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Abstract

Machine translation systems perform reason-
ably well when the input is well-formed
speech or text. Conversational speech is spon-
taneous and inherently consists of many dis-
fluencies. Producing fluent translations of dis-
fluent source text would typically require par-
allel disfluent to fluent training data. How-
ever, fluent translations of spontaneous speech
are an additional resource that is tedious to
obtain. This work describes the submission
of IIT Bombay to the Conversational Speech
Translation challenge at IWSLT 2020. We
specifically tackle the problem of disfluency
removal in disfluent-to-fluent text-to-text trans-
lation assuming no access to fluent references
during training. Common patterns of disflu-
ency are extracted from disfluent references
and a noise induction model is used to sim-
ulate them starting from a clean monolingual
corpus. This synthetically constructed dataset
is then considered as a proxy for labeled data
during training. We also make use of addi-
tional fluent text in the target language to help
generate fluent translations. This work uses no
fluent references during training and beats a
baseline model by a margin of 4.21 and 3.11
BLEU points where the baseline uses disfluent
and fluent references, respectively.

Index Terms- disfluency removal, machine
translation, noise induction, leveraging mono-
lingual data, denoising for disfluency removal.

1 Introduction and Related Work

Spoken language translation often suffers due to the
presence of disfluencies. In conversational speech,
speakers often use disfluencies such as filler words,
repetitions of fillers, repetitions of fluent phrases,
false starts, and corrections which do not occur in
the text. Standard machine translation and spoken
translation systems perform competitively when
the input is well-formed text or rehearsed speech as

in TED talks or broadcast news (Cho et al., 2014;
Wang et al., 2010; Honal and Schultz, 2005; Za-
yats et al., 2016). With the increasing popularity
of end-to-end speech translation systems (Weiss
et al., 2017; Bansal et al., 2018), one may not want
disfluency removal to be treated as an intermediate
step between ASR and MT. It might be more desir-
able for disfluency removal to be handled within
the model itself, or as a separate post-processing
step.

To produce fluent translations from disfluent
text, one would typically require access to disfluent
speech (or text) and its corresponding fluent trans-
lations during training. While some corpora with
labeled disfluencies exist (Cho et al., 2014; Burger
et al., 2002), only subsets have been translated
and/or released. (Salesky et al., 2018) introduced
a set of fluent references for the Fisher Spanish-
English conversational speech corpus (David Graff
and Cieri.). This has enabled a new task of end-
to-end training and evaluation on fluent references.
(Salesky et al., 2019) reports results using a speech-
to-text model trained on this corpus using both
fluent and disfluent translations. However, fluent
translations of disfluent speech or text are a scarce
resource. It would be highly desirable to build a
system for disfluency removal that does not rely on
fluent references.

In this work, we propose a framework for disflu-
ency removal that utilizes a simple noise induction
technique for data augmentation using fluent mono-
lingual text in the target language. During denois-
ing, such disfluent text is trained jointly with par-
allel disfluent-to-disfluent textual translation data,
thus simultaneously optimizing the objectives of
disfluency removal and translation. This work de-
scribes the submission of IIT Bombay to the Con-
versational Speech Translation challenge at IWSLT
2020 (Ansari et al., 2020). We release code for our
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proposed approach at the following URL.1

Section 2 describes the details of the data used
and the proposed noise induction technique to lever-
age monolingual data. Section 3 describes our pro-
posed architecture. We then present experimental
details in Section 4, followed by our main results
in Section 4.2. Finally, we analyze our model out-
puts in Section 5 and present our conclusions in
Section 6.

2 Data

2.1 Fisher Corpus

For our experiments, we use the Fisher Spanish
dataset (David Graff and Cieri.), comprising tele-
phone conversations between mostly native Span-
ish speakers. The dataset contains speech utter-
ances (disfluent Spanish), their corresponding ASR
outputs (disfluent Spanish), and two sets of English
translations (both fluent and disfluent) (Salesky
et al., 2018; Post et al., 2013). The Fisher dataset
has disfluent Spanish ASR output (text) which we
use as input to our model. Additionally, two sets
of English translations (disfluent & fluent) are also
available in (text) form. For training, we only make
use of disfluent English sentences. i.e. we train a
text-to-text model. We explicitly note here that no
fluent English reference text was used during train-
ing. The corpus consists of 819 transcribed conver-
sations on predetermined topics between strangers,
yielding ≈ 160 hours of speech and 150k utter-
ances. We used one reference during training and
evaluation with the validation (dev) and test data
sets.2

2.1.1 Disfluencies
Disfluencies can be filler words and hesitations,
discourse markers (you know, well, umm), phrase
repetitions, filler word repetitions, corrections, and
false starts, among others. There can be differ-
ent and often overlapping disfluencies in a single
sentence. Fluent words like so, oh, yes, no, etc.
could either be categorized as fluent or disfluent
depending on the context in which they appear. We
selected the most commonly occurring filler words
in English, namely hmm, hm, em, eh, uh, um, umm,
ah, aha, mm, oh, wow, yes, ok from the Fisher En-
glish corpus. These filler words either occur alone
as a single unit or with self-repetitions up to a max-
imal length of 5 or 6. We extracted the frequencies

1https://github.com/niksarrow/cst
2We do not make use of dev2 during training.

of each one of them and their repetitions. Table 1
shows the counts for the aha token along with its
successive repetitions. We repeat this for all filler
words and store them in a comma-separated value
file.

Filler phrase Frequency
ah 9572
ah ah 233
ah ah ah 29
ah ah ah ah 5
ah ah ah ah ah 1
ah ah ah ah ah ah 0

Table 1: Filler phrase frequencies in the Fisher English
training corpus.

2.2 Parallel Corpus for Translation

We extract monolingual fluent textual data from
the news-commentary parallel corpus in Spanish-
English from the shared task on machine translation
in 2013.3 The corpus consists of 174,441 parallel
sentences. We divide the dataset into two halves.
We consider the first half of 87220 sentences to
be our fluent monolingual corpus. The other half
wasn’t used to account for resource constraints. Fu-
ture work can incorporate the whole corpus for
training. This corpus is modified and turned into a
parallel disfluent to fluent corpus in the same lan-
guage i.e. EN-disfluent to EN-fluent. This process
is described in more detail in the next section.

2.3 Data Augmentation via Noise Induction

Most disfluent sentences could be loosely thought
of as a composition of a fluent part and an additive
noise characterizing the underlying disfluency type.
We aimed to generate a parallel EN-disfluent to
EN-fluent dataset, starting with fluent English text
and adding disfluencies that we extract from real
disfluent text. We stress here that we do not make
use of any parallel disfluent-fluent text to extract
patterns of disfluencies; the latter was generated
by solely examining disfluent text. Three levels
of disfluency induction have been implemented
where disfluencies are incrementally added. We
have tested with 10%, 30%, 50% disfluency induc-
tion. Section 2.3.1, 2.3.2, 2.3.3, 2.3.4 will describe
the techniques used to introduce disfluencies within
a fluent corpus to create a parallel corpus.

3https://www.statmt.org/wmt13/translation-task.html

https://github.com/niksarrow/cst
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2.3.1 Pronoun Phrase Repetition
The English language has seven pronouns, namely,

”i, we, you, he, she, it, they”. In the conversational
speech, many times an utterance that starts with a
pronoun repeats itself. Here is an example:

i am i am fond of paintings ...
it is cold it is cold and windy outside ...

Our algorithm iterates through all 87220
sentences in the English news-commentary corpus
and treats every sentence which starts with a
pronoun as a candidate. With hyperparameter
value α = 0.1, 0.3, 0.5, we either select or reject
the candidate for disfluency induction. Here, α
is the probability of selecting the candidate and
1 − α is the rejection probability. If a candidate
is selected, we select the length (l) of the phrase
starting from the first word (which is the pronoun
itself) which will be repeated. The length is
uniformly sampled from four length values i.e.
1, 2, 3, 4. The phrase up to length (l) is repeated
in the sentence just after it ends. The following
examples show how disfluencies are introduced for
two different values of l:

Original fluent sentence: i was saying that
we should go for a movie
Disfluent sentence (l = 1): i i was saying that we
should go for a movie
Disfluent sentence (l = 2): i was i was saying
that we should go for a movie

2.3.2 Fluent Phrase Repetition
Many disfluencies are just repetitions of mean-
ingful phrases where the speaker intentionally
or unintentionally repeats a phrase. We iterate
through all the sentences and every sentence
with length greater than 5 becomes a candidate
with hyperparameter α = 0.1, 0.3, 0.5 (as we did
with pronoun phrase repetition). We randomly
selected a length(l) in the range [1, 3] and carefully
selected an index i in the fluent sentence starting
from which a phrase of length l is repeated and a
disfluent sentence is formed. Here is an example:

Original fluent sentence: easier to trade
and speculate in gold
Disfluent sentence (l = 1, i = 5): easier to trade
and speculate in in gold
Disfluent sentence (l = 2, i = 3): easier to trade
and speculate and speculate in gold

2.3.3 Insertion of filler words/phrases
The filler word/phrase frequency count which is
described in Section 2.1.1 and table 1 is used as
a guide to introduce them within clean text. We
iterate through all sentences in the English corpus
and uniformly select a (phrase, frequency) pair
such that the frequency is greater than 0. If the
sentence becomes a candidate according to the
sampling probability α = 0.1, 0.3, 0.5 (as we did
with pronoun phrase repetition), an index i is
uniformly selected from the range [0, l], and the
phrase is inserted at index i along with a decrement
of one in the frequency of the phrase. As before, l
is the length of the candidate. Example:

Before: (filler, frequency) = (ah ah, 233)
Original sentence: the new year is looking grim
Disfluent sentence (i = 0): ah ah the new year is
looking grim
After: (filler, frequency) = (ah ah, 232)

2.3.4 False Start
In disfluent English, an utterance can start with
an affirmation (i.e. beginning with a yes or yeah)
and suddenly turn into negation or denial. For
example: yes, no we can’t increase the price. Here,
the speaker first uttered yes and then shifted to
negation with no. Similarly, a negative utterance
can suddenly shift to an affirmative one.

We iterate through all the sentences in the Fisher
English corpus which begins with an affirmation
yes, yeah or a negation no, nah and prepend yes or
no of length(l = 1or2) to make it a false starting
sentence (if the sentence is chosen with a sampling
probability of α = 0.1, 0.3, 0.5). An example:

Original sentence: yes the price will go
up
Disfluent sentence (l = 2): no no yes the price
will go up

2.3.5 Other Possible Noise Induction
Techniques

Synonym insertion can be done by examining the
synset of the language in question (say English),
picking a word from a candidate sentence, and at-
taching its synonym next to it. A denoising step is
expected to retain only one of the meanings which
is fluent as per the language model. We also in-
troduce singleton utterances which only contain a
single filler word and its corresponding fluent ver-
sion is labeled as None. We leave the exploration
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of more techniques that are relevant to introducing
disfluencies within fluent text as future work.

2.4 Data Statistics
Table 2 shows utterance counts from the parallel
disfluent Spanish to disfluent English corpus. Apart
from this dataset, we also make use of three parallel
disfluent-to-fluent English texts which were syn-
thetically created using the techniques described in
Section 2.3, corresponding to α values of 0.1, 0.3
and 0.5, respectively. Each of these three parallel
datasets contains 87220 sentences each.

Fisher Data
Train 138720 (DFLT) 138720 (DFLT)
Validation 3977 (DFLT) 3977 (FLT)
Test 3641 (DFLT) 3641 (FLT)

Table 2: DFLT: Disfluent and FLT: Fluent. Disfluent
Spanish source and disfluent English target utterances
in training. For validation and test set evaluations, we
use fluent translations. Numbers indicate the count of
utterances in the train, validation and test sets, respec-
tively.

3 Model

This section describes the proposed architecture for
disfluency removal and translation. Since our ob-
jective is two-fold, which is disfluency removal and
translation, Section 3.2.1 first presents our denois-
ing module which is aimed at achieving the task
of disfluency removal and Section 3.2.2 describes
how translation is achieved by our model.

3.1 System Architecture
As shown in Figure 1, the proposed system fol-
lows a fairly standard encoder-decoder architec-
ture. More concretely, we use a four-layer trans-
former encoder and another four-layer transformer
decoder (Vaswani et al., 2017). There are 8 atten-
tion heads in both the encoder and decoder. We pre-
train joint token embeddings of 512 dimensionali-
ties on concatenated Fisher Spanish (disfluent) and
English (disfluent) and News-commentary English
data using fastext (Bojanowski et al., 2016). We use
byte-pair encoding (Sennrich et al., 2015) with 50K
BPE units to effectively handle out-of-vocabulary
words at test time. We share language embeddings
in the encoder. We set dropout (Gal and Ghahra-
mani, 2016) and label-smoothing (Szegedy et al.,
2016) to 0.3 and 0.1, respectively. In addition
to the disfluency induction, we use word-shuffle,

word-dropout, and word-blank with probabilities
3, 0.1, 0.2 (Lample et al., 2017) respectively when
training the denoising encoder.

3.1.1 Shared Encoder

Our system makes use of two encoders with three
out of four layers shared by the two input languages.
This is inspired from (Artetxe et al., 2017; Lample
et al., 2017). The first three layers are shared across
both tasks i.e. denoising from disfluent English to
fluent English and translating from Spanish to En-
glish. The fourth layer is language-dependent to
allow the encoder to learn language-specific infor-
mation. The shared layers of the encoder encourage
the output representations of Spanish and English
to use a common subspace shared across both lan-
guages, which is further transformed into fluent
English using a common decoder. In this man-
ner, our model jointly achieves disfluency removal
along with translation.

3.1.2 Fixed Language Embeddings in the
Encoder

While many machine translation systems randomly
initialize their embeddings and update them during
training, we use pretrained sub-word level embed-
dings and keep them fixed during training (Artetxe
et al., 2017). We share the vocabulary for Spanish
and English as their alphabet size is 27 and 26 re-
spectively. The additional letter in Spanish is a ñ to
indicate the palatal nasal; the remaining letters are
the same as in English.

3.2 Training

The encoder & decoder are trained using
Adam (Kingma and Ba, 2015) with a learning rate
of 0.001 and a mini-batch size of 32. The training
alternates evenly between denoising and translation
procedures.

3.2.1 Denoising

C(x) is a randomly sampled noisy version of sen-
tence x similar to the noise model by (Lample et al.,
2017). The denoising done here is a mixture of
standard denoising as done in (Lample et al., 2017)
and a supervised training step using the parallel
disfluent-fluent English text that we created using
the techniques described in Section 2.3. The loss
for the latter training phase is the sum of cross-
entropy losses between predEN and its fluent coun-
terpart.
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Figure 1: Illustration of proposed architecture. EN: noise-augmented input in English language (text), ES: disfluent
Spanish input (text), ED: Denoising encoder for English language, DD: Denoising decoder for English language,
ET: Translation encoder whose input is Spanish, DT: Translation decoder whose output is English, predEN: fluent
output of denoising decoder, predEN: Translated output of translation decoder in English language. Cnoise is the
noise model used in (Lample et al., 2017) i.e. word-dropout, word-shuffle, S: Shared latent space, zEN and zES:
latent representation of top and bottom encoders, respectively.

3.2.2 Translation
The translation is done using the parallel Fisher
dataset, where disfluent Spanish is used as input
and disfluent English is generated as output. The
sum of token level cross-entropy is used as the loss
function between predEN (predicted English output)
and reference disfluent English.

4 Experiments

4.1 Experimental Setup

We have used lowercased, tokenized, normalized
data with all punctuations (except apostrophe)
removed. This is the same setting as used
by (Salesky et al., 2019) allowing for a comparison
with the baseline proposed. The system is
evaluated using BLEU4 and METEOR5 scoring
metrics. BLEU assesses how well predicted
translations match a set of reference translations
using modified n-gram precision, weighted by
a brevity penalty in place of recall to penalize
short hypothesis translations without full coverage.
In our task of disfluency removal, the generated
tokens should contain much of the same content
but with certain tokens removed, thereby creating
shorter hypotheses. When scoring fluent output
with disfluent references, the difference in BLEU
score will come from two sources: shorter n-gram
matches, and the brevity penalty. METEOR, on

4BLEU scores computed using multi-bleu.pl from the
Moses toolkit (Koehn et al., 2007).

5METEOR is computed using the script from
http://www.cs.cmu.edu/˜alavie/METEOR/ (Denkowski
and Lavie, 2014).

the other hand, is a semantic evaluation metric. It
uses the harmonic mean of precision and recall,
with more weight assigned to recall. It also takes
into account stem, synonym, paraphrase, and
exact matches. In our task, semantic meaning
should be retained while disfluencies are removed.
Similar METEOR scores are expected when scored
with fluent references and disfluent references.
METEOR will indicate that meaning is maintained,
but not assess disfluency removal, while BLEU
will indicate whether disfluencies have been
removed.

The parallel Fisher data remains constant in all
settings. We have tested with three increasing lev-
els of disfluency induction in the synthetic data.
This is denoted using three different values, 0.1,
0.3, and 0.5, for the hyperparameter α. We use a
batch size of 32 and epoch size 50000. All other hy-
perparameters are similar to (Lample et al., 2017)’s
implementation.

4.2 Results and Discussion
Table 3 compares the baseline BLEU scores
of (Salesky et al., 2019) with our implementation.
Our proposed model operates in a mismatched set-
ting i.e. training using disfluent-to-disfluent text
data, and evaluating on fluent references for the val-
idation and test sets. We show two baseline scores
in Table 3. “BaselineD” refers to the use of disflu-
ent reference text during training and “BaselineF”
refers to the use of fluent reference text during
training. It should be noted that the reported base-
line from (Salesky et al., 2019) is a speech-to-text
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Model α dev test
1Ref 2Ref 1Ref 2Ref

BaselineD - 13 16.2 13.5 17.0
BaselineF - 14.6 18.1 14.6 18.1
Our Impl.D 0.5 17.27 17.54 17.36 20.47
Our Impl.D 0.3 17.2 17.46 17.71 20.93
Our Impl.D 0.1 16.96 17.22 17.08 20.15

Table 3: BLEU on development and test set with single vs multiple references. End-to-end model performance
evaluated with new fluent references. D: Disfluent reference, F: Fluent reference as used in training. Our imple-
mentation is trained using disfluent references only.

Model α dev test
1Ref 2Ref 1Ref 2Ref

BaselineD - 22.2 23.9 23.1 24.8
BaselineF - 22.3 24.0 23.1 24.9
Our Impl.D 0.5 24.9 24.7 25.8 27.2
Our Impl.D 0.3 25.7 25.4 26.5 28.0
Our Impl.D 0.1 24.9 24.7 25.7 27.1

Table 4: METEOR on development and test set with single vs multiple references. End-to-end model perfor-
mance evaluated with new fluent references. D: Disfluent reference, F: Fluent reference as used in training. Our
implementation is trained using disfluent references only.

model, while our implementation is a text-to-text
model. Scores on the development set and test
set using both single and multiple references are
shown. We demonstrate that our implementation
with three levels of disfluency induction and trained
only on disfluent references outperforms the base-
line score by a margin of 4.21 BLEU when the
baseline uses disfluent references and by a margin
of 3.11 BLEU even when the baseline system uses
fluent references during training.

Table 4 shows the METEOR score evaluated on
all three disfluency induction levels, using both
single and multiple references. When comparing
METEOR on single and multiple references of the
same setting, the precision is the same up to two
decimal digits, while there is a slight drop of 0.01
in recall in 2Ref when compared to 1Ref. The com-
parable METEOR values indicate that semantic
meaning is retained in the output.

On comparing METEOR scores of our imple-
mentation with that of both baseline models, we
observe that our model retains more semantic mean-
ing than the baseline models. Using a single refer-
ence, we obtain an absolute difference of 3.4 and
3.6 METEOR scores on the dev and test sets re-
spectively, between the best baseline system and
our proposed model. This shows that while do-
ing disfluency removal, the output also manages to

successfully retain semantic meaning.

5 Analysis

In this section, we discuss different types of exam-
ples that were generated by our model and how they
differ from the disfluent reference and the fluent
reference. Output is the generated translation from
our implementation, disfluent Ref and Fluent Ref
are the disfluent and fluent references, respectively.
It should be noted that fluent references were not
used during training and are only being shown here
for the sake of comparison6. Segment Comparison:
Deletion, Insertion, Shift.

Figure 2 shows that the filler word oh has been
omitted in the generated output.

Figure 2: Removing filler words.

6The figures used for comparison are created with Char-
Cut (Lardilleux and Lepage, 2017)
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In Figure 3, we observe that the repetition of
the fluent phrase peruvian peruvian is handled cor-
rectly, but not the repetition of yes.

Figure 3: Repetitions (I)

In Figures 4, the output carefully rejects um,
along with legitimately paraphrasing the sentence
as a result of the language model that it has learned
from the corpus.

Figure 4: Removing filled pause + paraphrasing (II)

In Figures 5, the disfluency right yes yes has
been completely removed. Instead of choosing yes,
it replaced it with well sure, but the disfluency has
been removed.

Figure 5: Disfluency removal + paraphrasing (II)

6 Conclusion

In this work, we propose a model for generating
fluent translations from disfluent text without any
access to fluent references during training. We rely
on having access to monolingual fluent text in the
target language, which is largely available for most
languages. We extract disfluency patterns by ex-
amining the disfluent text and inject disfluencies
to create a parallel disfluent-to-fluent text corpus
in the target language. We compare our results at
different levels of disfluency induction and show
significant improvements over a competitive base-
line.

For future work, we aim at building more sophis-
ticated and rich disfluency induction models. In
this work, we focused on the text-to-text setting.
We will look at extending this approach to a speech-
to-text spoken translation task, with disfluency re-
moval being an auxiliary task and investigate how
to meaningfully tie parameters across an audio en-
coder and a text encoder. Furthermore, we only
report standard quantitative metrics like BLEU and
METEOR here. More detailed human evaluations
may better highlight the benefits and limitations of
our approach. We also believe that our proposed
approach can be easily applied to other language
pairs and hope to verify this as part of future work.
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