Life still goes on: Analysing Australian WW1 Diaries through Distant Reading

Ashley Dennis-Henderson, Matthew Roughan, Lewis Mitchell, Jonathan Tuke

ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) School of Mathematical Sciences, The University of Adelaide

{ashley.dennis-henderson, matthew.roughan, lewis.mitchell, simon.tuke}@adelaide.edu.au

Abstract

An increasing amount of historic data is now available in digital (text) formats. This gives quantitative researchers an opportunity to use distant reading techniques, as opposed to traditional close reading, in order to analyse larger quantities of historic data. Distant reading allows researchers to view overall patterns within the data and reduce researcher bias. One such data set that has recently been transcribed is a collection of over 500 Australian World War I (WW1) diaries held by the State Library of New South Wales. Here we apply distant reading techniques to this corpus to understand what soldiers wrote about and how they felt over the course of the war. Extracting dates accurately is important as it allows us to perform our analysis over time, however, it is very challenging due to the variety of date formats and abbreviations diarists use. But with that data, topic modelling and sentiment analysis can then be applied to show trends, for instance, that despite the horrors of war, Australians in WW1 primarily wrote about their everyday routines and experiences. Our results detail some of the challenges likely to be encountered by quantitative researchers intending to analyse historical texts, and provide some approaches to these issues.

1 Introduction

World War I (WW1) was a defining event of the 20th century, and impacted millions worldwide. Researchers have studied the war, especially the experiences of those on the front lines. Primarily, this has been done through *close reading* of primary sources such as diaries and letters. However, recent advances in computational methods to analyse large text corpora offers the opportunity to analyse sources such as these through *distant reading*. Distant reading involves the application of mathematical and computational techniques from natural language processing (NLP) to perform statistical analysis of text (Jänicke et al., 2015). Distant reading has several advantages, including the ability to analyse large quantities of data and see overall patterns as well as the reduction of researcher bias. Further, distant and close reading can be combined such that interesting patterns found through distant reading can be more closely examined using close reading to determine why they occur. This work aims to use distant reading to understand what Australian soldiers went through and how they felt over the course of WW1, by analysing a unique historical data set: a large collection of transcriptions of Australian soldiers' diaries, held by the State Library of New South Wales. To our knowledge this paper represents the first NLP analysis of this data set.

This research takes advantage of the fact that diaries contain temporal information. However, extracting dates is a difficult task due to the varying manner in which dates can be written. This is further complicated by the desire to focus on the dates on which entries were written and not dates mentioned within the entries as these may refer to times and events from outside the war or at least out of the context of the current entry. In order to extract and clean dates we use a combination of regular expressions and optimisation.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://creativecommons.org/licenses/by/4.0/.

Once dates were extracted we were able to apply topic modelling and sentiment analysis as a function of time. We are able to detect topics corresponding to particular developments of the war, and the associated sentiment for those periods. Further, we show that the diarists wrote more about everyday experiences, e.g., the time of day and meals, than they did about training and battles. This might be surprising as the war was one of the most traumatic events of the twentieth century and conventional historical narratives concentrate on the pain and suffering of the soldiers. However, in the diaries, we see the war's participants adapting their everyday lives to their circumstances, and in fact their overall sentiment across the war is surprisingly positive.

2 Corpus

We focus on Australian WW1 diaries held by the State Library of New South Wales. After the war ended, the European War Collecting Project was created by Principal Librarian William Ifould and the trustees of the Library (State Library of New South Wales, 2019). Their aim was to collect documents, including diaries, letters, war narratives, memoirs and photographs, which gave the experiences and personal feelings of those who served. In total, this collection has 966 documents, 557 of which are non-empty war diaries. A complete breakdown of the collection is given in Table 1. Since collecting these documents, the library has scanned them and used crowd sourcing to transcribe them, giving researchers access to digital (text) versions of the documents.

Туре	Number	# Pages	# Words	# Authors
Diary	577	60,004	9,266,353	236
Letter	183	18,497	3,029,163	141
Letter-Diary	22	3,955	639,184	16
War Narrative	32	2,370	624,618	28
Other	152	10,418	2,159,348	111
Total	966	95,244	15,718,666	

Table 1: The number of each type of document in the NSW State Library Collection, along with the number of pages, words and authors. The "Other" category includes documents such as telegrams, photos, postcards, scrapbooks, and newspaper clippings. Note, there are a total of 577 diaries in this collection, however, 20 of the transcribed diaries were empty, and so we only analyse 557 diaries.

These documents can be individually downloaded from the State Library's website (State Library of New South Wales, 2020), however, we obtained the corpus directly from the Library. Before this corpus could be used it went through a variety of cleaning steps. First, the raw data was converted to a single text file per document, and a metadata table was created by using regular expressions to extract information from the document titles. Then dates had to be extracted so that we could perform analysis over time. Raw dates were extracted using regular expressions, however, several issues were found in these raw dates requiring us to clean them through optimisation. More information regarding this is given in Section 4.1. Finally, we changed all text to lowercase, removed numbers and punctuation, singularised words, converted abbreviations to the full word, and for topic modelling we removed stop words. Converting to lowercase, singularising words and converting abbreviations were all done to ensure that the various versions of a word are considered as the same word when performing our analysis. For example, "kill", "killing", and "Kills" all have the same base word: "kill". The stop words we removed were based on the stop_words data set in the tidytext package (Silge and Robinson, 2006) in R. Figure 1 shows the number of words in our diary corpus per month after this process. Unsurprisingly, the majority of entries were written between August 1914 and December 1919 — Britain, and consequently

Australia joined WW1 on August 4, 1914, and although the armistice was signed in November 1918, it took some time for the more than 100,000 Australian soldiers still in the field to be repatriated.

Figure 1: Number of words written in our entire diary collection per month. The majority of entries are written between August 1914 and December 1919, however there were some entries as late as 1923.

3 Related Work and Background

3.1 Analysis of Historic Documents

Our corpus has previously been studied by Caulfield (2013) and Cochrane (2015). However, their analysis was based on close reading of a small subsection of the diaries. As far as we are aware, distant reading techniques have not previously been applied to this corpus. However, distant reading techniques have been broadly applied to other historic documents. For example, Boschetti et al. (2014) used computational techniques to analyse Italian war bulletins as part of the *Memories of War* project and Ahmad et al. (2012) developed a tool to map spelling from medieval documents to modern spellings, amongst numerous other examples. Analysis of diaries presents an additional challenge as to use the important temporal data, we must extract a large number of dates.

3.2 Analysis Techniques

Topic modelling is based on the idea that documents are made up of a series of topics, which in turn are a probability distribution over words (Steyvers and Griffiths, 2007). Currently, the primary method to perform topic modelling is LDA (Latent Dirichlet Allocation) which was initially introduced by Blei et al. (2003). For a description of the mathematics behind LDA please see Blei et al. (2003). Sentiment analysis aims to determine the attitude or emotion of the author towards the content of the text. An overview of sentiment analysis can be found in Pang and Lee (2008) or Taboada (2016). An example of the use of sentiment analysis can be seen in Burghardt et al. (2019) who applied sentiment analysis to the plays of G. E. Lessing. Additional details of our use of these approaches will be provided in the following section.

4 Methods

4.1 Date Extraction

Extracting accurate dates from the diaries is important as we wish to perform our analysis over time. However, this is difficult due to the many ways in which dates are written. Raw dates were extracted using regular expressions, attempting to account for the various date formats, possible abbreviations of month and day of the week names, punctuation, and that some dates were written in French. After extracting these raw dates three main issues were discovered. First many dates were missing the month or year values, as from a human perspective it is not necessary to include this information if it was included in a previous date. In these diaries 13.91% of dates were missing the month and 53.76% were missing the year. Second, diarists sometimes wrote the wrong date, either due to not knowing the exact date or accidentally writing down the wrong day/month. The final issue is that we only want to extract the dates when the entries were written. However, regular expressions will also pick up dates of events mentioned within an entry as well as strings that look like dates such as *1st battalion*, neither of which we wish to focus on here.

We overcame these issues by creating an optimisation program which outputs dates as close as possible to the true date by (i) keeping the dates close to their raw extracted version; (ii) keeping them close to the previous date in sequence; (iii) maintaining the sequence of dates; and (iv) keeping them in the range determined by the known start and end dates of the diary. The optimisation can also exclude dates that appear out of sequence, presenting them as references. We will provide code to perform this task on request.

4.2 Topic Modelling

In this paper we focus on using LDA (Latent Dirichlet Allocation) to perform topic modelling. This model was implemented using the topicmodels package (Grün and Hornik, 2011) in R, using Gibbs Sampling with 10 topics and a randomly chosen seed of 1915.

The number of topics used was chosen based on four methods, by Arun et al. (2010), Cao et al. (2008), Deveaud et al. (2014), and Griffiths and Steyvers (2004), which were implemented using the ldatuning package (Nikita, 2020) in R. The results from each method are given in Figure 2. Based on this, we find that the optimal number of topics for Griffiths2004 is 8 or more, for CaoJuan2009 is 17 or more, for Arun2010 is 6, 7 or 10, and for Deveaud2014 is 8 - 12. We chose to use 10 topics since this falls in the range of best parameters for three of the methods.

Figure 2: Results found by applying the four methods for determining the number of topics created by Arun et al. (2010), Cao et al. (2008), Deveaud et al. (2014), and Griffiths and Steyvers (2004). We chose 10 topics as it falls in the optimal range for three approaches.

4.3 Sentiment Analysis

There are three general categories of sentiment analysis: dictionary based methods (DBMs), supervised learning methods, and unsupervised learning methods (Reagan et al., 2017). We focus on DBMs as they can be applied to corpora where there is no previous known information regarding the sentiment. DBMs compare the terms within the corpus with a dictionary of terms with known sentiment values. Let $f^T(w)$

be the frequency of word w in text T, and $s_D(w)$ be the sentiment of word w in dictionary D, then the average sentiment of the text is given by (Reagan et al., 2017)

$$s_D^T = \frac{\sum_{w \in D} s_D(w) f^T(w)}{\sum_{w \in D} f^T(w)}.$$
 (1)

For our analysis we tested the following dictionaries: AFINN, ANEW, Hului, Loughran-Mcdonald, NRC, SenticNet, SentiWordNet, and Syuzhet. These dictionaries primarily come from the lexicon package (Rinker, 2018) in R. The two dictionaries not available through this package are AFINN, which was accessed using the tidytext package (Silge and Robinson, 2006), and ANEW which was obtained from Andrew Reagan's GitHub folder: https://github.com/andyreagan/labMT-simple/ tree/master/labMTsimple/data/ANEW. We can consider the percentage of unique words in our diaries which appear in the sentiment dictionaries, and compare this to the Brown Corpus, a standard corpus in NLP analysis. The Brown Corpus contains 1,006,770 words, including 45,215 unique words, from a collection of documents printed in the United States in 1961 (Francis and Kucera, 1971). The words contained in the Brown Corpus were obtained using the zipfR package (Evert and Baroni, 2007). Table 2 gives the number of words and possible sentiment values each dictionary has as well as the percentage of unique words in our diaries and the Brown Corpus which appear in the dictionaries. We note that approximately twice as many unique words from the Brown Corpus are covered by these dictionaries. This is despite the fact that our diary corpus contains more unique words (84,955 words) than the Brown corpus does. This is likely because none of these dictionaries were created for wartime text.

			Percent	tage (%)
Dictionary	Num. Words	Sentiment Values	WW1 Diaries	Brown Corpus
AFINN	2,477	(-5, 5)	2.03	4.35
ANEW	1,034	(1, 9)	1.14	2.12
Hului	6,874	$\{1, 0, -1.05, -1, -2\}$	5.09	9.86
Lougran-Mcdonald	2,702	$\{-1, 1\}$	1.59	3.80
NRC	5,468	$\{-1, 1\}$	5.49	10.09
SenticNet	23,626	(-1, 1)	14.71	26.67
SentiWordNet	20,093	(-1, 1)	7.83	14.01
Syuzhet	10,738	(-1, 1)	8.43	16.85

In order to compare the results from different dictionaries they are required to be on the same rating scale. As five of the dictionaries are already on the scale (-1, 1) we chose to convert the others to this. AFINN and ANEW were converted to this scale using the formula:

$$x_{\text{new}} = \left(\frac{\max_{\text{new}} - \min_{\text{new}}}{\max_{\text{old}} - \min_{\text{old}}}\right) (x_{\text{old}} - \min_{\text{old}}) + \min_{\text{new}}, \tag{2}$$

where x_{old} and x_{new} are the old and new value, respectively, $[min_{old}, max_{old}]$ is the old value range, and $[min_{new}, max_{new}]$ is the new value range. The Huliu lexicon was converted to the range (-1, 1) by converting any word with a sentiment score of -2 to a score of -1. This could be done as a score of -2 was given to phrases that are always negative, e.g., "too much fun" (Rinker, 2019).

For both topic modelling and sentiment analysis we considered a "document" to be all of the diary entries written in a particular month.

When graphing our results we have applied a rolling mean using the rollmean function in the zoo package (Zeileis and Grothendieck, 2005) in R, with a rolling window of k = 5, in order to smooth out noise in the data. Due to the lack of data in 1923, as seen in Figure 1, it is not possible to calculate this rolling mean and hence, results for this year are not included.

5 Analysis

5.1 Topic Modelling

The most probable words for each of our 10 topics are shown in Appendix A. Based on the most probable words, we selected names for each of our topics, hence our topics are: *Everyday Life, War at Sea, Egypt, Gallipoli, In the Trenches (Beginning), In the Trenches (Middle), In the Trenches (End), White Christmas, After the Armistice,* and *Home Again.* Note, the most probable words in all three *In the Trenches* topics are regarding battles, the Western Front and the Middle East. Hence, we differentiate these topics as *beginning, middle* and *end*, based on where they peak in Figure 3. The proportion of each of these topics is shown as a function of time in Figure 3.

Figure 3: The proportion of each topic obtained from our LDA model, over time. Note that a rolling mean with k = 5 has been applied to each point.

Based on the most probable words as well as when the topics peak in Figure 3, several of these topics relate to specific developments of the war. War at Sea corresponds to the Australian occupation of German New Guinea and the sinking of the German raider the Emden. Egypt corresponds to the training of Australian troops on the outskirts of Cairo and battles around Egypt and the Suez Canal. Gallipoli corresponds to the Gallipoli Campaign, which for many Australian soldiers was their first experience in battle. The three In the Trenches topics cover the period when Australians were fighting on the Western Front and in the Middle East. The peaks in these three topics most likely correspond to specific battles such as the Battle of Romani (August 1916), the Second Battle of Arras (April-May 1917), the Battle of Jerusalem (November-December 1917), and the Battle of Hamel (July 1918). After the Armistice corresponds to the period after the armistice was signed in November 1918 that Australian soldiers had to wait before being sent home. For some soldiers it took up to a year to be repatriated and in this time they travelled around France and Britain as well as receiving vocational training from the AIF (Australian Imperial Force) (DVA, 2020). We also have two more general topics. Everyday Life is consistently the most prominent topic until December 1919. This topic includes words related to everyday things such as the time of day and meals. This shows that whilst the diarists did write about war related things, such as training and battles, they primarily focused on their ordinary day-to-day activities. After 1919 the Home

Again topic becomes most prominent. This is expected as this topic contains words related to being back in Australia, such as "mum", "dad" and "shopping", and corresponds to when the soldiers would have returned home.

5.2 Sentiment Analysis

Figure 4 gives the sentiment scores for our diaries over time for the eight sentiment dictionaries we considered as well as the average over these dictionaries. From this graph we first note that five of the dictionaries: AFINN, Huliu, Loughran-Mcdonald, NRC, and Syuzhet, follow the same general pattern. Further, SenticNet and SentiWordNet have a similar trend. Based on Table 2 we know that ANEW covers the least amount of words in our corpus, whilst SenticNet and SentiWordNet cover the most. This shows that our analysis is dependent on the words covered in the dictionaries. We also observe more variability in our sentiment scores in the first half of 1914 and from 1920 onwards. This would be due to only having a small amount of data for those periods as seen in Figure 1.

In the next section we compare our average sentiment curve with our topic model to understand why the sentiment peaks and dips at certain times.

Figure 4: Sentiment scores over time for the eight dictionaries: AFINN, ANEW, Huliu, Loughran-Mcdonald, NRC, SenticNet, SentiWordNet, and Syuzhet, as well as the average of these dictionaries. Note, that before graphing we have applied a rolling mean, with k = 5, to each of the dictionaries.

5.3 Topic Modelling and Sentiment Analysis

The average sentiment curve shown in Figure 4 has several peaks and dips in sentiment. We investigate what these correspond to by comparing our sentiment with our topic model. Due to the variability in individual sentiment dictionaries prior to August 1914 and after December 1919 we do not consider these periods. Further, we exclude the *Everyday Life* and *Home Again* topics as they are prominent over large periods of time and hence are not likely to contribute to particular peaks and dips in sentiment. Figure 5 gives the comparison between topic probabilities and average sentiment scores.

In Figure 5 we note there are peaks in sentiment corresponding to peaks in the *Egypt* and *After the Armistice* topics, whilst there are dips in sentiment corresponding to the peaks in the *Gallipoli* and *White Christmas* topics. When arriving in Egypt for training, the soldiers would most likely have been excited about being in a new country and be keen to prove themselves in battle. This, combined with the fact that whilst in Egypt the men were able to take small trips into Cairo and around the pyramids, would lead to a more positive sentiment for that period. Contrary to this, the Gallipoli campaign would have been

Figure 5: Average sentiment analysis scores compared to the topic probabilities (except the *Everyday Life* and *Home Again* topics).

the first battle experience for many of the soldiers leading to a more negative sentiment. Thomas Munro writes:

"It is an awful sight to see the dead and wounded on both sides, lying out and being walked on, no possibilite [sic] to bring them in or bury them, Some of our men have been out there a month and are still there. The stench would knock you down."

One of the top 40 most probable words in the *White Christmas* topic is "miserable", suggesting that the cold weather lead to many having a more negative sentiment. Through close reading of the diaries over the months surrounding January 1917 we find several negative comments regarding the cold and wet weather. For instance, Langford Colley-Priest writes

"Raining heavily all day which made the conditions more miserable. The mud & slush is terrible."

Further, whilst some men had a good Christmas, others didn't. The contrast between these Christmas' are seen in the following quotes:

"Christmas dinner and tea were very merry, the rations being supplemented by a lot of luxuries ... also by plum pudding ... ", Hector McLean

"Cold, miserable & hungry, we filed up to the cook house for our "Christmas dinner" of Bully beef Stew and buscuits [sic], as our rations were not yet to hand and our Christmas comforts were delayed somewhere.", Tom Taylor

It is not surprising that the sentiment rose after the armistice was signed. This rise in sentiment is further strengthened by the fact whilst waiting to be repatriated back to Australia soldiers spent their time travelling around France and Britain, and attending sport matches and plays (DVA, 2020).

Overall, our average sentiment during the war is always slightly positive which contradicts the typical perception of the war as horrific experience. This is most likely because the diarists predominantly wrote about everyday activities, which unlike battles, are not necessarily negative.

6 Conclusion and Future Work

This research aimed to analyse Australian WW1 diaries in order to determine what the soldiers wrote about and how they felt over the course of the war. Through the application of distant reading techniques we have seen that we can analyse large amounts of data to determine trends. Interestingly, while many people typically think of the war as a horrific experience we find that the diarists primarily wrote about their day-to-day activities. As such the diaries had an overall slightly positive sentiment, which is consistent with the positivity bias seen across human languages (Dodds et al., 2015), but is surprising for this particular corpus.

We focused on DBMs for sentiment, and found that the dictionaries used covered less of the diaries than standard texts such as the Brown Corpus. This suggests that DBMs may not be the most accurate method for determining sentiment in WW1 diaries and as such in the future we will investigate other sentiment analysis techniques such as embedding-based methods to determine if they are more applicable. Further, in the future we will write a paper detailing the difficulties with date extraction, as well as our approach and the accuracy of our method, as this is not a trivial issue.

Acknowledgements

We acknowledge the State Library of New South Wales for providing the data which made this research possible.

References

- Mushtaq Ahmad, Stefan Gruner, and Muhammed Tanvir Afzal. 2012. Computational Analysis of Medieval Manuscripts: A New Tool for Analysis and Mapping of Medieval Documents to Modern Orthography. *Journal of Universal Computer Science*, 18(20):2750–2770.
- R Arun, V Suresh, C.E Veni Madhavan, and M Narasimha Murty. 2010. On Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Observations. In M.J. Zaki, J.X. Yu, B Ravindran, and V Pudi, editors, *Advances in Knowledge Discovery and Data Mining, Part I*, pages 391 – 402. Springer, Berlin. Heidelberg.
- David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent Dirichlet Allocation. *Journal of Machine Learning Research*, 3:993–1022.
- Federico Boschetti, Andrea Cimino, Felice Dell'orletta, Gianluca E Lebani, Lucia Passaro, Paolo Picchi, Giulia Venturi, Simonetta Montemagni, and Alessandro Lenci. 2014. Computational Analysis of Historical Documents: An Application to Italian War Bulletins in World War I and II.
- Manuel Burghardt, Christian Wolff, and Thomas Schmidt. 2019. Toward Multimodal Sentiment Analysis of Historic Plays: A Case Study with Text and Audio for Lessing's Emilia Galotti. In 4th Conference of the Association Digital Humanities in the Nordic Countries, Copenhagen.
- Juan Cao, Tian Xia, Jintao Li, Yongdong Zhang, and Sheng Tang. 2008. A density-based method for adaptive LDA model selection. *Neurocomputing*, 72(7-9):1775 1781.
- Michael Caulfield. 2013. The unknown Anzacs : the real stories of our national legend : told through the rediscovered diaries and letters of the Anzacs who were there. Hachette Australia, Sydney.
- Peter Cochrane. 2015. 'Diamonds of the Dustheap': Diaries from the First World War. *Humanities Australia: The Journal of the Australian Academy of the Humanities*, (6):22 33.
- Romain Deveaud, Eric SanJuan, and Patrice Bellot. 2014. Accurate and effective Latent Concept Modeling for ad hoc information retrieval. *Document Numerique*, 17(1):61–84.
- Peter Sheridan Dodds, Eric M Clark, Suma Desu, Morgan R Frank, Andrew J Reagan, Jake Ryland Williams, Lewis Mitchell, Kameron Decker Harris, Isabel M Kloumann, James P Bagrow, et al. 2015. Human language reveals a universal positivity bias. *Proceedings of the National Academy of Sciences*, 112(8):2389–2394.
- DVA. 2020. Repatriation of Australians in World War I. DVA (Department of Veterans' Affairs) Anzac Portal.
- Stefan Evert and Marco Baroni. 2007. zipfR: Word Frequency Distributions in R. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations Sessions, Prague.

W Francis and H Kucera. 1971. Brown Corpus Manual.

- Thomas L Griffiths and Mark Steyvers. 2004. Finding scientific topics. *Proceedings of the National Academy of Sciences of the United States of America*, 101:5228–5235.
- Bettina Grün and Kurt Hornik. 2011. topicmodels: An R Package for Fitting Topic Models. *Journal of Statistical Software*, 40(13):1–30.
- S Jänicke, G Franzini, M F Cheema, and G Scheuermann. 2015. On Close and Distant Reading in Digital Humanities: A Survey and Future Challenges. In R Borgo, F Ganovelli, and I Viola, editors, *Eurographics Conference on Visualization (EuroVis)*.

Murzintcev Nikita. 2020. Idatuning: Tuning of the Latent Dirichlet Allocation Models Parameters.

- Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. *Foundations and Trends in Information Retrieval*, 2(2):1–135.
- Andrew J Reagan, Christopher M Danforth, Brian Tivnan, Jake Ryland Williams, and Peter Sheridan Dodds. 2017. Sentiment analysis methods for understanding large-scale texts: a case for using continuum-scored words and word shift graphs. *EPJ Data Science*, 6(1).
- Tyler Rinker. 2018. lexicon: Lexicon Data.
- Tyler Rinker. 2019. Package 'lexicon'.
- Julia Silge and David Robinson. 2006. tidytext: Text Mining and Analysis Using Tidy Data Principles in R. *JOSS*, 1(3).
- State Library of New South Wales. 2019. Personal diaries and letters from the First World War.
- State Library of New South Wales. 2020. Diarists from World War I.
- Mark Steyvers and Tom Griffiths. 2007. Probabilistic Topic Models. In T Landauer, D McNamara, S Dennis, and W Kintsch, editors, *Handbook of latent semantic analysis*, pages 427–448. Lawrence Erlbaum Associates Publishers.
- Maite Taboada. 2016. Sentiment Analysis: An Overview from Linguistics. *Annual Review of Linguistics*, 2(1):325–347, 1.
- Achim Zeileis and Gabor Grothendieck. 2005. zoo: S3 Infrastructure for Regular and Irregular Time Series. *Journal of Statistical Software*, 14(6):1–27.

Appendix A Topics

Tables 3 - 12 give the 54 most probable words for each of the topics found using topic modelling.

rank	term	beta	rank	term	beta	rank	term	beta
1	day	0.0213	19	fine	0.0033	37	troop	0.0022
2	night	0.0132	20	till	0.0032	38	battalion	0.0022
3	morning	0.0113	21	evening	0.0032	39	horse	0.0022
4	time	0.0095	22	dinner	0.0031	40	company	0.0022
5	left	0.0070	23	received	0.0030	41	train	0.0022
6	afternoon	0.0069	24	water	0.0029	42	french	0.0021
7	pm	0.0057	25	weather	0.0028	43	boy	0.0021
8	camp	0.0050	26	brigade	0.0027	44	australian	0.0021
9	letter	0.0048	27	hospital	0.0026	45	duty	0.0021
10	arrived	0.0047	28	found	0.0025	46	heavy	0.0021
11	mile	0.0043	29	town	0.0025	47	returned	0.0021
12	home	0.0043	30	passed	0.0025	48	breakfast	0.0020
13	tea	0.0042	31	usual	0.0025	49	station	0.0020
14	hour	0.0041	32	bed	0.0024	50	tonight	0.0020
15	round	0.0039	33	cold	0.0024	51	party	0.0019
16	officer	0.0038	34	lot	0.0024	52	war	0.0019
17	line	0.0037	35	parade	0.0024	53	called	0.0019
18	leave	0.0035	36	light	0.0023	54	beautiful	0.0019

Table 3: Top 54 terms for the *Everyday Life* topic with their probabilities.

rank	term	beta	rank	term	beta	rank	term	beta
1	ship	0.0157	19	port	0.0043	37	ashore	0.0024
2	sydney	0.0092	20	deck	0.0040	38	drill	0.0024
3	german	0.0088	21	harbour	0.0040	39	crew	0.0024
4	captain	0.0074	22	emden	0.0038	40	flag	0.0023
5	officer	0.0073	23	naval	0.0035	41	herbertshohe	0.0023
6	boat	0.0073	24	administrator	0.0034	42	colombo	0.0023
7	board	0.0067	25	force	0.0034	43	commander	0.0023
8	lieutenant	0.0065	26	horse	0.0033	44	australia	0.0023
9	island	0.0064	27	melbourne	0.0031	45	holme	0.0022
10	troop	0.0058	28	major	0.0030	46	returned	0.0022
11	native	0.0056	29	government	0.0029	47	brigadier	0.0021
12	colonel	0.0050	30	cruiser	0.0027	48	sight	0.0020
13	wireless	0.0049	31	station	0.0027	49	convoy	0.0020
14	message	0.0048	32	fleet	0.0027	50	military	0.0020
15	company	0.0045	33	garrison	0.0027	51	signal	0.0020
16	rabaul	0.0045	34	steamer	0.0026	52	british	0.0020
17	received	0.0044	35	berrima	0.0025	53	war	0.0019
18	sea	0.0044	36	gun	0.0025	54	prisoner	0.0019

Table 4: Top 54 terms for the War at Sea topic with their probabilities.

rank	term	beta	rank	term	beta	rank	term	beta
1	cairo	0.0170	19	water	0.0040	37	serapeum	0.0022
2	canal	0.0131	20	troop	0.0039	38	oclock	0.0022
3	camp	0.0103	21	kebir	0.0039	39	trench	0.0022
4	horse	0.0098	22	regiment	0.0039	40	squadron	0.0021
5	parade	0.0097	23	train	0.0039	41	piastre	0.0021
6	ship	0.0093	24	sea	0.0038	42	maadi	0.0021
7	sand	0.0088	25	suez	0.0036	43	arab	0.0021
8	tent	0.0080	26	deck	0.0035	44	colombo	0.0021
9	desert	0.0074	27	heliopoli	0.0035	45	soldier	0.0020
10	native	0.0071	28	sydney	0.0033	46	colonel	0.0020
11	el	0.0066	29	pyramid	0.0033	47	mosque	0.0020
12	drill	0.0060	30	island	0.0030	48	infantry	0.0020
13	egypt	0.0049	31	harbour	0.0028	49	christmas	0.0020
14	boat	0.0046	32	hot	0.0027	50	wharf	0.0019
15	egyptian	0.0045	33	ashore	0.0027	51	fuller	0.0019
16	tel	0.0043	34	nile	0.0027	52	signalling	0.0019
17	camel	0.0043	35	ismailia	0.0024	53	marching	0.0019
18	alexandria	0.0040	36	port	0.0023	54	fatigue	0.0019

Table 5: Top 54 terms for the *Egypt* topic with their probabilities.

rank	term	beta	rank	term	beta	rank	term	beta
1	turk	0.0194	10	hospital	0.0048	37	island	0.0029
י ר ר	turk	0.0174	20	turbich	0.0046	20	dua	0.0027
2	trench	0.0188	20	turkisn	0.0040	30 20		0.0029
3	gun	0.0130	21	quiet	0.0046	39	alexandria	0.0028
4	shell	0.0120	22	hill	0.0041	40	landed	0.0028
5	wounded	0.0101	23	rifle	0.0041	41	hit	0.0028
6	ship	0.0093	24	cairo	0.0041	42	aeroplane	0.0028
7	fire	0.0085	25	killed	0.0040	43	fired	0.0028
8	enemy	0.0081	26	line	0.0039	44	anzac	0.0027
9	firing	0.0076	27	shot	0.0038	45	machine	0.0027
10	beach	0.0072	28	bullet	0.0037	46	warship	0.0027
11	boat	0.0065	29	bombardment	0.0035	47	sniper	0.0026
12	position	0.0064	30	ashore	0.0034	48	pm	0.0026
13	shrapnel	0.0059	31	heavy	0.0034	49	casualty	0.0026
14	attack	0.0057	32	water	0.0032	50	damage	0.0025
15	bomb	0.0055	33	landing	0.0032	51	harbour	0.0025
16	battery	0.0053	34	gully	0.0032	52	board	0.0024
17	sea	0.0049	35	troop	0.0032	53	aboard	0.0023
18	artillery	0.0049	36	lemno	0.0030	54	dead	0.0023

 Table 6: Top 99 terms for the Gallipoli topic with their probabilities.

rank	term	beta	rank	term	beta	rank	term	beta
1	shell	0.0153	19	bombardment	0.0052	37	fire	0.0035
2	trench	0.0153	20	marched	0.0050	38	stunt	0.0034
3	gun	0.0138	21	firing	0.0048	39	evening	0.0033
4	line	0.0131	22	battery	0.0044	40	killed	0.0033
5	fritz	0.0096	23	enemy	0.0042	41	drill	0.0032
6	german	0.0076	24	battalion	0.0042	42	london	0.0032
7	wounded	0.0069	25	horse	0.0042	43	oclock	0.0032
8	artillery	0.0069	26	machine	0.0041	44	shelling	0.0031
9	front	0.0067	27	aeroplane	0.0041	45	fatigue	0.0031
10	billet	0.0066	28	division	0.0040	46	church	0.0031
11	gas	0.0065	29	casualty	0.0040	47	hut	0.0029
12	camp	0.0065	30	attack	0.0039	48	el	0.0029
13	bomb	0.0064	31	fine	0.0039	49	wet	0.0028
14	mile	0.0059	32	parade	0.0038	50	raining	0.0028
15	plane	0.0058	33	position	0.0037	51	wood	0.0028
16	village	0.0057	34	albert	0.0037	52	dug	0.0027
17	heavy	0.0053	35	france	0.0035	53	moved	0.0027
18	road	0.0053	36	taube	0.0035	54	tommy	0.0027

Table 7: Top 54 terms for the In the Trenches (Beginning) topic with their probabilities.

rank	term	beta	rank	term	beta	rank	term	beta
1	road	0.0067	19	camel	0.0032	37	weather	0.0025
2	wrote	0.0057	20	raid	0.0031	38	shelling	0.0023
3	fritz	0.0055	21	barrage	0.0031	39	ridge	0.0023
4	ypre	0.0053	22	boulogne	0.0031	40	station	0.0023
5	gun	0.0048	23	wounded	0.0030	41	omer	0.0023
6	fine	0.0047	24	london	0.0030	42	lovely	0.0023
7	enemy	0.0047	25	walked	0.0029	43	deferred	0.0023
8	brigade	0.0045	26	raining	0.0028	44	rain	0.0022
9	train	0.0045	27	letter	0.0028	45	report	0.0022
10	cold	0.0043	28	pt	0.0027	46	moved	0.0021
11	dinner	0.0041	29	sister	0.0027	47	stunt	0.0021
12	bomb	0.0040	30	paris	0.0027	48	book	0.0021
13	line	0.0039	31	plane	0.0026	49	battery	0.0021
14	hut	0.0038	32	farm	0.0026	50	dump	0.0020
15	lorry	0.0037	33	de	0.0026	51	lunch	0.0019
16	bailleul	0.0037	34	miss	0.0026	52	battalion	0.0019
17	shell	0.0034	35	machine	0.0025	53	division	0.0019
18	fed	0.0033	36	messine	0.0025	54	le	0.0019

 Table 8: Top 54 terms for the In the Trenches (Middle) topic with their probabilities.

rank	term	beta	rank	term	beta	rank	term	beta
1	fritz	0.0144	19	battery	0.0045	37	captured	0.0027
2	gun	0.0128	20	amien	0.0043	38	forward	0.0026
3	line	0.0127	21	quiet	0.0042	39	move	0.0026
4	enemy	0.0106	22	moved	0.0042	40	american	0.0025
5	shell	0.0095	23	somme	0.0040	41	wood	0.0024
6	front	0.0078	24	evening	0.0038	42	shelled	0.0024
7	plane	0.0072	25	trench	0.0038	43	hot	0.0024
8	village	0.0068	26	stunt	0.0036	44	advance	0.0024
9	road	0.0065	27	gas	0.0036	45	tank	0.0024
10	battalion	0.0064	28	shelling	0.0034	46	dug	0.0023
11	hun	0.0059	29	machine	0.0032	47	casualty	0.0023
12	prisoner	0.0059	30	viller	0.0032	48	lorry	0.0023
13	bomb	0.0053	31	dugout	0.0031	49	valley	0.0023
14	division	0.0051	32	french	0.0030	50	aussie	0.0023
15	wounded	0.0047	33	heavy	0.0030	51	river	0.0022
16	position	0.0047	34	barrage	0.0029	52	dump	0.0022
17	fine	0.0046	35	le	0.0028	53	night	0.0021
18	attack	0.0045	36	la	0.0027	54	kilo	0.0021

Table 9: Top 54 terms for the In the Trenches (End) topic with their probabilities.

rank	term	beta	rank	term	beta	rank	term	beta
1	cold	0.0429	19	parcel	0.0033	37	foggy	0.0022
2	snow	0.0260	20	fler	0.0032	38	albert	0.0022
3	mud	0.0150	21	camel	0.0030	39	harness	0.0022
4	christmas	0.0140	22	stable	0.0029	40	thick	0.0022
5	hut	0.0075	23	rum	0.0029	41	ribemont	0.0022
6	frost	0.0073	24	ration	0.0028	42	patient	0.0021
7	frozen	0.0071	25	freezing	0.0028	43	delville	0.0020
8	el	0.0070	26	miserable	0.0026	44	thaw	0.0020
9	snowing	0.0064	27	frosty	0.0026	45	le	0.0020
10	fritz	0.0063	28	wind	0.0026	46	amien	0.0019
11	dugout	0.0060	29	rafa	0.0025	47	blighty	0.0019
12	arish	0.0055	30	desert	0.0024	48	bazentin	0.0018
13	wood	0.0053	31	taube	0.0024	49	hun	0.0018
14	ice	0.0052	32	mametz	0.0024	50	sleet	0.0018
15	foot	0.0051	33	walked	0.0024	51	needle	0.0017
16	blanket	0.0038	34	fricourt	0.0024	52	ground	0.0017
17	bitterly	0.0037	35	snowed	0.0023	53	cleaning	0.0017
18	muddy	0.0033	36	dump	0.0022	54	headquater	0.0017

Table 10: Top 54 terms for the White Christmas topic with their probabilities.

rank	term	beta	rank	term	beta	rank	term	beta
1	train	0.0084	19	car	0.0035	37	noon	0.0023
2	boat	0.0069	20	met	0.0034	38	ashore	0.0023
3	ship	0.0069	21	troop	0.0034	39	city	0.0023
4	fine	0.0065	22	person	0.0032	40	cold	0.0022
5	town	0.0060	23	walked	0.0031	41	picture	0.0022
6	sea	0.0053	24	lunch	0.0031	42	le	0.0021
7	london	0.0050	25	bed	0.0030	43	passed	0.0021
8	evening	0.0049	26	house	0.0029	44	germany	0.0021
9	home	0.0047	27	board	0.0029	45	charleroi	0.0020
10	hotel	0.0047	28	dance	0.0029	46	concert	0.0020
11	deck	0.0046	29	war	0.0029	47	snow	0.0020
12	pm	0.0043	30	afternoon	0.0029	48	class	0.0020
13	de	0.0043	31	street	0.0028	49	aboard	0.0020
14	dinner	0.0041	32	girl	0.0027	50	armistice	0.0020
15	port	0.0041	33	australia	0.0025	51	hut	0.0019
16	walk	0.0038	34	visited	0.0024	52	billet	0.0019
17	leave	0.0037	35	office	0.0024	53	lorry	0.0019
18	paris	0.0035	36	aussie	0.0024	54	engine	0.0019

Table 11: Top 99 terms for the After the Armistice topic with their probabilities.

rank	term	beta	rank	term	beta	rank	term	beta
1	home	0.0300	19	sit	0.0044	37	train	0.0028
2	meet	0.0160	20	elli	0.0042	38	time	0.0026
3	boat	0.0126	21	tram	0.0041	39	card	0.0026
4	pm	0.0104	22	dick	0.0040	40	write	0.0025
5	tea	0.0098	23	miss	0.0040	41	arrive	0.0025
6	play	0.0092	24	tickle	0.0039	42	read	0.0022
7	ring	0.0086	25	wrote	0.0036	43	spend	0.0022
8	catch	0.0082	26	dine	0.0035	44	night	0.0021
9	bed	0.0070	27	drive	0.0035	45	chat	0.0021
10	manly	0.0063	28	roy	0.0034	46	dinner	0.0021
11	mum	0.0058	29	day	0.0033	47	visit	0.0020
12	dad	0.0054	30	piano	0.0033	48	sleep	0.0020
13	walk	0.0052	31	middle	0.0032	49	cut	0.0019
14	paddock	0.0050	32	talk	0.0031	50	lopped	0.0019
15	town	0.0049	33	otto	0.0030	51	meeting	0.0019
16	music	0.0046	34	swim	0.0029	52	dave	0.0019
17	garden	0.0045	35	rain	0.0029	53	girl	0.0018
18	george	0.0045	36	stay	0.0029	54	wharf	0.0018

Table 12: Top 54 terms for the *Home Again* topic with their probabilities.