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Abstract

Open-domain dialog systems aim to generate
relevant, informative and engaging responses.
In this paper, we propose using a dialog policy
to plan the content and style of target, open-
domain responses in the form of an action plan,
which includes knowledge sentences related to
the dialog context, targeted dialog acts, topic
information, etc. For training, the attributes
within the action plan are obtained by automat-
ically annotating the publicly released Topical-
Chat dataset. We condition neural response
generators on the action plan which is then re-
alized as target utterances at the turn and sen-
tence levels. We also investigate different di-
alog policy models to predict an action plan
given the dialog context. Through automated
and human evaluation, we measure the ap-
propriateness of the generated responses and
check if the generation models indeed learn
to realize the given action plans. We demon-
strate that a basic dialog policy that operates at
the sentence level generates better responses
in comparison to turn level generation as well
as baseline models with no action plan. Addi-
tionally the basic dialog policy has the added
benefit of controllability.

1 Introduction

Open-domain dialog systems have typically been
modeled using end-to-end approaches, more specif-
ically encoder-decoder architectures (Sordoni et al.,
2015; Serban et al., 2017, 2016; Vinyals and
Le, 2015). These seq2seq models are com-
monly trained on a maximum likelihood objec-
tive, which leads to repetitive and uninformative
responses (Wei et al., 2017). As seen in Figure 1,
candidate A is a typical generic response given
the dialog context. In order to deal with this prob-
lem, previous work proposed grounding generated
responses on knowledge sentences related to the

...
Speaker 1: Right. Teams do all kinds of things to bother
the competition. I’ve heard of teams having heated
benches in the winter for themselves but not for the
visitors.
Speaker 2: I would hate a cold bench. Then again, I
wouldn’t want to be some place that cold or watching
football.

Speaker 1:
candidate A: yeah

knowledge:
The NFL has no official rule against female players.

candidate B:
I heard NFL has no official rule against female players.

candidate C:
Yeah. I would hate that too. Do you follow NFL? I heard
they have no official rule against female players.

Figure 1: candidate A is an uninformative response.
By grounding on knowledge we get more informative
responses i.e., candidates B and C. candidate B con-
tains only a statement, leading to an abrupt topic transi-
tion. candidate C smoothly transitions topics with dia-
log acts: feedback, statement, question, and statement.

dialog context (Ghazvininejad et al., 2018; Yavuz
et al., 2019; Zhou et al., 2018; Dinan et al., 2018;
Gopalakrishnan et al., 2019). To improve the diver-
sity of generated responses, others proposed condi-
tioning response generation on latent (Serban et al.,
2016, 2017; Shen et al., 2017; Zhao et al., 2017;
Xing et al., 2016) or discrete attributes (Sankar
and Ravi, 2019; Li et al., 2016a; See et al., 2019;
Serban et al., 2017). These discrete attributes are
typically presented to the decoder at the turn level,
and are not associated with a specific segment of
the output.

Another issue with seq2seq approaches is that,
due to the lack of explicit control mechanisms, the
style of these responses does not always match
with what would be suggested by user experience
experts. For example, the generated response may
not acknowledge what the user just said, or may
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jump to a new topic without first introducing it. Fig-
ure 1 shows examples of two response candidates
with similar content: candidate C acknowledges
Speaker 2’s previous statement and follows up with
a question introducing a new topic and statement,
in contrast with candidate B which abruptly transi-
tions into the new topic.

According to Schegloff (2007) human conversa-
tions are sequentially organized units. Turns and
actions realized within them are related to what
came before and affect what comes next. Inspired
by the previous studies, we propose a policy-driven
neural response generation (PD-NRG) approach
for open-domain, knowledge-grounded dialog sys-
tems. Our motivation for this work is to have a
mechanism for open domain conversational sys-
tems, i.e., a dialog policy, that can enable such
higher-level control of generated responses. The
dialog policy provides a sequential organization
plan or action plan. The action plan specifies the
order and relationship of sentences within a turn
targeting engaging responses to users throughout
the interaction.

We design a set of dialog policy models that
adapt to the dialog context to appropriately control
the responses at both the turn and sentence-levels.
We extend the end-to-end-approach of (Dinan et al.,
2018; Gopalakrishnan et al., 2019): we take in as
input both the dialog context and an action plan
to predict the next response. We train our PD-
NRG model by fine-tuning on the Generative Pre-
trained Transformer (GPT) (Radford et al., 2018)
model in a TransferTransfo fashion (Wolf et al.,
2019). Our approach differs from previous works
that condition on discrete attributes independently
by conditioning on these attributes jointly.

Our contributions include:

i. an enriched version of the Topical-Chat
dataset with annotations on multiple attributes
(knowledge, topic, dialog act). These anno-
tations were tagged automatically which re-
duces the cost and time of manual annotation
while still obtaining strong results.1

ii. the design of a basic dialog policy to predict
an action plan for controllable generation for
neural response generators

iii. a sentence-based generation approach that out-
performs turn-level generation, and

1https://github.com/alexa/Topical-
Chat/tree/master/TopicalChatEnriched

iv. investigation of simple hand-crafted policies
as well as automatically learned policies that
could be adapted to new applications.

2 Related Work

Controllability of generated output has been stud-
ied for multiple language generation tasks (such
as poetry generation and summarization). Pre-
vious work on controlling the style and content
of generated outputs focused on two main ap-
proaches, conditional generation and weighted de-
coding. Conditional generation modifies the input
to the model to condition on control parameters.
Previous works proposed conditioning response
generators on latent (Serban et al., 2016, 2017;
Shen et al., 2017; Zhao et al., 2017) or discrete
attributes, including dialog acts (Sankar and Ravi,
2019), sentiment (Sankar and Ravi, 2019), speaker
identifiers (Li et al., 2016a), lexical features (See
et al., 2019) or topics (Serban et al., 2017).

Weighted decoding (See et al., 2019) in-
stead uses token-level features that are control-
lable (Ghazvininejad et al., 2017; Baheti et al.,
2018) and supplements the scores from the de-
coder model output with these features. Our work
focuses on conditional generation methods with
sentence-level control, as described in more detail
in Section 4.

There is also previous work on controlling at-
tributes such as question asking at the dialog
level. See et al. (2019) initialized the generation of
turns of a dialog with a fixed distribution that spec-
ified what percentage of generated turns should
include questions during the dialog. However this
does not allow for flexible control where the num-
ber of questions may need to vary depending on
the course of the dialog. Therefore, we focus on
learning a dialog policy model that automatically
learns the style of the response based on the dialog
context.

Similar to previous work for response generation
we ground our generated responses on knowledge.
Ghazvininejad et al. (2018), Yavuz et al. (2019),
and Zhou et al. (2018) used end-to-end memory net-
works, copy mechanisms and static graph attention
mechanisms respectively to incorporate knowledge.
Dinan et al. (2018), Gopalakrishnan et al. (2019),
and (Roller et al., 2020; Smith et al., 2020) used
memory networks based on transformer architec-
tures (Vaswani et al., 2017) to encode knowledge
sentences and dialog history to decode a response.
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Figure 2: Policy-driven neural response generation.

There has been previous work on task-oriented
systems that proposed explicit content and sentence
planning (Walker et al., 2007) to further control the
content and order of sentences within the generated
response. Previous work for open-domain dialog
systems also followed a similar method for con-
tent and sentence planning. Fang et al. (2018), Ah-
madvand et al. (2018), Fulda et al. (2018), Pichl
(2018), Cervone et al. (2017), Yu et al. (2019)
and Bowden et al. (2019) extracted multiple fea-
tures such as topic, intent, entities, and sentiment to
send to a dialog policy model to plan the structure
and content of the response. However, these previ-
ous works generated responses from a set of tem-
plates that are usually repetitive for open-domain
conversations. Our work focuses on neural gen-
erative models for response generation in open-
domain dialog systems.

The closest work to ours in terms of learning a
dialog policy for open-domain dialog is (Xu et al.,
2018) who designed a policy network to predict
dialog acts and fed those acts into a response gen-
eration model to control responses. However, a key
part of open-domain dialog is to introduce knowl-
edge into a conversation. We design a policy that
integrates knowledge with dialog acts at a sentence-
level. In contrast to (Xu et al., 2018) that used a
machine learning based approach, we show that a
basic rule-based dialog policy can result in strong
performance.

3 Dialog Policy

Our proposed PD-NRG approach has two parts:
a dialog policy that determines the action plan
based on the dialog context, and a response gen-
eration model that takes the action plan and the
dialog context as input to generate a response. The

dialog policy has components that predict the in-
dividual elements of the action plan: knowledge
selection and dialog act planning. Knowledge se-
lection determines the knowledge to be integrated
in the response by finding sentences from a knowl-
edge document corpus that are relevant to the di-
alog context. Dialog act (DA) planning deter-
mines the style of the response in the form of DAs
to be realized. We have two forms of DA plan-
ning methods: Knowledge-dependent DA planning
and Knowledge-independent DA planning. Fig-
ure 2 depicts the architecture of PD-NRG.

Dialog Act Definition
Apology apology
ChoiceQ Or-question
Commissive Offer, Commit
Directive Open-Option, Suggest
Feedback Acknowledge
PropQ Yes-no-question
Salutation bye, greet
SetQ Wh-question
Statement Inform
Thanking thanking, your-welcome

Table 1: The subset of ISO-Standard
dialog acts proposed by (Mezza et al., 2018).

3.1 Action Plan (AP)
For the rest of this work, let Dj = [x1, . . . , xj ]
denote a partial dialog containing a sequence of j
turns. And let xi represent a turn in a dialog where
1 ≤ i ≤ j. Each xi contains a sequence of ni

sentences, xi = [s1i , . . . , s
ni
i ].

Each xi is generated according to an action
plan that consists of one frame for each sentence
[f1

i , . . . , f
ni
i ]. The frames, formed of attributes and

values, may include:
1. Dialog acts (d) at a sentence-level to help con-

trol the style of the generated response. Ta-
ble 1 lists all the dialog acts used in this work.

2. Topics (t) at a turn-level to generate topi-
cally coherent responses. The complete list
of topics are: fashion, politics, books, sports,
general-entertainment, music, science & tech-
nology and movies.

3. Knowledge (k) at a turn or sentence-level
to generate interesting and informative re-
sponses. The knowledge is represented as
a sentence drawn from an unstructured knowl-
edge corpus.

4. Use-knowledge flag (h) that signals whether
or not to use the knowledge attribute (k) at the
turn or sentence-level.

Each frame in the action plan corresponds to a
sentence smj and is denoted as a tuple containing
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a set of the 4 attributes, (dmj , tmj , kmj , hmj ) where
1 ≤ m ≤ nj . In this work, we focus on these
attributes for action plans, as they are the most basic
and critical ways to control knowledge-grounded
response generation.

3.2 Knowledge Selection
For the knowledge selection component of our dia-
log policy, referenced in Figure 2, we compute the
following for each turn xi at run time. Let ci be
defined as the dialog history x1, ..., xi−1:

k̂ = argmax
km∈K

 ~ci · ~km
‖~ci‖

∥∥∥ ~km

∥∥∥
 (1)

km is a knowledge sentence from an unstruc-
tured knowledge corpus, K, in the Topical-Chat
dataset (Gopalakrishnan et al., 2019). We use
the BM25 model (Robertson et al., 2009) to rank
knowledge sentences and represent ~ci and ~km as
vectors for ci and km. We compute cosine simi-
larity between the vectors and argmax over the all
km in our knowledge corpus. For ci we are only
using the most recent previous turn xi−1 for selec-
tion. We decide to use the knowledge sentence as
input if the similarity score between the sentences
is above a manually set threshold value of 0.2

3.3 Dialog Act Planning
For dialog act planning, we define a set of dia-
log act transitions from common examples in the
Topical-Chat corpus. The set of dialog acts for the
next response are determined by both dialog acts
and the knowledge sentence selected, based on the
dialog context. Figure 2 shows the output of the
knowledge selection being fed as input into the
dialog act planning component. We represent the
transitions as a decision tree2. In Figure 5, Speaker
2’s response is a PropQ act and from our decision
tree we will predict the dialog acts for the next re-
sponse, i.e. Statement, PropQ. Based on which set
of dialog acts were outputted, we decide whether
or not to include the knowledge sentence. Some di-
alog acts, such as Feedback, do not need to include
knowledge by definition.

3.3.1 Knowledge-dependent DA Planning
We propose a Knowledge-dependent DA planning
(KD-DA-P) where there are two inputs to predict
the dialog acts for the next turn xj+1:

2The full set of decision trees are presented here in the
appendix https://arxiv.org/pdf/2005.12529v4.pdf

• the last dialog act associated with the previous
sentence s

nj

j
• the output of knowledge selection

The dialog act planner looks at the output of the
knowledge selection model to see if the knowledge
selected is the same or different as compared to the
knowledge sentence selected for the previous turn
xj . Based on this information a certain subset of
the transitions defined for dialog act planning are
used to predict the dialog acts for the next response.

3.3.2 Knowledge-independent DA Planning
The prediction of the dialog acts is done indepen-
dently of the selected knowledge in four ways:

1. Simple DA planning: We define a set of tran-
sitions that determine the set of DAs for the
next response based solely on the previous
dialog act.

2. Seq2Seq Model for DA planning: Using the
OpenNMT library (Klein et al., 2017), we
train a sequence-to-sequence model based
on bi-directional LSTMs with Luong atten-
tion (Luong et al., 2015) to estimate the DAs
of the current turn given the dialog context
Dj . During training, each dialog act label is
a separate token in the vocabulary and has its
own embedding vector. Both the dialog act
and word embeddings are initialized randomly
and learned during training.

3. PropQ DA planning: For comparison to previ-
ous work we use the method in (See et al.,
2019) which initializes the distribution of
questions to be asked at the beginning of the
conversation. The work finds that the best
model generates questions 65.7% of the time.
At each time-step the PropQ dialog act is
picked 65.7% of the time thereby replicating
this baseline. As shown in Table 1 PropQ cor-
responds to a Yes-No question, which is the
most represented question dialog act in our
dataset.

4. AllQ DA planning: We extend the PropQ
DA Prediction baseline above by selecting
the PropQ, ChoiceQ or SetQ questions each
21.9% of the time summing up to 65.7%. See
et al. (2019) does not make a distinction as to
what type of questions were asked.

4 Policy-driven Response Generation

As shown in Figure 2, at a given turn in the dialog
context, the goal of the response generator is to
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realize the action plan output by the dialog policy.
Our proposed models generate the next turn based
on the action plan at a sentence-level, in a sequen-
tial manner as opposed to at a turn-level. As shown
in Figure 3a when decoding each sentence of the
next turn, the dialog context Dj as well as the pre-
vious sentences generated for the next turn till that
iteration are used as input. Algorithm 1 shows the
process for sentence-level generation. As seen in
the algorithm all the attributes within the AP are
jointly taken in as input. To jointly condition on the
action plan, each attribute is concatenated to the di-
alog history as shown in Figure 3c. In the training
process each dialog act label is a separate token in
the vocabulary and has its own embedding vector
which is initialized randomly and learned during
training. To train our model we represent the knowl-
edge sentence and topic label with the pretrained
embeddings from the GPT model whose vocabu-
lary is BPE tokenized. Finally, the use-knowledge
flag decides whether or not to include the knowl-
edge embeddings as part of the input. In some of
our experiments, we also include the dialog acts
for the past turns by concatenating each turn in the
dialog history with its respective acts.

Algorithm 1: Sentence-level generation
Result: xj+1

Given Dj

xj+1 = []
ActionPlan = [f1

j+1, . . . , f
nj+1

j+1 ]
for f in |ActionP lan|
y = Model(Dj , f )
xj+1 = xj+1 ⊕ y
Dj = Dj ⊕ y

return xj+1

For all our models, we use the GPT (Rad-
ford et al., 2018) model to finetune in a Transfer-
Transfo (Wolf et al., 2019) fashion. The Trans-
ferTransfo model is a state-of-the-art neural open-
domain dialog system that won 1st place in auto-
mated evaluation and 2nd place in human evalua-
tion at the NeurIPS ConvAI2 conversational Intelli-
gence Challenge (Dinan et al., 2020). We have two
methods to generate responses from our models:

• Model for turn-level generation: As de-
picted in Figure 3b, our baseline (Wolf et al.,
2019) is given the dialog context and knowl-
edge sentence as input and predicts the re-
sponse at the turn-level.

• Models for sentence-level generation: As
depicted in Figure 3c, the PD-NRG models
are given the AP and the dialog context as in-
put to perform sentence-level prediction. Ta-
ble 2 lists the versions of PD-NRG models
we experimented with along with their cor-
responding APs. Baseline-Sent is similar to
the Baseline-Turn model, except it generates
responses sentence-by-sentence. The model
generates as many sentences as in the human
response.

PD-NRG Models Action Plan (AP)
w/ DA {dmj+1, kj+1}
+knowledge flag {dmj+1, k

m
j+1, h}

+knowledge flag +topic {dmj+1, k
m
j+1, tj+1, h}

Baseline Models
Baseline-Turn {kj+1}
Baseline-Sent {kj+1}

Table 2: Models and their input AP for every timestep
m where 1 ≤ m ≤ nj+1.

5 Experiments and Evaluation

5.1 Dataset
We use the publicly released Topical-Chat3 dataset,
a large and diverse knowledge-grounded open-
domain dialog dataset where the underlying knowl-
edge spans 8 broad topics including fashion, books,
and so on (Gopalakrishnan et al., 2019). Each di-
alog contains 20+ turns alternating between two
crowd workers. For each dialog there is a reading
set for each crowd worker. Each reading set has
three entities and a set of corresponding knowledge
sentences. When presenting the results, we use
both test sets provided with the corpus, test fre-
quent and test rare. Frequent and rare refer to the
frequency of topics and entities being discussed in
the training set.

5.2 Annotating Attributes in Topical-Chat
The dataset does not have annotations for some
attributes such as dialog acts or fine-grained asso-
ciations between knowledge sentences and dialog
turns. Hence, we used out-of-the-box or simple
models to automatically annotate our dataset with
each attribute, as defined in Section 3.1. We assume
these annotations are the ground-truth attributes for
the ground-truth AP and use them for testing con-
trollability without degrading the response appro-
priateness. By automatically annotating we reduce

3https://github.com/alexa/Topical-Chat
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(a) GPT model Radford et al. (2018)

(b)

(c)

Figure 3: Figure 3a shows the generation process where the input is fed into the GPT model. The output is then
concatenated back to the input. This process repeats until generation is complete. Figures 3b and 3c show the input
for Baseline-Turn Model and PD-NRG model respectively.

the cost and time it takes to manually annotate our
dataset along with getting strong results.

5.2.1 Annotating Knowledge Sentences
Each conversation in Topical-Chat has a pair of
reading sets that were presented to crowdworkers
before the conversation, to have a knowledgeable
interaction. During their conversation crowd work-
ers are asked to annotate which topics/entities were
attributed to their turns in the conversation. How-
ever there is no fine-grained annotation of which
knowledge sentence or sentences were used for
a turn, hence we create ground-truth knowledge
annotations as a corpus post-processing step. To
obtain the knowledge annotation for each turn we
use Equation 1 to compute similarity between xj+1

and km. To obtain the knowledge annotation for
each sentence within a turn, we tokenize the turn
into individual sentences. For each sentence we use
the same equation to compute similarity between
sni
j+1 and km. For sentence-tokenization we use the

NLTK library (Loper and Bird, 2002).
We decide whether or not the turn or sentences

within a turn should be linked to a knowledge sen-
tence by manually setting a threshold value on the
similarity score between the knowledge and turn or
sentences within a turn. We use the same threshold,
0.2, as described in Section 3.2.

5.2.2 Annotating Dialog Acts
We obtain the dialog acts for each sentence by
running an off-the-shelf SVM dialog act tag-
ger4 (Mezza et al., 2018) which takes in as input
the current sentence to predict one of 11 dialog acts
listed in Table 1. We also experimented with using

4https://github.com/ColingPaper2018/dialogAct-Tagger

Figure 4: We calculate automated metrics with both a
ground truth and an estimated AP

past dialog acts predicted from the tagger as addi-
tional input; however, this did not change the result.
If the confidence score from the SVM tagger is not
above a threshold of 0.5, the tagger would output
no dialog act which we denote with a special dialog
act token NoDialogAct. 2.1% of sentences within
the Topical-Chat dataset were labeled as NoDialo-
gAct. Of the 11 dialog acts the most represented
ones were Statement, PropQ and Feedback where
each act had 80%, 6% and 5% sentences tagged
respectively. We assume these are the ground-truth
dialog acts in our dataset. To view the performance
of the model we ask two crowd workers to segment
and annotate a small set of 100 turns into individ-
ual sentences along with their respective dialog act.
The dialog act tagger obtained an F1 of 0.54, pre-
cision of 0.77 and a recall of 0.59 on consolidated
test set.
5.2.3 Annotating Topic Labels
For the topic label, we use the topic annotations
by the Turkers from the original Topical-Chat data
collection. For each turn there are multiple topic
annotations; however, unlike the dialog acts and
knowledge sentence, topic annotations are at the
turn level and are not linked to individual sentences.
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Avg #
Models Past DA PPL BLEU-4@1 ROUGE-L words sentences
Human - / - - / - - / - 24.3 / 25.0 2.10 / 2.15
Baseline-Turn 12.92 / 13.53 0.024 / 0.028 0.134 / 0.130 20.7 / 21.7 1.87 / 1.93
Baseline-Sent 13.85 / 14.36 0.016 / 0.021 0.107 / 0.103 13.7 / 13.9 2.09 / 2.15
PD-NRG w/ DA 12.72 / 13.01 0.024 / 0.027 0.121 / 0.118 18.5 / 19.3 2.05 / 2.10
PD-NRG w/ DA X 12.39 / 12.80 0.021 / 0.021 0.115 / 0.111 16.0 / 15.8 1.77 / 1.77
+knowledge flag 12.66 / 12.99 0.025 / 0.027 0.122 / 0.118 17.3 / 18.1 2.03 / 2.08
+knowledge flag X 12.25 / 12.62 0.019 / 0.020 0.113 / 0.108 15.2 / 15.3 1.68 / 1.76
+knowledge flag +topic 12.76 / 13.07 0.023 / 0.026 0.123 / 0.117 16.8 / 18.2 2.10 / 2.14
+knowledge flag +topic X 12.28 / 12.65 0.019 / 0.020 0.115 / 0.109 16.3 / 16.7 1.82 / 1.85

Corpus Diversity
F1 Precision Recall n=1 n=2

Human - / - - / - - / - 0.037 / 0.050 0.266 / 0.326
Baseline-Turn 0.249 / 0.253 0.275 / 0.272 0.229 / 0.236 0.018 / 0.027 0.118 / 0.165
Baseline-Sent 0.220 / 0.220 0.258 / 0.252 0.191 / 0.195 0.018 / 0.026 0.115 / 0.156
PD-NRG w/ DA 0.241 / 0.240 0.281 / 0.279 0.210 / 0.212 0.018 / 0.027 0.123 / 0.165
PD-NRG w/ DA X 0.230 / 0.227 0.291 / 0.287 0.185 / 0.185 0.021 / 0.032 0.133 / 0.180
+knowledge flag 0.240 / 0.242 0.280 / 0.280 0.209 / 0.213 0.018 / 0.027 0.122 / 0.164
+knowledge flag X 0.222 / 0.223 0.287 / 0.281 0.180 / 0.180 0.032 / 0.022 0.137 / 0.181
+knowledge flag + topic 0.244 / 0.245 0.276 / 0.274 0.210 / 0.213 0.018 / 0.027 0.118 / 0.159
+knowledge flag + topic X 0.224 / 0.221 0.272 / 0.271 0.187 / 0.186 0.020 / 0.029 0.136 / 0.177

Table 3: Automated metrics with ground-truth Action Plan on test freq / rare

5.3 Evaluation Measures

For automatic evaluation we compute a set of met-
rics between our generated and ground truth re-
sponse: perplexity, BLEU-1, ROUGE-L, unigram
F1-score. We also compute n-gram diversity as
defined in (Ghazvininejad et al., 2018).

For human evaluation, we followed a similar
setup as (Li et al., 2016b) and generated 200 snip-
pets which contain a dialog context of 5 turns. We
generated responses from 2 models to compare
against. We asked a set of 3 crowd workers “Which
final response is more appropriate for the given con-
versation?”.

5.4 Results Using the Ground-Truth Action
Plan

We first check whether the PD-NRG approach re-
sults in better responses when we use the ground
truth AP. As seen in Figure 4 instead of using a
dialog policy, we form ground truth APs from the
annotations described in Section 5.2. We then use
them to generate a response for that turn. Table 3
presents automated evaluation results for Baseline-
Turn, Baseline-Sent and variations of the PD-NRG
models. As seen in the results table, adding dialog
acts increases diversity for all the proposed models.
This aligns with previous work that using dialog
acts leads to more diverse responses (Sankar and
Ravi, 2019). The F1, BLEU, and ROUGE scores
of the PD-NRG w/ DA model are lower than the
Baseline-Turn model due to the PD-NRG model
decoding shorter sentences resulting in lower recall.
The PD-NRG w/ DA model with the addition of

previous dialog acts as input results in the lowest
perplexity for both frequent and rare test sets.

5.4.1 Do the Models Follow the Action Plan?
By jointly conditioning on the attributes in the AP,
we aim to control multiple aspects of the response,
such as content and style. The dialog acts deter-
mine if the response should be a question, state-
ment or should give feedback. The knowledge
determines what content should be present in the
response. To see if the model responses follow the
AP, we manually annotated if the model’s responses
realize the dialog acts and their respective knowl-
edge sentence (focusing on the cases where the
AP included a knowledge sentence) in their input.
Turns with no dialog acts, i.e., marked as NoDialo-
gAct, were ignored. The results from the manual
evaluation are presented in Table 4. The PD-NRG
w/ DA + knowledge flag model has the highest ac-
curacy in realizing the input AP, achieving 80.6%
accuracy on the dialog acts of the generated re-
sponses, and 52.1% accuracy in correctly integrat-
ing the provided knowledge sentences. Figure 5
presents an example from this model.

5.5 Results Using an Estimated Action Plan
Using our dialog policy models, we estimate an
AP for each turn. Given the dialog context and the
AP we then generate responses using the PD-NRG
w/ DA + knowledge flag model + Past DA model.
We evaluate the responses using both automated
and human evaluation. We present our automatic
metrics in Table 5. The KD-DA-P and KI-DA-
P(Simple) produced more Feedback and PropQ di-
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Models Past DA % DA %K
Baseline-Turn (Wolf et al., 2019) 26.7 -
Baseline-Sent 59.4 30.8
PD-NRG w/ DA 69.1 47.0
PD-NRG w/ DA X 69.7 39.3
+knowledge flag 80.6 52.1
+knowledge flag X 68.1 47.8
+knowledge flag +topic 77.8 47.4
+knowledge flag +topic X 69.0 45.3

Table 4: % of Dialog Acts (DA) and Knowledge (K)
Realized for PD-NRG Models to showcase controlla-
bility.

...
Speaker 1: Free with you, they should have had
Snoop Dogg make a theme song for the game like
he did for his son’s high school football team LOL
Speaker 2: Interesting, do you play golf?

Speaker 1:
Baseline-Turn:
no, i don’t play golf, but i hear
it has been a lot of years since the last time.

PD-NRG model:
Statement → not really, i’m not a huge fan of golf.
PropQ → have you ever played?

Figure 5: Baseline-Turn model versus PD-NRG model

alog acts than the actual distribution of dialog acts
in the dataset, where over 80% of the dialog acts
were Statements. For example KD-DA-P produced
41% Feedback dialog acts wheres the actual distri-
bution contains only 5% Feedback dialog acts. We
believe this change in the distribution resulted in
our models generating responses with fewer words
and as a result these models have lower F1-scores.

The limitation of n-gram overlap measures is that
they do not capture the diverse set of responses that
can be generated in an open-domain setting. For a
more realistic comparison of our dialog policy mod-
els to our baselines, we ran human evaluation. We
provided a set of crowd workers outputs from two
models along with the dialog context, and asked
them “Which final response is more appropriate
for the given conversation?”. Crowd workers were
provided with 3 options: first response, second re-
sponse and not sure (limited to those cases when
the two responses are equally good/bad). Table 6
presents results from the manual evaluations. As
seen, the KD-DA-P responses were chosen over the
B-Turn model by a large margin. This result is also
seen in KD-DA-P responses versus the KI-DA-P
(PropQ/AllQ) responses, proving that its is better
to have a dialog policy adapting to the course of the
dialog versus using a fixed distribution (See et al.,
2019) to predict the dialog acts. However, the KI-
DA-P (Seq2Seq) results in worse responses than the

Avg #
Policy F1 words sentences
Ground truth 0.22 / 0.22 15.2 / 15.3 1.68 / 1.76
Baseline-Turn 0.18 / 0.17 19.8 / 19.7 1.86 / 1.87
KI-DA-P (Simple) 0.14 / 0.14 12.9 / 12.2 1.89 / 1.89
KD-DA-P 0.14 / 0.14 12.3 / 11.5 1.91 / 1.91
KI-DA-P(Seq2Seq) 0.14 / 0.17 13.1 / 13.4 1.46 / 1.56

Table 5: Automated metrics with estimated Action
Plan. Baseline-Turn (Wolf et al., 2019)

Policy %W %T %L IAA
KD-DA-P vs. Baseline* 40.8 30.3 28.9 0.43
KI-DA-P(Seq2Seq) vs. B-Turn* 25.1 35.7 39.2 0.47
KD-DA-P vs. See et.al(PropQ)** 54.2 5.5 40.2 0.46
KD-DA-P vs. See et al. (2019)** 54.1 7.4 38.3 0.48
KD-DA-P vs. Human response** 16.7 35.3 48.0 0.53

Table 6: % of Wins(W), Ties (T) and Losses(L) for the
baseline models vs PD-NRG model on appropriateness.
The KD-DA-P policy is statistically significant com-
pared to the B-Turn(Baseline-Turn) (Wolf et al., 2019)
as well as the KI-DA-P(PropQ) and KI-DA-P(PropQ)
baselines (See et al., 2019). We compute Krippen-
dorff’s alpha for Inter-annotator agreement(IAA). We
computed the p-value using a two-tailed binomial test.
* refers to a p-value < 0.05 and ** refers to a p-value
< 0.01.

baseline. We believe this is because the Statement
dialog act is a large portion of the dataset, mak-
ing learning other acts harder for the model. For
future work, we will investigate machine learning
approaches to learn better models for the dialog pol-
icy. The proposed KD-DA-P results in responses
that are better than or similar to human responses
in 52% of the cases.

6 Conclusions

In this work, we propose a policy-driven neu-
ral response generation approach for knowledge
grounded open-domain dialog systems. We esti-
mate an action plan that consists of a set of at-
tributes that control the content and style of the
generated responses at the turn and sentence levels.
We investigate both manual and machine learning
based policies. Through human evaluation, we em-
pirically demonstrate that a basic dialog policy that
does sentence level generation outperforms turn
level generation, as well as knowledge-grounded
response generation baselines. Furthermore, the
generated responses realize their respective action
plans. This allows builders of dialog systems con-
trol over the model’s responses allowing for more
consistent user experiences. Our future work in-
cludes investigation of better approaches for learn-
ing such dialog policy models along with adding
other attributes such as sentiment.
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