
Proceedings of the First Workshop on Interactive and Executable Semantic Parsing, pages 46–49
Online, November 19, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

46

Natural Language Response Generation from SQL with Generalization
and Back-translation

Saptarashmi Bandyopadhyay
University of Maryland, College Park

College Park, MD 20742
sapta.band59@gmail.com

Tianyang Zhao
The Pennsylvania State University

University Park, PA 16802
zty12713@gmail.com

Abstract

Generation of natural language responses to
the queries of structured language like SQL
is very challenging as it requires generaliza-
tion to new domains and the ability to an-
swer ambiguous queries among other issues.
We have participated in the CoSQL shared
task organized in the IntEx-SemPar workshop
at EMNLP 2020. We have trained a num-
ber of Neural Machine Translation (NMT)
models to efficiently generate the natural lan-
guage responses from SQL. Our shuffled back-
translation model has led to a BLEU score of
7.47 on the unknown test dataset. In this paper,
we will discuss our methodologies to approach
the problem and future directions to improve
the quality of the generated natural language
responses.

1 Introduction

Natural language interfaces to databases (NLIDB)
has been the focus of many research works, includ-
ing a shared track on the Conversational text-to-
SQL Challenge at EMNLP-IntexSemPar 2020 (Yu
et al., 2019). We have focused on the second task,
natural language response generation from SQL
queries and execution results.

For example, when the SQL query “SELECT
dorm name FROM dorm” is present, a possible
response by the system could be “This is the list of
the names of all the dorms”. The ideal responses
should demonstrate the results of the query, present
the logical relationship between the query objects
and the results, and be free from any grammatical
error. Another challenge for this task is that the
system needs to be able to generalize and do well
on the SQL queries and the database schema which
it has never seen before.

2 Related Works

Many existing papers focus on text to SQL gen-
eration like Shin (2019) and Zhong et al. (2017)
which emphasize self-attention and reinforcement-
learning-based approaches. The problem of gener-
ating natural language responses from SQL is that
this specific area is relatively under-researched, but
we have tried to come up with probable solutions
in this shared task.

Gray et al. (1997) inspired us to generalize SQL
keywords for better response generation with im-
provement in generalization. We have employed
back-translation, used by Sennrich et al. (2015) and
Hoang et al. (2018), in order to increase the BLEU
score. We were also motivated by the linguistic
generalization results pointed out by Bandyopad-
hyay (2019) and Bandyopadhyay (2020) where the
lemma and the Part-of-Speech tag are added to the
natural language dataset for better generalization.
Although we did not include it in our final model
due to challenges in removing the linguistic fac-
tors, this approach offers a potential future in the
generalization of the generated natural language
responses.

3 Pre-processing Methods

We decided to take the Neural Machine Translation
(NMT) approach, where the SQL queries with the
execution results are regarded as the source, and
the natural language, more specifically English,
responses are seen as the target. We chose Seq2seq
as our baseline model. After several attempts of
training and parameter tuning, we were able to
obtain a baseline BLEU score.

In order to further improve the BLEU score, first,
we came up with the idea of SQL keyword gener-
alization. SQL keyword generalization is a pre-
processing method we applied to the input data (i.e.
the SQL queries with the execution results). We



47

Original Keywords Generalization
UNION, INTERSECTION,
EXCEPT SET
AND, OR LOGIC
EXISTS, UNIQUE, IN NEST
ANY, ALL RANGE
AVG, COUNT, SUM,
MAX, MIN AGG

Table 1: The grouped SQL keywords and their substi-
tutions.

first put the common SQL keywords into differ-
ent groups based on their characteristics. Table 1
shows our choices of grouping. Then, we substi-
tuted each of those keywords in the input data to
the newly purposed, generalized name according
to the group we put the keyword in.

More specifically, UNION, INTERSECTION,
and EXCEPT are substituted as SET because these
three keywords are set operations. AND and OR
are substituted as LOGIC because they are logic
operators. One thing worth noting is that although
AND in SQL is not only a logic operator as it can
also be used to join tables, the phrase “JOIN . . .
ON . . .” is primarily used for this particular pur-
pose. EXISTS, UNIQUE, and IN are substituted
as NEST because these keywords are followed by
one or multiple nested queries. ANY and ALL are
substituted as RANGE since they are followed by a
sub-query that will return a range of values, and an
operator such as > is usually in front of ANY and
ALL to compare with those values returned by the
sub-query. AVG, COUNT, SUM, MAX, and MIN
are substituted as AGG since all these keywords
are aggregate operators.

The remaining common SQL keywords are dif-
ficult to be grouped with other ones. For example,
GROUP BY and HAVING have distinct meanings
and work differently as they are followed by non-
identical elements. GROUP BY is followed by a
“grouping-list”, usually an attribute of a table, while
HAVING is followed by a “group-qualification”,
usually a comparison involving an operator. There-
fore, those keywords are kept as they are in the
input data. Moreover, the operators are also not
generalized since >, ≥, <, ≤ are used to compare
numerical values only, while = and 6= are used to
compare non-numerical values as well, like strings.

Overall, the reason we applied this SQL keyword
generalization pre-processing is to avoid situations

where certain common keywords are seen only for
a few times or even never seen in the training data
set, then the trained model would react poorly to
those keywords in the test data set by pulling words
from the vocabulary almost randomly.

4 Shuffled Back-Translation

Another idea we utilized to improve the BLEU
score is the iterative back-translation as described
in Shin (2019) and Zhong et al. (2017).

Back-translation is a simple way of adding syn-
thetic data to the training model by training a target-
to-source model, then generating a synthetic source
dataset using a monolingual corpus on the target
side. The synthetic source dataset and the provided
target dataset are augmented to the training datasets
to re-train the model. Since no monolingual cor-
pus was provided in our case, we split the original
dataset. To address any potential bias, we shuf-
fled the dataset before splitting so that the created
monolingual dataset is free from bias.

We also tried a variant of back translation called
cyclic translation. The idea simply repeats the step
of back-translation. After generating the synthetic
source dataset from the provided target dataset, that
dataset is used as input to the baseline source-to-
target model to generate the synthetic target dataset.
The synthetic source dataset and synthetic target
dataset are augmented to the training datasets to
train the model once again.

The shuffled back-translated model with a high
drop-out rate and more number of training steps
led to the highest BLEU score on the development
dataset as reported in Section 5.

5 Experiment and Results

A lot of diverse models have been trained for our
experiments as enumerated below which have been
labeled as follows:

1. Baseline (Model 1)

2. Baseline with SQL keyword generalization
(Model 2)

3. Baseline with SQL keyword generalization
and true-cased input (Model 3)



48

Model BLEU score on the dev set
Model 1 7.60
Model 2 9.72
Model 3 10.39
Model 4 11.05
Model 5 10.85
Model 6 10.46
Model 7 11.75
Model 8 9.50
Model 9 12.12

Table 2: Cross validation results with different models.

4. Back-translation with SQL keyword general-
ization and true-cased input (Model 4)

5. Cyclic-translation with SQL keyword gener-
alization and true-cased input (Model 5)

6. Shuffled back-translation with SQL keyword
generalization and true-cased input (Model 6)

7. Back-translation with SQL keyword general-
ization and true-cased input (higher dropout
and more training steps) (Model 7)

8. Cyclic-translation with SQL keyword gener-
alization and true-cased input (higher dropout
and more training steps) (Model 8)

9. Shuffled back-translation with SQL keyword
generalization and true-cased input and drop-
out rate = 0.5 (Model 9)

These models have been described in the previous
sections. All the notable results are shown in Table
2.

We began our experiment by tuning the hyper-
parameters of the Seq2seq model in Tensorflow
NMT. After repeated experimentation, we selected
the parameters for our baseline training model
(Model 1) as follows:

1. 4 layered bi-directional encoder

2. Source and target sequence length of 60

3. Adam optimizer

4. 0.001 as the initial learning rate

5. luong10 learning rate decay scheme as de-
scribed in Tensorflow NMT

6. 12000 training steps

7. 0.4 drop-out rate

The other parameters are set to the default Ten-
sorflow NMT values.

Then, we came up with the idea of SQL key-
word generalization and implemented this idea. It
turned out to be wonderful and improved the BLEU
score significantly (from 7.60 to 9.72). Next, we fo-
cused on other possible pre-processing techniques
that we could apply. We initially were considering
four methods: tokenization, true-casing, linguistic
factorization, and byte pair encoding. According
to our testing, byte pair encoding, and the combi-
nation of these two methods degraded the BLEU
score. Linguistic factorization led to high BLEU
scores but the removal of the linguistic factors from
the generated response again reduced the BLEU
score. Tokenization also degrades the performance
of the model. After carefully observing the given
dataset, we found that it has already been tokenized,
so further tokenization is unnecessary. In the end,
SQL keyword generalization and true-casing are
the two pre-processing techniques that we apply to
the model.

Afterwards, we started to think about the steps
in the training process that we could improve. We
implemented back-translation, and it increased the
BLEU score. However, we found this method is
likely to introduce an overfitting issue. To be more
specific, since we were not given any test data or
any dataset analogous to a monolingual corpus, we
split the given ground truth file for the development
set into two files and used them (one as our “de-
velopment” ground truth and the other as our “test”
ground truth) for the external evaluation during
the training. The model achieved a much higher
BLEU score on our “development” ground truth
than previously recorded but the BLEU score on
our “test” ground truth decreased in comparison to
that previously recorded.

Then, we came up with three ways to deal with
this issue. The first one was the cyclic translation
where no extra data (i.e. the monolingual data) is
introduced in the training. This new way of train-
ing did help with the overfitting issue with a higher
BLEU score on our created “test” dataset but failed
to improve the BLEU score on the given devel-
opment set. The second way was to shuffle the



49

monolingual data used in the back-translation. It
solved the overfitting issue but did not achieve a
higher BLEU score on the development data either.
The last way was to change the values for certain
hyper-parameters. For instance, we increased the
dropout rate from 0.4 to 0.5 to strengthen regular-
ization. Accordingly, we also increased the number
of training steps from 12000 to 20000. We applied
the hyper-parameter changes to all three training
methods, the original back-translation, cyclic trans-
lation, and shuffled back-translation. In the end, the
shuffled back-translation model with the new hyper-
parameter settings and the two pre-processing prac-
tices achieved the highest BLEU score on the de-
velopment set.

6 Conclusion

Our submitted shuffled back-translation with a
drop-out rate of 0.5 and 20000 training steps on
Tensorflow NMT gives a BLEU score of 7.47 on
the unknown testing dataset and a BLEU score of
12.12 on the development dataset. A further conclu-
sion can be drawn once the Grammar and the Log-
ical Consistency Rate (LCR) scores are released
by the organizers. It can be observed that shuffled
back-translation with a higher drop-out rate gave a
high BLEU score on the development dataset com-
pared to the baseline or the back-translated model
with a lower drop-out rate. This suggests that the
shuffling of the dataset before back-translation can
potentially address the issue of any bias in the
datasets. The improved results with increased drop-
out suggest that regularization has been effective
in this experimental setting. The idea of cyclic
translation deserves further exploration. General-
ization may be improved on the natural language
responses by developing an improved variant of the
linguistic factoring approach. The collection of ad-
ditional training data can also be useful to increase
the BLEU score on the unknown test dataset.

References
Saptarashmi Bandyopadhyay. 2019. Factored neural

machine translation at loresmt 2019. In Proceedings
of the 2nd Workshop on Technologies for MT of Low
Resource Languages, pages 68–71.

Saptarashmi Bandyopadhyay. 2020. Factored neural
machine translation on low resource languages in the
covid-19 crisis.

Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew
Layman, Don Reichart, Murali Venkatrao, Frank

Pellow, and Hamid Pirahesh. 1997. Data cube: A re-
lational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data mining and knowl-
edge discovery, 1(1):29–53.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18–24.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Richard Shin. 2019. Encoding database schemas with
relation-aware self-attention for text-to-sql parsers.
arXiv preprint arXiv:1906.11790.

Tao Yu, Rui Zhang, He Yang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. 2019. Cosql: A conversational
text-to-sql challenge towards cross-domain natural
language interfaces to databases. arXiv preprint
arXiv:1909.05378.

Xiaoshi Zhong, Aixin Sun, and Erik Cambria. 2017.
Time expression analysis and recognition using syn-
tactic token types and general heuristic rules. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 420–429, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/P17-1039
https://doi.org/10.18653/v1/P17-1039

