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Abstract

To accomplish the shared task on depen-
dency parsing we explore the use of a lin-
ear transition-based neural dependency parser
as well as a combination of three of them
by means of a linear tree combination algo-
rithm. We train separate models for each lan-
guage on the shared task data. We compare
our base parser with two biaffine parsers and
also present an ensemble combination of all
five parsers, which achieves an average UAS
1.88 point lower than the top official submis-
sion. For producing the enhanced dependen-
cies, we exploit a hybrid approach, coupling
an algorithmic graph transformation of the de-
pendency tree with predictions made by a mul-
titask machine learning model.

1 System Overview

The shared task is aimed at performing all the levels
of linguistic analysis according to the UD guide-
lines, starting from raw text all the way to enhanced
dependency graphs. All this in a multi-language set-
ting for seventeen languages (Bouma et al., 2020).

In this endeavor, we concentrate on the syntac-
tic parsing and enhancement stages, by exploiting
existing tools for tokenization, sentence splitting,
POS tagging and morphological analysis.

For syntactic parsing we make experiments ex-
ploring different ideas, in an attempt to improve
state-of-the-art parsers with linear complexity. A
parser combination is then used for our official
submission, exploiting the linear tree combination
algorithm by Attardi and Dell’Orletta (2009), re-
sulting in an overall linear algorithm.

For the enhancement step, we build on previ-
ous work in writing an enhancer for UD, based on
algorithmic graph transformation, that was used
to produce the Italian version of the enhanced de-
pendencies (Simi and Montemagni, 2018). The
script used language specific heuristics and lexical

information, achieving a good degree of accuracy
for Italian and English. In this multi-language chal-
lenge, we have to deal with partial implementations
of the expected enhancement types as well as with
varying degree of compliance with the guidelines
in the different languages. In order to address this
additional complexity, we implement a new version
of the script for making it modular, parametric, and
language independent. For specific enhancement
tasks, we integrate the output of machine learning
classifiers, in an attempt to learn from the train-
ing data and make the heuristics more robust and
general.

2 Syntactic parsing

State of the art dependency parsers currently of-
ten adopt the graph-based model, based on neural
networks for the choice of arcs and labels.

We consider as current SoTA on the English PTB
the graph dependency parsers listed in Table 1.

In particular the Bi-LSTM-based deep biaffine
neural dependency parser by Dozat and Manning
(2017) has been quite popular and used in three out
of five of the top submissions to the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies (Zeman et al., 2018),
in particular in the top non-ensemble submission
(Kanerva et al., 2018).

The preference for such models leads to systems
with high accuracy but possibly slower due to their
O(n2) complexity. For example, the original im-
plementation of the Dozat parser is rated at about
400 sents/sec on GPUs, while for example the neu-
ral transition-based parser by Chen and Manning
(2014) is rated at 640 sents/sec just on CPUs. Our
experiments attempt to find a parser with linear
complexity and hence good speed performance. In-
deed the linear transition parser that we choose for
our experiments (UUParser) is twice as fast as the
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Parser UAS LAS
HPSG (Zhou and Zhao, 2019) 96.09 94.68
BIST-Graph (Kiperwasser and Goldberg, 2016) 93.10 91.00
Biaffine (Dozat and Manning, 2017) 95.74 94.08
Pointer-TD (Ma et al., 2018) 95.87 94.19
Pointer-LR (Fernández-González and Gómez-Rodrı́guez, 2019) 96.04 94.43
UUParser (de Lhoneux et al., 2017) 94.63 92.77
BIST-Transition (Kiperwasser and Goldberg, 2016) 93.9 91.9
CM (Chen and Manning, 2014) 91.80 89.60

Table 1: SoTA dependency parsers, grouped into graph-based (top) and transition-based (bottom).

latest version of the biaffine parser from Stanford
(Stanza). However, after submission, we discov-
ered a new implementation of the biaffine parser in
PyTorch (Zhang, 2019), which is 5 times faster by
better exploiting GPU acceleration.

We trained our own models for each language
on the shared task treebanks for UUParser, UDPipe
and Zysite, while we used a pretrained multilan-
guage model for UDify and pretrained individual
language models for Stanza.

2.1 UUParser

We choose UUParser as our base parser. UU-
Parser (de Lhoneux et al., 2017) is a transition-
based parser model, derived from the parser by
(Kiperwasser and Goldberg, 2016): the (bidirec-
tional) LSTM’s recurrent output vector for each
word is concatenated with each possible head’s re-
current vector, and the result is used as input to a
MLP that scores each resulting arc. The predicted
tree structure at training time is the one where each
word depends on its highest-scoring head. Labels
are generated analogously, with each word’s recur-
rent output vector and its gold or predicted head
word’s recurrent vector being used in a multi-class
MLP. We ported the Kiperwasser parser to Python
3. UUParser was further extended to deal with
non-projectivity by means of a swap transition and
to support ELMo embeddings as an input to the
LSTM.

We further extended UUParser in order to ex-
ploit BERT and AlBERT embeddings. Words are
first tokenized with their specific tokenizer and then
the embeddings for words split into wordpieces ob-
tained as the average of the wordpiece embeddings.

The code for the extended version is available
on GitHub1.

On development experiments, using the English

1https://github.com/attardi/uuparser

Treebank Embeddings UAS LAS
en-ewt BERT 91.24 89.33
en-ewt AlBERT 91.36 89.39
fr-sequoia BERT 91.44 89.55
cs-pdt BERT 93.87 91.94
it-isdt BERT 94.67 93.11

Table 2: Parser accuracy on the development set.

and Italian train and development sets provided for
the task, we obtained the results in Table 2.

For BERT we use the base-uncased model and
for AlBERT the large-v2 model, which we keep
frozen during training. Given the minor difference
between using BERT and AlBERT, in our experi-
ments we choose to use the BERT model.

We explored the idea to provide hints to the
parser, obtained from structural syntax probes (He-
witt and Mannings, 2019). We use a syntax probe
to estimate the parse tree path distance between
two tokens. The transition-based parser needs to
decide at each step which transition to apply to the
pair of words on the top of the stack (s0) and on the
input buffer (b0). The parser computes a distance
matrix for each pair of tokens in a sentence. The
parser is provided as additional features the esti-
mated distances between b0 and the top k (default
3) tokens on the stack. These distances should help
the parser in deciding whether to perform a Shift
transition rather than a premature Reduce.

The results we obtained with such an extension
on the English development corpus where 92.21
UAS and 90.31 LAS, using ELMo embeddings for
word representations and BERT for syntax probes,
a small improvement with respect to 91.32 UAS
and 89.33 LAS without using these features.

We also tested two biaffine parsers: the im-
plementation by Zysite (Zhang, 2019) and
Stanza (Qi et al., 2020) which augments the bi-
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Parser GPU
sents/s

CPU
sents/s

UAS

UUParser 16.62 0.81 83.93
Stanza 7.77 0.43 84.51
Zysite 84.82 2.11 86.67

Table 3: Speed performance of parsers: average user
time on all test set.

affine parser with features to predict the lineariza-
tion order of two words in a given language, and to
predict the typical distance in linear order between
them.

We report in table 3 the average speed perfor-
mance on all the 17 test sets of the challenge ob-
tained by the linear parser and the two quadratic
biaffine graph parsers.

The Zysite biaffine parser turns out to be both
the most accurate and the fastest. It is also worth
mentioning the significant training time, as for ex-
ample Zysite takes more than 39 hours to train it
on the Czech treebank, with 68,495 sentences. The
experiments were performed on a Dell server using
a single NVIDIA Tesla T4 GPU.

2.2 Tokenization, Tagging
UUParser does not provide tokenization nor tag-
ging capabilities, so we have to rely on another set
of tools to accomplish these tasks. We choose to
use UDPipe (Straka and Straková, 2017) to per-
form sentence splitting, tokenization and tagging.
This gives us a common tagged representation to
use also with alternative parsers.

Some of the parsers tested provide the ability
to perform end-to-end parsing from raw text, in
particular UDify (Kondratyuk and Straka, 2019)
and Stanza. However, they turn out not to be very
effective: the pretrained model of UDify does not
support all the task languages and Stanza has a
weird behavior: for example, it would split a word
like “GoogleOS” not just into two tokens, “Google”
and “OS”, but into two separate sentences.

So eventually we decided to use the same to-
kenization provided by UDPipe as input to all
parsers. This enables us also to produce an ensem-
ble version combining the outputs of three parsers.

2.3 Ensemble of Parsers
In the official submission, we exploit the linear tree
combination algorithm by Attardi and Dell’Orletta
(2009) to combine the outputs of an ensemble of
dependency parsers. The algorithm is greedy and

works by combining the trees top down. It has been
shown to outperform more complex algorithms
based on computing the Maximum Spanning Tree.

The parsers used are UDify, UUParser and UD-
Pipe.

In a later unofficial submission labeled comb5,
we included also Zysite and Stanza in the en-
semble. Table 7 presents the results of this sub-
mission compared to the best performing official
submission in the challenge.

These scores are within 1% UAS to the results
of the top submission by Jenna Kanerva of the Uni-
versity of Turku, except on the Baltic languages
(-3.37% Latvian, -4.91% Lithuanian, -4.98% Eston-
aian), Finnish (-4.42% UAS) and Arabic (-8.22%)
and better on Tamil (+3.63%).

3 Enhanced Dependencies

For producing the enhanced dependencies we fol-
low a “hybrid” approach, using a combination of an
algorithmic graph transformation of the syntactic
dependency tree coupled with predictions made by
three machine learning classifiers. The basic en-
hancing script is an evolution of the work presented
in (Simi and Montemagni, 2018) to bootstrap en-
hanced dependencies for the Italian treebank, also
used for experiments in (Nivre et al. 2018).

One classifier is used to recognize the external
subjects in xcomp constructions. The second clas-
sifier detects when a head should be propagated in
conjunctions. The third classifier detects the case
of propagation of dependents in conjunctions. The
classifiers are trained jointly on the three tasks and
produce three binary predictions.

The script that adds the enhanced dependencies
is modular, so that it can be adapted to perform
just the required analysis depending on the kind of
enhanced dependencies present in each language
and to bypass those that were not implemented. In
addition, the script is parametric with respect to
predictions coming from machine learning classi-
fiers, which can be taken into account or ignored.
We describe below how the different kinds of en-
hancements are addressed.

3.1 Controlled/Raised Subjects

This type of enhancement applies to subordinate
infinitive clauses introduced by the xcomp relation
and consists in adding an extra nsubj dependency
to the embedded or controlled verb. The difficult
aspect of this enhancement is to predict the correct
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subject for the dependent clause among the differ-
ent dependents of the main verb. In fact, this extra
subject can be the subject, object or an oblique
complement, as the following examples testify:

1. Mary wants to buy a book. Mary is the subject
of buy.

2. Mary asked John to buy a book. John, the
object, is the subject of buy.

3. Maria ha chiesto a Giovanni di comprare un
libro. [Mary asked John to buy a book]. In Ital-
ian, the buyer, Giovanni, is an indirect com-
plement (obl) of the main verb chiesto.

We train a neural binary classifier to predict which
of the dependents of the main verb should be cho-
sen to play the role of the extra subject for the
dependent verb, if any. If more than one token is
predicted as an external subject of the subordinate
clause, currently all of them are added.

The classifier is applied to tokens that have a
sibling in a xcomp relation, which are either a
noun or a pronoun and whose deprel is one of
the following: nsubj, csubj, obj, iobj, obl,
nsubj:pass, csubj:pass.

Such tokens are represented by the following
features: the form, the upos and the deprel of
the token, the form, the upos and the deprel of
the token’s head, the form of the xcomp sibling,
the form of the case or mark which introduces
the subordinate phrase. A training example for the
first classifier has the features for a token as input
and a binary value as output depending on whether
the sibling is indeed a nsubj for the subordinate
clause.

3.2 Propagation over Conjuncts
The classifiers for propagation over conjuncts act in
a similar way. We train two distinct classifiers for
recognizing candidates for head propagation and
for dependents propagation over conjuncts. Candi-
dates for head propagation are conjoined subjects
and objects, that should each be attached to their
head as in “Paul and Mary are running” or “Paul
bought apples and oranges”.

Candidates for dependent propagation are sub-
jects, objects and other complements of conjoined
verbs, as it is the case of she in “She was reading
and watching a movie”.

The model is trained to predict whether a candi-
date for propagation should be safely propagated,
by making the implicit relations explicit.

3.3 Model Architecture
The three classifiers share the same neural network
architecture. The first layer collects the embed-
dings for each form, upos or deprel in the input
vector. The embeddings for the forms are obtained
from FastText (Bojanowski et al. 2017). The em-
beddings for upos and deprel are learned as
vectors of size 20 each.

The second layer of the classifier concatenates
the embeddings from the first layer. The third layer
is a flatten layer, which is followed by a fully con-
nected layer with a hidden dimension of 100. This
is followed by a dropout with a probability of 50%
(chosen by tuning experiments) and finally there is
a fully connected layer with a sigmoid activation.

The classifiers are trained jointly with a binary
cross entropy loss function and an Adam optimizer
(Kingma and Ba, 2015) on the training set of each
language. The training is run for up to four epochs,
even though in most cases the loss stops decreas-
ing after the second epoch. Validation accuracies
during training range around 97-98%. The code is
written in Keras on a Tensorflow backend.

3.4 Relative Clauses
The treatment of enhancements for relative clauses
is quite straightforward. It consists in attaching the
relative pronoun to its antecedent with the special
ref relation and attaching the referred antecedent
as an argument to the main predicate of the relative
clause. This enhancement may create circularities
in the enhanced graph.

3.5 Label Augmentation with Case/Mark
Information

The most difficult sub-task turned out to be guess-
ing the right case/mark information for augmenting
the relation name of non-core dependents, due to
the different interpretations and varying degree of
compliance with the guidelines in the various tree-
banks. Given the high frequency of occurrence of
this type of enhancements, doing this task right has
high impact on the overall performance.

As it turned out, the differences concern all the
following aspects, and their combinations:

1. the type of deprels considered for the augmen-
tation (e.g. conj is not specialized in Arabic,
Bulgarian, Estonian, Finnish, French, Latvian,
Lithuanian, Polish etc.)

2. the case/mark information used (either the
lemma or form of the case/mark dependent)
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3. the strategy adopted in presence of multiple
marks/cases dependents (whether their con-
catenation or the last one as in English)

4. the strategy adopted when cases/marks are
fixed multi-word expressions (whether forms
or lemmas are combined)

5. the use or not of morphological case informa-
tion and to what extent

6. the presence of non canonical key-
words in some languages (for example
agentxoxnsubj and enh introduced in
the French treebank to encode diathesis
normalization as described by Candito et al.
(2017)).

In this sense, the inclusion/exclusion of type spe-
cialization depending on the language is a too
coarse strategy, since it does not account of all these
variations; moreover the differences are treebank-
wise (as opposed to language-wise) in the sense
that different subparts of the test set for a specific
language may be coming from different treebanks
following different approaches.

In order to address these issues, we adopted a
very simplistic data driven approach to adjust the
result of a rule-based algorithm, which implements
the guidelines. We computed a mapping from the
label predicted from our enhancer to the gold la-
bel found in the training data set and filtered out
correspondences whose frequency was less than a
fixed threshold, in order to be tolerant to sporadic
errors. As a final “patch”, we applied the result-
ing transformation to produce the final augmented
label.

This strategy is far from perfect and clean, but
it does take care of systematic differences among
languages, such as the use of case features (gen,
tt nom, dat, tt ins etc.) in some of the languages
with morphological cases. However, it provides
no solution to issues related to non-conventional
label completions, nor solves the problem of se-
lecting the correct mark or case when multiple
ones are present (e.g. about whether, along with
in English), or to address the non-canonical use,
with respect to the guidelines, of lemma vs form in
augmentations2.

2For case information the guidelines suggest the use of
forms in multi-word expressions and lemmas for single words.
English apparently adopts the inverse convention

Language Parameters
Arabic -e=4; ml; patch
Bulgarian ml; patch
Czech patch
Dutch ml
English
Estonian ml; patch
Finnish ml; patch
French -e=156; ml
Italian
Latvian patch
Lithuanian ml
Polish ml
Russian -e=3; patch
Slovak patch
Swedish
Tamil -e=145; ml; patch
Ukrainian patch

Table 4: Parameters resulting form tuning: see the text
for their meaning.

3.6 Tuning Parameters

The machine learning modules and the “patch”
strategy were not equally effective for all languages.
On the basis of the performance on the develop-
ment set, we selected for each language the best
choice of parameters for the enhancement script.
These were consistently applied in producing the
enhanced version of the parser results in all submis-
sions.

Table 4 summarizes the choice of parameters
for the different languages, where the values for
the parameters “-e” represent the types of enhance-
ment to be excluded, since not implemented for
the language (consistently with the parameters of
the evaluation script), ml means that we used the
predictions from the machine learning classifiers,
patch means that we used the mappings strat-
egy for fixing label augmentation. The lack of
parameters means that only the basic enhancement
script was used, and all enhancement types were
performed.

4 Results

The official results are those labeled UNIPI-003 in
our submission, obtained through the combination
of the parsers UDify, UUParser and UDPipe.

Table 5 shows the official results obtained in to-
kenization and tagging on the test sets. Table 6
shows our team official results on parsing and en-
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hancement.
After the submission deadline, we experimented

with the biaffibe parsers Stanza and Zysite.
Stanza improves over UUParser by an average

of 0.58 UAS, 0.64 LAS, 1.05 CLAS, 4.26 MLAS,
4.26 BLEX, 0.60 EULAS, 0.42 ELAS, with notable
improvements of +16.82 LAS on Estonian, while a
decrease of -28.52 LAS on Lithuanian, and -9.95
LAS on Polish is observed.

Zysite improves over UUParser by an average of
1.77 UAS, 1.84 LAS, 1.97 CLAS, 0.27 MLAS, 1.28
BLEX, 1.83 EULAS and 1.63 ELAS, with notable
improvements of +17.49 LAS on Estonian, +5.02
on Dutch, +3.23 on Svedish, but with a significant
drop of -14.48 LAS on Arabic.

These are encouraging results that show that
a transition-based parser can be competitive with
graph-based ones.

We then produced a new run comb5 (UNIPI-
comb5), as an ensemble of five parsers: UUParser,
UDify, UDPipe, Stanza and Zysite. We report these
unofficial results in Table 7.

The improvements on parsing by the ensemble
of five parsers with respect to the single parser
UUParser are summarized in Table 8.

The most significant improvements from the en-
semble combinations are +13.07 UAS on Estonian,
+5.31 on Tamil, +5.11 on Dutch, +3.59 on Lithua-
nian, +4.37 on Finnish.

Estonian, Finnish, Latvian, Lithuanian turned
out as the most difficult for our dependency parsers,
with a difference between 4.2 and 6.5 points of
UAS with respect to the submission by Kanerva
and even 10.7 point lower on Arabic.

If we consider the average UAS excluding the
Baltic languages, the average UAS of the ensemble
parsers is 89.82.

As for the enhancement task, its difficulty, be-
sides what we discussed in section 3.5, seems to
be confirmed by a significant drop from our EU-
LAS score (restricted to UD relations) to the ELAS
score, which also takes into account label enhance-
ments. The average drop is 6.26 points and for
some languages more than 10 points. The effec-
tiveness of our ’patch’ strategy had been carefully
assessed with the development data, but did not
provide analogous results on the test set. Our al-
gorithm was poor in predicting the label extended
with case information. Perhaps a machine learning
approach would have provided better results in this
case.

5 Conclusions

We experimented with both linear transition-based
parsers and two implementations of graph-based
biaffine parsers. All parsers have difficulties with
Baltic languages, Finnish and Arabic which some-
how we were able to mitigate by combining them
into an ensemble, except for Arabic, which remains
8.2 points UAS lower than the top submission. Our
enhanced version of UUParser, using BERT em-
beddings, performs competitively well with respect
to the biaffine Zysite parser, except on Estonian,
Tamil and Dutch, while it outperforms it by +14
LAS on Arabic. Since all the parsers use the same
base model, multilingual uncased of BERT, it might
be worthwhile to investigate how such models af-
fect the performance on Baltic languages.

The implementation of the biaffine parser by
Zysite was a surprising discovery, since it is capa-
ble to outperform in speed all other parsers, possi-
bly due to its use of a more efficient biaffine opera-
tion via torch.einsum().

For adding the enhanced relations to the out-
put of the parser we opted for a hybrid approach,
where for some languages, which appear to be more
conforming to the guidelines, we applied an algo-
rithmic solution, while for the rest we exploited
machine learning classifiers.

In principle the algorithmic approach should be
sufficient as soon as languages adhere more strictly
to the guidelines. In the meanwhile, we wonder
whether it is worthwhile to develop techniques
which are language specific in order to obtain better
results, unless there are ways to devise a language
agnostic solution.
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Language UAS LAS CLAS MLA BLEX EULAS ELAS
Arabic 76.46 71.48 67.41 57.26 62.70 68.66 57.79
Bulgarian 91.66 88.26 84.82 79.11 77.98 86.77 84.93
Czech 91.95 89.64 87.99 76.21 85.25 86.19 75.99
Dutch 84.43 80.53 73.42 65.08 67.75 78.95 77.62
English 88.22 85.10 82.21 73.74 77.79 84.54 83.95
Estonian 70.57 63.18 60.04 46.69 42.79 62.45 57.24
Finnish 85.17 81.25 78.79 72.53 66.33 79.04 72.13
French 88.09 82.58 75.37 41.81 71.93 81.84 78.85
Italian 93.04 90.69 86.57 82.55 83.04 89.77 89.14
Latvian 85.47 81.25 78.25 66.47 72.02 78.44 68.23
Lithuanian 76.99 70.76 67.48 51.75 58.40 67.16 61.06
Polish 90.97 87.53 85.24 64.92 80.26 84.83 70.61
Russian 92.44 90.52 89.20 69.95 85.45 88.34 76.90
Slovak 91.24 88.95 87.02 62.99 71.95 85.93 81.40
Swedish 84.80 80.92 78.63 49.09 66.77 79.90 78.73
Tamil 62.79 54.69 51.62 42.50 45.29 54.59 48.50
Ukrainian 88.96 85.23 82.16 63.78 74.89 82.51 73.90
Average 84.90 80.74 77.42 62.73 70.03 78.82 72.76

Table 6: UNIPI Official results on parsing the test set: ensemble of UUParser, UDify and UDPipe.
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UniPI run comb5 University of Turku
Language UAS LAS CLAS MLA BLEX UAS LAS CLAS MLA BLEX
Arabic 77.14 72.97 69.41 58.22 64.31 85.36 81.17 78.81 72.15 75.60
Bulgarian 93.72 90.73 87.72 81.10 80.36 95.07 92.48 89.94 85.96 87.85
Czech 92.89 90.79 89.35 77.26 86.53 92.94 90.83 89.39 81.25 87.53
Dutch 89.54 86.71 81.57 70.29 74.92 90.02 87.20 82.33 75.95 78.84
English 89.09 86.70 84.14 74.93 79.56 91.13 88.97 87.15 81.45 84.71
Estonian 83.64 80.18 78.88 53.55 53.20 88.62 85.86 84.61 79.01 81.40
Finnish 89.54 86.99 85.20 76.87 70.86 93.96 92.50 91.65 87.11 87.60
French 91.54 87.40 83.09 45.72 78.86 91.26 87.85 82.94 70.36 80.07
Italian 94.47 92.66 89.04 84.09 85.08 94.71 93.31 90.34 86.91 88.45
Latvian 88.01 84.54 82.10 68.75 75.16 91.38 88.53 86.64 77.43 82.86
Lithuanian 80.58 74.88 72.03 53.17 61.65 85.49 81.85 79.88 66.23 74.04
Polish 93.42 90.66 88.79 66.76 83.48 94.38 91.82 90.36 77.36 88.11
Russian 93.86 92.45 91.23 71.35 87.30 94.06 92.74 91.84 88.10 89.97
Slovak 92.65 90.43 88.85 63.80 72.74 93.40 91.57 90.60 77.76 86.76
Swedish 88.16 85.18 83.45 51.43 70.60 90.81 88.31 87.29 71.65 80.37
Tamil 68.10 61.32 58.46 51.39 53.86 64.47 59.66 57.72 47.18 53.84
Ukrainian 90.38 87.71 85.23 65.59 77.67 91.65 89.68 87.41 76.92 84.81
Average 88.04 84.84 82.27 65.55 73.89 89.92 87.31 85.23 76.63 81.93

Table 7: Unofficial results on parsing: on the left our submission, on the right the best submission.

Language UAS LAS CLAS MLAS BLEX EULAS ELAS
Arabic 0.68 1.49 2.00 0.96 1.61 1.49 0.95
Bulgarian 2.06 2.47 2.90 1.99 2.38 2.44 2.41
Czech 0.94 1.15 1.36 1.05 1.28 1.10 0.93
Dutch 5.11 6.18 8.15 5.21 7.17 6.08 5.92
English 0.87 1.60 1.93 1.19 1.77 1.61 1.72
Estonian 13.07 17.00 18.84 6.86 10.41 16.72 14.50
Finnish 4.37 5.74 6.41 4.34 4.53 5.60 4.97
French 3.45 4.82 7.72 3.91 6.93 4.89 4.58
Italian 1.43 1.97 2.47 1.54 2.04 2.04 2.09
Latvian 2.54 3.29 3.85 2.28 3.14 3.22 2.53
Lithuanian 3.59 4.12 4.55 1.42 3.25 4.03 3.83
Polish 2.45 3.13 3.55 1.84 3.22 3.14 2.48
Russian 1.42 1.93 2.03 1.40 1.85 1.90 1.52
Slovak 1.41 1.48 1.83 0.81 0.79 1.46 0.97
Swedish 3.36 4.26 4.82 2.34 3.83 4.20 4.42
Tamil 5.31 6.63 6.84 8.89 8.57 6.53 5.53
Ukrainian 1.42 2.48 3.07 1.81 2.78 2.31 2.37
Average 3.14 4.10 4.85 2.82 3.86 4.04 3.63

Table 8: Improvements by parser combination on unofficial run.


