labels to predict the masked tokens. Since their
method relies on modifying BERT model’s seg-
ment embedding, it cannot be generalized to other
pre-trained LMs without segment embeddings.

Similarly, Anaby-Tavor et al. (2019) used
GPT2 (Radford et al., 2019) for DA where exam-
ples are generated for a given class by providing
class as input to a fine-tuned model. In their work,
GPT2 is used to generate 10 times the number of ex-
amples required for augmentation and then the gen-
erated sentences are selected based on the model
confidence score. As data selection is applied only
to GPT2 but not to the other models, the augmen-
tation methods can not be fairly compared. Due
to such discrepancies, it is not straightforward to
comprehend how the generated data using different
pre-trained models varies from each other and their
impact on downstream model performance.

This paper proposes a unified approach to use
any pre-trained transformer (Vaswani et al., 2017)
based models for data augmentation. In particu-
lar, we explore three different pre-trained model
types for DA, including 1) an autoencoder (AE)
LM: BERT, 2) an auto-regressive (AR) LM: GPT2,
and 3) a pre-trained seq2seq model: BART (Lewis
et al., 2019). We apply the data generation for three
different NLP tasks: sentiment classification, intent
classification, and question classification.

In order to understand the significance of DA,
we simulate a low-resource data scenario, where
we utilize only 10 training examples per class in a
classification task. Section 3.2 provides details of
the task and corpora.

We show that all three types of pre-trained mod-
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els can be effectively used for DA, and using the
generated data leads to improvement in classifi-
cation performance in the low-data regime setting.
Among three types of methods, pre-trained seq2seq
model provides the best performance. Our code is
available at 1.

Our contribution is three-fold: (1) implementa-
tion of a seq2seq pre-trained model based data aug-
mentation, (2) experimental comparison of differ-
ent data augmentation methods using conditional
pre-trained model, (3) a unified data augmentation
approach with practical guidelines for using differ-
ent types of pre-trained models.

2 DA using Pre-trained Models

LM pre-training has been studied extensively (Rad-
ford et al., 2018; Devlin et al., 2018; Liu et al.,
2019). During pre-training, such models are either
trained in an AE setting or in an AR setting. In
the AE setting, certain tokens are masked in the
sentence and the model predicts those tokens. In
an AR setting, the model predicts the next word
given a context. Recently, pre-training for seq2seq
model has been explored where a seq2seq model is
trained for denoising AE tasks (Lewis et al., 2019;
Raffel et al., 2019). Here, we explore how these
models can be used for DA to potentially improve
text classification accuracy.

Algorithm 1: Data Augmentation ap-
proach
Input :Training Dataset Dtrain

Pretrained model G∈{AE,AR,Seq2Seq}
1 Fine-tune G using Dtrain to obtain Gtuned

2 Dsynthetic←{}
3 foreach {xi,yi}∈Dtrain do
4 Synthesize s examples {x̂i,ŷi}1p using

Gtuned

5 Dsynthetic←Dsynthetic∪{x̂i,ŷi}1p
6 end

DA Problem formulation: Given a training
dataset Dtrain = {xi, yi}1n, where xi = {wj}1m
is a sequence of m words, yi is the associated label,
and a pre-trained model G, we want to generate
a dataset of Dsynthetic. Algorithm 1 describes the
data generation process. For all augmentation meth-
ods, we generate s = 1 synthetic example for every

1https://github.com/varinf/
TransformersDataAugmentation

example in Dtrain. Thus, the augmented data is
same size as the size of the original data.

2.1 Conditional DA using Pre-trained LM

For conditional DA, a model G incorporates label
information during fine-tuning for data generation.
Wu et al. (2019) proposed CBERT model where
they utilized BERT’s segment embeddings to con-
dition model on the labels. Similarly, models can
be conditioned on labels by prepending labels yi to
xi (Keskar et al., 2019; Johnson et al., 2017).

Due to segment embedding reuse, CBERT con-
ditioning is very specific to BERT architecture thus
cannot be applied directly to other pre-trained LMs.
Thus, we compare two generic ways to condition a
pre-trained model on class label:

• prepend : prepending label yi to each se-
quence xi in the training data without adding
yi to model vocabulary

• expand : prepending label yi to each se-
quence xi in the training data and adding yi
to model vocabulary.

Note that in prepend, the model may split yi
into multiple subword units (Sennrich et al., 2015b;
Kudo and Richardson, 2018), expand treats a la-
bel as a single token.

Here, we discuss the fine-tuning and the data
generation process for both AE and AR LMs. For
transformer based LM implementation, we use Py-
torch based transformer package (Wolf et al., 2019).
For all pre-trained models, during fine-tuning, we
further train the learnable parameters of G using
its default task and loss function.

2.1.1 Fine-tuning and generation using AE
LMs

We choose BERT as a representative of AE models.
For fine-tuning, we use the default masking param-
eters and MLM objective which randomly masks
some of the tokens from the raw sequence, and
the objective is to predict the original token of the
masked words using the context. Both BERTprepend
and BERTexpand models are fine-tuned using the
same objective.

2.1.2 Fine-tuning and generation using AR
LMs

For AR LM experiments, we choose GPT2 as a gen-
erator model and follow the method proposed by
Anaby-Tavor et al. (2019) to fine-tune and generate

https://github.com/varinf/TransformersDataAugmentation
https://github.com/varinf/TransformersDataAugmentation
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data. For fine-tuning GPT2, we create a training
dataset by concatenating all sequences in Dtrain

as follows: y1SEPx1EOSy2...ynSEPxnEOS.
SEP denotes a separation token between label and
sentence, and EOS denotes the end of a sentence.

For generating data, we provide yiSEP as a
prompt to G, and we keep generating until the
model produces EOS token. We use GPT2 to re-
fer to this model. We found that such generation
struggles in preserving the label information, and
a simple way to improve the generated data label
quality is to provide an additional context to G. For-
mally, we provide yiSEPw1..wk as prompt where
w1..wk are the first k words of a sequence xi. In
this work, we use k = 3. We call this method
GPT2context.

2.2 Conditional DA using Pre-trained
Seq2Seq model

Like pre-trained LM models, pre-training seq2seq
models such as T5 (Raffel et al., 2019) and
BART (Lewis et al., 2019) have shown to improve
performance across NLP tasks. For DA experi-
ments, we choose BART as a pre-trained seq2seq
model representative for its relatively lower com-
putational cost.

2.2.1 Fine-tuning and generation using
Seq2Seq BART

Similar to pre-trained LMs, we condition BART
by prepending class labels to all examples of a
given class. While BART can be trained with dif-
ferent denoising tasks including insertion, deletion,
and masking, preliminary experiments showed that
masking performs better than others. Note that
masking can be applied at either word or subword
level. We explored both ways of masking and
found subword masking to be consistently infe-
rior to the word level masking. Finally, we applied
word level masking in two ways:

• BARTword : Replace a word wi with a mask
token < mask >

• BARTspan: Replace a continuous chunk of
k words wi, wi+1..wi+k with a single mask
token < mask >.

Masking was applied to 40% of the words. We
fine-tune BART with a denoising objective where
the goal is to decode the original sequence given a
masked sequence.

2.3 Pre-trained Model Implementation
2.3.1 BERT based DA models
For AutoEncoder (AE) experiments, we use “bert-
base-uncased” model with the default parameters
provided in huggingface’s transformer package. In
prepend setting we train model for 10 epochs
and select the best performing model on dev data
partition keeping initial learning rate at 4e−5. For
expand setting, training requires 150 epochs to
converge. Moreover, a higher learning rate of
1.5e−4 was used for all three datasets. The initial
learning rate was adjusted for faster convergence.
This is needed for expand setting as embeddings
for labels are randomly initialized.

2.3.2 GPT2 model implementation
For GPT2 experiments, we use GPT2-Small model
provides in huggingface’s transformer package. We
use default training parameters to fine-tune the
GPT2 model. For all experiments, we use SEP
as a separate token and <| endoftext |> as EOS
token. For text generation, we use the default nu-
cleus sampling (Holtzman et al., 2019) parameters
including top k = 0, and top p = 0.9.

2.3.3 BART model implementation
For BART model implementation, we use fairseq
toolkit (Ott et al., 2019) implementation of BART.
Additionally, we used bart large model weights2.

Since BART model already contains < mask >
token, we use it to replace mask words. For BART
model fine-tuning, we use denoising reconstruc-
tion task where 40% words are masked and the
goal of the decoder is to reconstruct the original se-
quence. Note that the label yi is prepended to each
sequence xi, and the decoder also produces the la-
bel yi as any other token in xi. We use fairseq’s la-
bel smoothed cross entropy criterion with a label-
smoothing of 0.1. We use 1e−5 as learning rate.
For generation, beam search with a beam size of 5
is used.

2.4 Base classifier implementation
For the text classifier, we use “bert-base-uncased”
model. The BERT model has 12 layers, 768 hidden
states, and 12 heads. We use the pooled represen-
tation of the hidden state of the first special token
([CLS]) as the sentence representation. A dropout
probability of 0.1 is applied to the sentence rep-
resentation before passing it to the Softmax layer.

2https://dl.fbaipublicfiles.com/
fairseq/models/bart.large.tar.gz

https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz
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Adam (Kingma and Ba, 2014) is used for optimiza-
tion with an initial learning rate of 4e−5. We use
100 warmup steps for BERT classifier. We train the
model for 8 epochs and select the best performing
model on the dev data.

All experiments were conducted using a sin-
gle GPU instance of Nvidia Tesla v100 type. For
BART model, we use f16 precision. For all data
augmentation models, validation set performance
was used to select the best model.

3 Experimental Setup

3.1 Baseline Approaches for DA

In this work, we consider three data augmentation
methods as our baselines.

(1) EDA (Wei and Zou, 2019) is a simple word-
replacement based augmentation method, which
has been shown to improve text classification per-
formance in the low-data regime.

(2) Backtranslation (Sennrich et al., 2015a)
is another widely used text augmentation
method (Shleifer, 2019; Xie et al., 2019; Edunov
et al., 2018). For backtranslation, we use a
pre-trained EN-DE3, and DE-EN4 translation
models (Ng et al., 2019).

(3) CBERT (Wu et al., 2019) language model
which, to the best of our knowledge, is the latest
model-based augmentation that outperforms other
word-replacement based methods.

3.2 Data Sets

We use three text classification data sets.
(1) SST-2 (Socher et al., 2013): (Stanford Senti-

ment Treebank) is a dataset for sentiment classifi-
cation on movie reviews, which are annotated with
two labels (Positive and Negative).

(2) SNIPS (Coucke et al., 2018) dataset contains
7 intents which are collected from the Snips per-
sonal voice assistant.

(3) TREC (Li and Roth, 2002) is a fine-grained
question classification dataset sourced from TREC.
It contains six question types (whether the question
is about person, location, etc.).

For SST-2 and TREC, we use the dataset ver-
sions provided by (Wu et al., 2019)5, and for

3https://dl.fbaipublicfiles.com/
fairseq/models/wmt19.en-de.joined-dict.
single_model.tar.gz

4https://dl.fbaipublicfiles.com/
fairseq/models/wmt19.de-en.joined-dict.
single_model.tar.gz

5https://github.com/1024er/cbert_aug

SNIPS dataset, we use 6. We replace numeric class
labels with their text versions. For our experiments,
we used the labels provided in Table 1. Note that
pre-trained methods rely on different byte pair en-
codings that might split labels into multiple tokens.
For all experiments, we use the lowercase version
of the class labels.

3.2.1 Low-resourced data scenario
Following previous works to simulate the low-data
regime setting for text classification (Hu et al.,
2019), we subsample a small training set on each
task by randomly selecting an equal number of
examples for each class.

In our preliminary experiments, we evaluated
classification performance with various degrees of
low-data regime settings, including 10, 50, 100 ex-
amples per class. We observed that state-of-the-art
classifiers, such as the pre-trained BERT classifier,
performs relatively well for these data sets in a
moderate low-data regime setting. For example,
using 100 training examples per class for SNIPS
dataset, BERT classifier achieves 94% accuracy,
without any data augmentation. In order to simu-
late a realistic low-resourced data setting where we
often observe poor performance, we focus on ex-
periments with 10 and 50 examples per class. Note
that using a very small dev set leads the model to
achieve 100% accuracy in the first epoch which
prevents a fair model selection based on the dev set
performance. To avoid this and to have a reliable
development set, we select ten validation examples
per class.

3.3 Evaluation
To evaluate DA, we perform both intrinsic and ex-
trinsic evaluation. For extrinsic evaluation, we
add the generated examples into low-data regime
training data for each task and evaluate the per-
formance on the full test set. All experiments are
repeated 15 times to account for stochasticity. For
each experiment, we randomly subsample both
training and dev set to simulate a low-data regime.

For intrinsic evaluation, we consider two as-
pects of the generated text. The first one is semantic
fidelity, where we measure how well the generated
text retains the meaning and the class information
of the input sentence. In order to measure this, we
train a classifier on each task by fine-tuning a pre-
trained English BERT-base uncased model. Section

6https://github.com/MiuLab/
SlotGated-SLU/tree/master/data/snips

https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz
https://github.com/1024er/cbert_aug
https://github.com/MiuLab/SlotGated-SLU/tree/master/data/snips
https://github.com/MiuLab/SlotGated-SLU/tree/master/data/snips
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Data Label Names
SST-2 Positive, Negative
TREC Description, Entity, Abbreviation, Human, Location, Numeric
SNIPS PlayMusic, GetWeather, RateBook, SearchScreeningEvent, SearchCreativeWork, AddTo-

Playlist, BookRestaurant

Table 1: Label Names used for fine-tuning pre-trained models. Label names are lower-cased for all experiments.

SST-2 SNIPS TREC
Train 6,228 13,084 5,406
Dev 692 700 546
Test 1,821 700 500

Table 2: Data statistics for three corpora, without any
sub-sampling. This setup is used to train a classifier for
intrinsic evaluation, as described in Section 3.3. When
simulating low-data regime, we sample 10 or 50 train-
ing examples from each category. For testing, we use
the full test data.

3.3.1 describes corpus and classifier performance
details.

Another aspect we consider is text diversity. To
compare different models’ ability to generate di-
verse output, we measured type token ratio (Roem-
mele et al., 2017). Type token ratio is calculated
by dividing the number of unique n-grams by the
number of all n-grams in the generated text.

3.3.1 Classifiers for intrinsic evaluation

In this work, we measure semantic fidelity by eval-
uating how well the generated text retains the mean-
ing and the label information of the input sentence.
To measure this, we fine-tune the base classifier
described in Section 2.4.

To take full advantage of the labeled data and
to make our classifier more accurate, we combine
100% of training and test partitions of the corre-
sponding dataset, and use the combined data for
training. Then, the best classifier is selected based
on the performance on the dev partition. Classifica-
tion accuracy of the best classifier on dev partition
for each corpus is provided in Table 3.

SST-2 SNIPS TREC
Dev 91.91 99 94.13

Table 3: Classifier performance on dev set for each
corpus. Classifiers are used for intrinsic evaluation.

4 Results and Discussion

4.1 Generation by Conditioning on Labels

As described in Section 2.1, we choose BERT as
a pre-trained model and explored different ways
of conditioning BERT on labels: BERTprepend,
BERTexpand and CBERT.

Table 4 shows BERTprepend, BERTexpand and
CBERT have similar performance on three datasets.
Note that BERT is pre-trained on a very huge
corpus, but fine-tuning is applied on a limited
data. This makes it difficult for the model to learn
new, meaningful label representations from scratch
as in case the BERTexpand. While CBERT and
BERTprepend both converge in less than 8 epochs,
BERTexpand requires more than 100 epochs to con-
verge.

Further, the class conditioning technique used
in CBERT is specific to BERT architecture which
relies on modifying BERT’s segment embedding
and hence cannot be applied to other model archi-
tectures. Since the labels in most of the datasets are
well-associated with the meaning of the class (e.g.
SearchCreativeWork), prepending tokens allows
the model to leverage label information for condi-
tional word replacement. Given these insights, we
recommend prepend as a preferred technique for
pre-trained model based data augmentation.

4.2 Pre-trained Model Comparison

Classification Performance Table 4 shows that
seq2seq pre-training based BART outperforms
other DA approaches on all data sets. We also
observe that back translation (shown as BackTrans.
in table) is a very strong baseline as it consistently
outperforms several pre-trained data augmentation
techniques including CBERT baseline.

Generated Data Fidelity As described in Sec-
tion 3.3.1, we train a classifier for each dataset and
use the trained classifier to predict the label of the
generated text.

Table 5 shows that AE based methods outper-
form AR models like GPT2, and Seq2seq based
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Model SST-2 SNIPS TREC
No Aug 52.93 (5.01) 79.38 (3.20) 48.56 (11.53)
EDA 53.82 (4.44) 85.78 (2.96) 52.57 (10.49)
BackTrans. 57.45 (5.56) 86.45 (2.40) 66.16 (8.52)
CBERT 57.36 (6.72) 85.79 (3.46) 64.33 (10.90)
BERTexpand 56.34 (6.48) 86.11 (2.70) 65.33 (6.05)
BERTprepend 56.11 (6.33) 86.77 (1.61) 64.74 (9.61)
GPT2context 55.40 (6.71) 86.59 (2.73) 54.29 (10.12)
BARTword 57.97 (6.80) 86.78 (2.59) 63.73 (9.84)
BARTspan 57.68 (7.06) 87.24 (1.39) 67.30 (6.13)

Table 4: DA extrinsic evaluation in low-data regime. Results are reported as Mean (STD) accuracy on the full test
set. Experiments are repeated 15 times on randomly sampled training and dev data. For data augmentation model
fine-tuning, we use 10 examples per class for training.

Model SST-2 SNIPS TREC
EDA 95.00 97.14 87.22
BackTrans. 96.66 97.14 94.88
CBERT 96.33 97.90 92.22
BERTexpand 95.00 97.04 91.44
BERTprepend 96.66 97.80 94.33
GPT2context 68.33 92.47 60.77
BARTword 89.33 91.03 79.33
BARTspan 90.66 93.04 80.22

Table 5: Semantic fidelity of generated output. We
trained a classifier using all labelled data in order to
perform accuracy test on the generated data. Higher
accuracy score means that the model retains the class
label of the input sentence more accurately. For data
augmentation model fine-tuning, we use 10 examples
per class for training.

model like BART, in terms of semantic fidelity of
the generated data. On two datasets, back trans-
lation approach outperforms all other methods in
terms of fidelity which underlines the effectiveness
of the state of the art translation systems in terms
of preserving the semantics of the language.

Generated Data Diversity To further analyze
the generated data, we explore type token ratio
as described in Section 3.3. Table 6 shows that
EDA generates the most diverse tri-grams and back
translation approach produces the most diverse un-
igrams. Since EDA method modifies tokens at ran-
dom, it leads to more diverse n-grams, not neces-
sarily preserving the semantic of the input sentence.
Also, unlike AE and Seq2seq methods that rely on
word or span replacements, back translation is an
open-ended system that often introduces unseen
unigrams.

Model SST-2 SNIPS TREC
n-gram 1 3 1 3 1 3
EDA 0.66 0.99 0.49 0.97 0.55 0.97
BackTrans 0.68 0.99 0.51 0.95 0.57 0.96
CBERT 0.57 0.99 0.48 0.95 0.46 0.95
BERTexpand 0.59 0.99 0.49 0.96 0.47 0.95
BERTprepend 0.57 0.99 0.48 0.95 0.46 0.95
GPT2context 0.62 0.99 0.34 0.88 0.44 0.92
BARTword 0.53 0.99 0.42 0.95 0.40 0.93
BARTspan 0.55 0.99 0.41 0.91 0.39 0.89

Table 6: Type token ratio for generated text using each
model. For data augmentation model fine-tuning, we
use 10 examples per class for training.

4.3 Guidelines For Using Different Types Of
Pre-trained Models For DA

AE models : We found that simply prepending
the label to raw sequences provides competitive
performance than modifying the model architec-
ture. As expected, more complex AE models such
as RoBERTaprepend (Liu et al., 2019) outperforms
BERTprepend (66.12 vs 64.74 mean acc on TREC).

AR models : While AR based model such as
GPT2 produces very coherent text, it does not pre-
serve the label well. In our experiments, we found
that providing a few starting words along with the
label as in GPT2context is crucial to generate mean-
ingful data.

Seq2Seq models : Seq2Seq models provide an
opportunity to experiment with various kinds of
denoising autoencoder tasks including masking at
subword, word or span level, random word inser-
tion or deletion. We observe that word or span
masking performs better than other denoising ob-
jectives, and should be preferred for DA.

Overall, we found that while AE models are con-
strained to produce similar length sequences and
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are good at preserving labels, AR models excel at
unconstrained generation but might not retain label
information. Seq2Seq models lie between AE and
AR by providing a good balance between diversity
and semantic fidelity. Further, in Seq2Seq models,
diversity of the generated data can be controlled by
varying the masking ratio.

4.4 Limitations

Our paper shows that a pre-trained model can be
used for conditional data augmentation by fine-
tuning it on the training data where the class labels
are prepended to the training examples. Such a
unified approach allows utilizing different kinds of
pre-trained models for text data augmentation to
improve performance in low-resourced tasks. How-
ever, as shown in Table 7, improving pre-trained
classifier’s model performance in rich-resource set-
ting is still challenging.

Our results also show that a particular pre-trained
model based augmentation may do well on one task
or dataset, but may not work well for other scenar-
ios. In our experiments, we use the same set of
hyperparameters such as masking rate, learning
rate and warmup schedule for all three datasets
which might not lead to the best performance for
all considered tasks. While our primary goal in
this work is to propose a unified data augmentation
technique, we believe that further studies on opti-
mizing performance for a given task or model will
be beneficial.

5 Conclusion And Future Work

We show that AE, AR, and Seq2Seq pre-trained
models can be conditioned on labels by prepending
label information and provide an effective way to
augment training data. These DA methods can be
easily combined with other advances in text content
manipulation such as co-training the data generator
and the classifier (Hu et al., 2019). Further, the
proposed data augmentation techniques can also be
combined with latent space augmentation (Kumar
et al., 2019). We hope that unifying different DA
methods would inspire new approaches for univer-
sal NLP data augmentation.
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A Appendices

A.1 Classification performance on 50
examples per class

Model SST-2 SNIPS TREC
Num examples 50 50 50
No Aug 78.60 (2.81) 90.98 (2.30) 71.65 (11.09)
EDA 76.41 (4.90) 89.80 (2.99) 61.98 (11.52)
BackTrans 78.30 (6.30) 89.87 (3.35) 65.52 (11.82)
CBERT 77.26 (4.56) 90.57 (2.11) 67.77 (13.81)
BERTexpand 78.15 (4.56) 89.79 (2.56) 68.06 (12.20)
BERTprepend 77.96 (4.78) 90.41 (2.39) 71.88 (9.91)
GPT2context 74.91 (5.43) 88.87 (3.33) 51.41 (11.35)
BARTword 76.35 (5.84) 91.40 (1.60) 71.58 (7.00)
BARTspan 77.92 (4.96) 90.62 (1.79) 67.28 (12.57)

Table 7: DA extrinsic evaluation in low-data regime.
Results are reported as Mean (STD) accuracy on the
full test set. Experiments are repeated 15 times on ran-
domly sampled training, dev data. 50 training examples
are subsampled randomly.

Table 7 shows the classification performance
of different models when we select 50 examples
per class. Overall, we find that data augmentation
does not improve classification performance, and
in many cases, it even hurts the accuracy.


