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Abstract 

Task Oriented Parsing (TOP) attempts to 
map utterances to compositional requests, 
including multiple intents and their slots. 
Previous work focus on a tree-based 
hierarchical meaning representation, and 
applying constituency parsing techniques 
to address TOP. In this paper, we propose a 
new format of meaning representation that 
is more compact and amenable to 
sequence-to-sequence (seq-to-seq) models. 
A simple copy-augmented seq-to-seq 
parser is built and evaluated over a public 
TOP dataset, resulting in 3.44% 
improvement over prior best seq-to-seq 
parser (exact match accuracy), which is 
also comparable to constituency parsers’ 
performance1. 

1 Introduction 

Today, most virtual assistants like Alexa and Siri 
are task oriented dialog systems based on GUS 
architecture (Bobrow et al. 1977; Jurafsky and 
Martin. 2019). They parse users’ utterances to 
semantic frames composed of intents and slots.  An 
intent normally represents a web API call to some 
downstream domain application to fulfill certain 
task. Slots correspond to parameters required in 
web API calls. In this paper, the task of parsing 
utterances to semantic frames is called Task 
Oriented Parsing (TOP).  

Many prior work (Liu and Lane, 2016; Goyal et 
al. 2018) concentrate on parsing single-intent 
requests in which one utterance contains only one 
intent and its slots. Shah et al. (2018) proposes a 
hierarchical TOP representation to model the 
nested requests: one utterance contains multiple 
recursive intents and their slots. Figure 1.a shows 
an example of the hierarchical TOP representation, 
which is called base representation in this paper. 
Other than expressiveness, base representation also 
enjoys the easy annotation, efficient parsing and 
low adoption barrier in practice. Two types of 
models have been employed to perform TOP tasks: 
seq-to-seq models, and constituency parsing 

models (Dyer et al., 2016; Gaddy et al. 2018). It 
has been reported that the latter consistently 
outperforms the former, probably because 
constituency parsing algorithms are dedicated to 
serving tree-based representation by design, while 
seq-to-seq architecture are purposed to serve more 
generalized form of representations such as graph 
and logical form (Dong and Lapata, 2016; Jia and 
Liang 2016).  

In this paper we introduce a compact TOP 
representation, which has fewer tokens than base 
presentation. Further, we build a simple seq-to-seq 
model with attention-based copy mechanism to 
evaluate the effectiveness of the compact 
representation. Experimental results on a public 
TOP dataset show that this approach can 
significantly improve seq-to-seq parser’s inference 
performance and close its gap to current 
constituency parsers, who cannot handle the new 
TOP representation. 

2 Related Work 

Shah et al. (2018) proposes the hierarchical TOP 
representation and uses RNNG (Dyer et al., 2016), 
a standard transition-based constituency parsing 
algorithm, to build a TOP parser, which 
outperforms the baseline seq-to-seq parsers by 
2.64%. Einolghozati et al. (2018) further optimizes 
the RNNG parser using ensembling, contextual 
word embedding and language model re-ranking, 
leading to higher exact match accuracy. However, 
training a RNNG model is expensive and almost 
one-scale slower than training a seq-to-seq model. 
Later, Pasupat et al. (2019) presents a chart-based 
(constituency) TOP parser, and it can reach fast 
training and high inference accuracy 
simultaneously.  

3 Representation 

In base representation, words are terminals, and 
intents and slots are nonterminals. The root node is 
an intent, and an intent is allowed to be nested 
inside a slot. In addition, base representation 
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follows three constraints: 1. The top-level node 
must be an intent, 2. An intent can have words 
and/or slots as children, 3. A slot can have either 
words or an intent as children.  

 

 
Fig 1.a: Base Representation. Intents are prefixed with IN: and slots 
with SL:. 

 

 
Fig 1.b: LOTV Representation. All words are replaced with token ‘0’. 

 

 
Fig 1.c: Compact Representation. Words are either gone or replaced 
with word indexes. 

To simply seq-to-seq models, a single special 
token is used to replace multiple words in parses, 
which is called Limited Output Token Vocabulary 
(LOTV) representation (Shah et al., 2018). In the 
Figure 1.b, the special token used in LOTV 
representation is ‘0’. After using LOTV 
representation to substitute base representation, 
seq-to-seq model performs much better: almost 7% 
increase.  

Compact representation is based on two 
observations: 1. Direct child tokens under an intent 
node are unnecessary to final execution of API 
calls; 2. A span of continuous words in the leaf of 
base representation can be encoded as a pair of 
positional indexes of starting word and ending 
word in source utterance. Specifically, compact 
representation is defined as a tree: root node is an 
intent; an intent node has either child slot nodes or 
no child node; a slot node has one child: either an 
intent node or a pair of word indexes that encode a 
continuous word span. Figure 1.c shows an 
example of compact representation.  

Apparently, compact representation has fewer 
tokens than base representation and LOTV 

presentation. Its Vocabulary size is smaller than 
base representation, but bigger than LOTV 
representation.  

4 Data 

The TOP dataset2 is introduced in the work of 
Shah et al. (2018), and it covers two domains: 
navigation and events. The utterances contain three 
types of queries: navigation, events and navigation 
to events. There are total 44783 annotated 
utterances with 25 intents and 36 slots. Each 
utterance is annotated with a hierarchical meaning 
representation. About 30% of records have nested 
requests. Among these data, the median depth of 
the trees is 2.54, and median length of the 
utterances is 8.93 tokens.  

In this work, we remove the records that have 
IN:UNSUPPORTED intent from the dataset. After 
this, the dataset has 28414 training records, 4032 
validation records and 8241 test records, identical 
to (Pasupat et al., 2019). Original dataset uses base 
representation, and we convert them to LOTV 
representation and compact representation. 
Average token lengths of LOTV and compact 
representations are 17 and 12; their vocabulary 
sizes are 60 and 93 respectively. Table 1 presents 
more statistics about the final dataset. 

5 Model 

We use a simple seq-to-seq with attention neural 
architecture to frame the TOP problem. Encoder is 
one-layer bi-directional recurrent neural network 
with LSTM (Hochreiter and Schmidhuber, 1997). 
The final output hidden states of both directions are 
concatenated and projected to the first input state 
of decoder through a linear layer. In decoder, 
attention and output token at time step t are 
computed as below: 

         𝑧! = [𝑒𝑚𝑏𝑒𝑑(𝑦!"#);	𝑜!"#]              (1) 
																	ℎ!"# , 𝑐!"# = 𝐿𝑆𝑇𝑀(𝑧$ , ℎ$%&!"# , 𝑐$%&!"#)									(2) 

	𝑒$ = (ℎ$!"#)'𝑊($$)*+,ℎ"-#																							(3)	
												α$ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑒$)																																			(4)	
												𝑎$ = ∑ α$,/ℎ/"-#	0

/ 																																						(5)	
												𝑢! = [ℎ"#$%; 	𝑎!]																															(6)	
												𝑜$ = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑇𝑎𝑛ℎ(𝑊1	𝑢$))															(7)	
												𝑦$ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2+#(3𝑜$)																						(8)	

Where 𝑦 is output token, ℎ, 𝑐 are hidden state and 
context, α is attention score, 𝑎 is attention, 𝑜 is 
combined output. 𝑊($$)*+, and 𝑊1 are trainable 
parameters.  

2. TOP dataset is available at http://fb.me/semanticparsingdialog 
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To better predict the word indexes in compact 

representation, we implement an attention-based 
copy mechanism, introduced by Eric and Manning 
(2017). First, we define the largest word index 
(utterance length) as system parameter and expand 
the decoder’s vocabulary to include all word 
indexes from zero to the largest word index; then 
we modify the formula (6) to directly add the 
attention score α to compute the output tokens as 
below:  

𝑢𝑡 = [ℎ𝑖
𝑒𝑛𝑐; 	𝑎𝑡; 	α𝑡] 

Here, attention score is padded to the largest word 
index. The addition of attention score can provide 
useful signals to decoder to improve its prediction 
on word indexes.   

We call the original model (without copy 
mechanism) as vanilla seq-to-seq, and the model 
with copy mechanism as copy-augmented seq-to-
seq. In this paper, we make two hypotheses: 1. TOP 
parsers should benefit the shorten parses of 
compact representation and produce better 
inductive bias than LOTV representation despite 
the increase of token vocabulary size; 2. Copy 
mechanism should boost the prediction 
performance of seq-to-seq model.  

 
Fig 2: Examples of four representations in text format. 

6 Evaluation 

6.1 Representations 

As mentioned before, with seq-to-seq model, 
LOTV representation can outperform base 
representation by large margin, so we exclude the 
base representation from the experiment. Besides 
LOTV and compact representations, we introduce 
two additional representations: single-word-index 
compact representation and sketch. In compact 
representation, a slot’s content is denoted as a pair 
of word indexes, and it can be further reduced to a 
single word index for those slots that have exactly 
one word in its content. We would like to find out 
if this further token-size decrease by single-word-
index compact representation can produce more 
inferencing benefits than compact representation. 

As LOTV, compact and single-word-index 
compact representations share the same tree 
skeleton (nonterminal nodes) and only differ in 
leaves (terminal nodes), we extract the tree 
skeleton as a standalone representation, called 
sketch. We think studying sketch representation 
can help better understanding the nonterminal and 
terminal’s contributions to prediction overheads 
among peer representations. Note that translating 
to a sketch parse cannot accomplish a TOP task by 
itself, as the parse has no slot contents (web API 
parameters). The sketch idea is inspired by Dong 
and Lapata (2018). Figure 2 shows an example of 
four representations in the experiment. Statistics of 
token lengths and vocabulary sizes of the 
representations are presented in Table 1. 

Reps 
Non-

terminal 
Len 

Terminal 
Len 

Total 
Len 

Vocab 
Size 

LOTV 8 9 17 60 
Compact 8 4 12 93 

Sig-wrd-idx 
Compact 8 3 11 93 

Sketch 8 0 8 59 
 
Table 1: Average token lengths of four representations in test dataset 
(right bracket is counted as nonterminal) 

6.2 Configurations 

We use vanilla seq-to-seq model with LOTV 
representation as baseline and compare it with four 
other configurations: vanilla seq-to-seq model with 
compact representation; copy-augmented seq-to-
seq model with compact representation; copy-
augmented seq-to-seq model with single-word-
index compact representation; and vanilla seq-to-
seq with sketch representation. We choose exact 
match accuracy as metrics in this work, which is 
percentage of full trees that are correctly predicted.   

6.3 Hyperparameters 

Similar to previous TOP work, we use pre-trained 
200b GloVe embeddings (Pennington at el. 2014). To 
make comparison fair, we ensure all four 
configurations share almost same set of hyper 
parameters:  fixed random seed, batch size is 32; 
source input embedding size is 200; target input 
embedding size is 128; both encoder and decoder 
hidden size are 512; drop out value is 0.5; using 
Adam optimizer (Kingma and Ba, 2014) with 
learning rate 0.001 and decay rate 0.5; using cross 
entropy as loss function; running 50 epochs with 
early stops; top 2 beam search in inference. 
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6.4 Results 

The main results are shown in Table 2. It can be 
observed that configuration 2 clearly outperforms 
configuration 1 by 2.61%, which confirms the first 
hypotheses: shorter token sequences are easier to 
learn and inference than longer token sequences, 
even with bigger-size vocabulary. One explanation 
is that compact representation has small 
vocabulary size (94), and seq-to-seq model is 
complex and powerful enough to accommodate the 
small increase of vocabulary size such that the 
performance of token prediction doesn’t drop 
much. On the other hand, the longer token 
sequence makes the probability of exact match get 
worse quickly due to compounding conditional 
probabilities in a series of token predictions  

Config 
ID 

 
Model 

 

 
Reps 

 
Acc Time 

(Sec) 

1 
Vanilla 

Seq2seq LOTV 78.41 35 

2 
Vanilla 

Seq2seq Compact 81.02 34 

3 

Copy-
augmented 

Seq2seq Compact 81.68 35 

4 

Copy-
augmented 

Seq2seq 
Sig-wrd-idx 

Compact 81.06 33 

5 
Vanilla 

Seq2seq Sketch 84.03 28 

6 
RNNG 
Parser Base 80.63 - 

7 
Span-based  

Parser Base 81.80 - 
Table 2. Exact match accuracies and training time per epoch of five 
configurations and two constituency parsers. 

The configuration 3 performs better than the 
configuration 2 with edge of 0.66%, which 
confirms the second hypotheses: copy mechanism 
helps improving the word index prediction. 
Originally, learning word indexes requires model 
to have certain reasoning capability: connecting a 
‘word index’ token to actual position in source 
utterance. In general, neural network is good at 
pattern recognition and but weak in reasoning. 
Copy mechanism can reduce the reasoning barrier 
and allows more leverage of neural network’s 
strength in pattern recognition.  

Comparing with compact representation, single-
word-index compact representation has shorter 
token length, but its prediction performance gets 
worse, as observed in configuration 4’s result. One 
possible reason is that compact representation has 
more predictable (word index) token occurrence 

pattern: its word index tokens always show up in 
pair right after a slot token, while single-word-
index compact representation may have one or two 
word index tokens after a slot token, making tokens 
more unpredictable. 

The configuration 5’s result reveals the upper 
bound of other four configurations. The gap 
between configuration 3 and 5 is relatively small 
(2.35%), so we think the future research should pay 
more attention to improving the sketch’s 
prediction, which is 84.03% at the point. Last, it 
can be seen that configuration 2, 3 and 4’s accuracy 
results are comparable to two constituency parsers 
(Shah et al., 2018; Pasupat et al., 2019).  

Config 
ID 

Nonterminal 
Errors 

Terminal 
Errors 

Total 
Errors 

1 1553 1188 1779 
2 1300 971 1564 
3 1243 945 1510 
4 1293 987 1561 
5 1316 0 1316 

Table 3. Error counts of five configurations. 

Error analysis. We count three types of 
inference errors in test dataset: nonterminal 
sequence (sketch) match errors; terminal sequence 
match errors; all token sequence match errors. 
When computing terminal sequence errors, 
consecutive terminals in a span are concatenated 
and treated as a single token. The result is listed in 
Table 3. Other than re-confirming the observations 
and arguments mentioned above, we have two new 
findings: 1. the copy mechanism seems able to 
boost both terminal and nonterminal inferences at 
same time (based on configuration 2 and 3’s 
results). This is probably caused by the fact that 
decoder also gets some helpful clues from attention 
scores when predicting nonterminal tokens; 2. 
Compact representation (configuration 2 and 3) 
have less nonterminal errors than sketch 
representation (configuration 5). One possible 
explanation is that terminal (word index) token 
adds more contexts when predicting nonterminal 
tokens, e.g., if previous token is a word index, then 
current token cannot be intent, which narrows 
down the scope of token prediction. 

7 Conclusions 

In this paper, we propose a compact 
representation for TOP, which is more friendly to 
seq-to-seq parsers and demonstrates better 
performance than base representation and LOTV 
representation. It opens up another door to improve 
the semantic parsing for task oriented dialog. 
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