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Abstract

The paper investigates how well poetry can
be generated to contain a specific sentiment,
and whether readers of the poetry experience
the intended sentiment. The poetry genera-
tor consists of a bi-directional Long Short-
Term Memory (LSTM) model, combined with
rhyme pair generation, rule-based word predic-
tion methods, and tree search for extending
generation possibilities. The LSTM network
was trained on a set of English poetry writ-
ten and published by users on a public web-
site. Human judges evaluated poems gener-
ated by the system, both with a positive and
negative sentiment. The results indicate that
while there are some weaknesses in the system
compared to other state-of-the-art solutions, it
is fully capable of generating poetry with an in-
herent sentiment that is perceived by readers.

1 Introduction

Poetry generation is a type of linguistic creativ-
ity that requires certain qualities in both form and
content, as well as the creation of understandable,
meaningful and poetic language. A central part of
poetry is the experience of the reader, including the
emotions poetry can evoke. The overarching goal
of this work is to explore and develop methods for
generating poetry with a specific (pre-defined) in-
herent sentiment, which can be experienced by the
readers. Earlier approaches to poetry generation
followed a range of paths, such as methods based
on templates (Gonçalo Oliveira, 2012) or corpora
(Colton et al., 2012), evolutionary (Levy, 2001) or
Case-Based Reasoning (Gervás, 2001) approaches,
and generate-and-test (Gervás, 2000) or Black-
board (Misztal and Indurkhya, 2014) architectures.
However, in recent years deep learners have proven
powerful as poetry generators, including systems
combining neural models with other techniques.
As described below, Long Short-Term Memory

(LSTM, Hochreiter and Schmidhuber, 1997) net-
works are the most used solutions in state-of-the-art
systems, so an LSTM was implemented here, with
an experimental focus on which specific network
architecture and parameter settings would produce
the best poetry word prediction model. The sen-
timent of the poems to be generated was decided
in advance, with human judges rating their quality
and how well the sentiment was perceived.

2 Related Work

Zhang and Lapata (2014) used a Recurrent Neu-
ral Network (RNN) to generate Chinese quatrains
(stanzas with four lines), with the first line based
on user-provided keywords giving the main con-
cepts of the poem. Subsequent lines were gener-
ated based on previous lines, subject to admissible
tonal pattern and structural constraints. Yi et al.
(2016) also generated Chinese quatrains line-by-
line based on user keywords, but using a sequence-
to-sequence model with attention mechanism (Bah-
danau et al., 2014), with a bi-directional RNN
with gated recurrent units (GRU; Cho et al., 2014)
as encoder-decoder to learn semantic relevance.
Wang et al. (2016a) used a similar approach for
character-by-character iambics generation, utilis-
ing a bi-LSTM as encoder and another LSTM as
decoder to alleviate the quick-forgetting problem
associated with conventional RNNs.

Ghazvininejad et al. (2017) combined hard for-
mat constraints with an RNN to generate 14-line
classical sonnets in iambic pentameter, given a user-
supplied topic and a set of related words, using
word2vec (Mikolov et al., 2013). Rhyme words
were found using CMU Pronouncing Dictionary
(CMUdict),1 with fixed pairs of often used words
added to make the system find rhymes in rare topics.
A Finite-state acceptor was built with paths for all

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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conceivable vocabulary word sequences obeying
formal rhythm constraints, and an RNN selected
the best path. Similarly, Benhart et al. (2018) com-
bined an RNN with sonnet format constraints, but
added part-of-speech restrictions to alleviate er-
roneous word choices, and dynamically trainable
word embeddings, so that the language model was
able to learn some grammar before adjusting its
word representations to suit the training corpus.

Wang et al. (2016b) implemented a 2-phase sys-
tem: planning and generation, with an encoder-
decoder generator using bi-GRUs. A special plan-
ning schema in advance selected sub-keywords
(based on user input) guided by a language model
and each line then generated with the planned word
to improve coherence. Zhang et al. (2017) used the
same attention-based RNN generation model, but
with an additional memory component, effectively
giving regularisation that constrains and modifies
the behaviour of the model. Van de Cruys (2020)
also utilised an encoder-decoder, but generated po-
ems in both English and French. Human evaluators
scored the output highly with regard to fluency,
coherence, meaningfulness and poeticness, even
though only non-poetic text was used as training
data for the generator.

Unlike the one-pass generation for previous neu-
ral networks models, Yan (2016) proposed a gener-
ative model with a polishing schema, refining the
RNN-generated poem through several iterations.
Also, while previous models were based on max-
imum likelihood estimation (MLE), which opti-
mizes word-level loss and can lead to the systems
remembering common patterns of the training cor-
pus, Yi et al. (2018) added reinforcement learning
to a basic generator pre-trained with MLE, simul-
taneously training two generators that learn both
from the teacher (rewarder) and from each other.
Automatic rewarders were designed corresponding
to four criteria: fluency, coherence, meaningful-
ness, and overall quality.

Tikhonov and Yamshchikov (2018b) aimed to
generate poetry in the style of a specific author,
using an LSTM to predict the next word based on
a previous word sequence, with the embeddings
of the document currently being analysed used to
support the model at every step. Two datasets were
used to train the model, in English and Russian.

Several of the systems presented above imple-
ment a form of user input to influence the mood of
the poetry, often related to a given sentiment. How-

ever, two such systems are particularly important
in the way they include the use of sentiment: In the
corpus-based approach of Full-FACE Poetry Gen-
eration (Colton et al., 2012), the system decides on
a mood by checking the average sentiment of a set
of newspaper articles posted during the previous 24
hours, and then selects one of the five articles with
the highest resp. lowest sentiment value. Misztal
and Indurkhya’s (2014) system includes an emo-
tional personality aspect implementing both senti-
ment analysis and emotional modelling. To extract
sentiment, the Sentistrength (Thelwall et al., 2010)
tool is used, rating positive and negative scores on
a valence value scale. An average arousal value of
the input is calculated using Affective Norms for
English Words (ANEW, Bradley and Lang, 1999),
and the poem’s emotional state is set by combining
valence and arousal. WordNet-Affect (Strapparava
and Valitutti, 2004) is used to build a hierarchy
of words describing emotional states in order to
generate the affective content of poems.

3 Data set

The data set used in the experiments here is the
English part of the data collected by Tikhonov and
Yamshchikov (2018a,b). It consists of poems writ-
ten and published by users on a public website,
which leads to a variance in the quality of con-
tent, but both the large size and variance in content
are positive factors for network training. The pro-
vided data set was already cleaned, with all types
of punctuation removed and all letters converted
to lowercase. However, there were some inconsis-
tencies in how contractions were represented, with
some appearing in a joined form (e.g., wouldve)
and others as separate words (would ve). Hence
all spaces between regular contractions were re-
moved, as were line break markers (<br>), with
every individual poem was instead represented by
single individual lines, so that the structure of the
generated poems would not be constrained.

The original data set contains 3, 943, 982 po-
ems and 155, 066, 504 tokens, with a vocabulary
of 708, 727 unique tokens. Most of the unique to-
kens come from misspellings, alternative spellings,
irregular words and names. The training data was
shortened to specifically reduce the vocabulary size,
in order to remove words that very rarely appear
in the data set, and to reduce the size of the matrix
representation of data used in training the network.
To reduce the data set, tests were run on vocabu-
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Lemmas Poems Tokens Polar

Data set 1 10 000 205 230 15 847 356 1 849
Data set 2 15 000 306 942 25 883 608 2 424
Data set 3 20 000 395 057 35 178 076 2 900
Data set 4 30 000 530 121 50 505 342 3 519

Table 1: Data set sizes based on vocabulary

lary sizes of 10, 000− 30, 000, finding how many
of the poems only included words within a given
vocabulary, as can be seen in Table 1. Since larger
vocabulary results in that more possible words can
be generated, but negatively effects training time
and is reliant on how much the hardware used for
training can handle, a simple test was run on a
GeForce GTX 1070 graphics card. Creating a bidi-
rectional LSTM using Keras2 with a single hidden
layer of 1, 024 neurons, and training on a random
sample size of the 5, 000, 000 tokens, with different
vocabulary sizes, resulted in the GPU experienc-
ing memory problems when exceeding a vocab-
ulary size of 30, 000, so the vocabulary size was
capped at that value, while the lower limit was set
to 10, 000, as smaller vocabularies would result in
too few words available for generation.

An important aspect of the vocabulary is the
inclusion of words with sentiment values, since
they would be generated to add sentiment to the
poetry. Using Vader (Hutto and Gilbert, 2015), the
data sets were investigated for how many unique
words they contained with a polar (non-neutral)
sentiment, i.e., either having a positive or a negative
sentiment. Those are also reported in Table 1.

Due to the increased number of unique sentiment
words with increased vocabulary sizes, but also
due to memory restrictions and larger vocabularies
resulting in greater training times, the vocabulary
sizes for neural network training was chosen to
be 10, 000 and 20, 000. As Table 1 shows, the
number of individual tokens in the data set with a
vocabulary size of 20, 000 is over 35 million, which
is too large to train on, concerning the time it would
take. The data sets were therefore further reduced
to training data sets, containing only 10% of the
original data. All poems were ordered after the user
name of the person that published it, so every tenth
poem was selected for creating training data, to get
poems from as many different authors as possible.
The training data set sizes are presented in Table 2.

To evaluate the trained networks, new test data
was created from the original data sets, in the same

2https://keras.io/

Lemmas Poems Tokens

Training set 1 9 195 12 273 1 300 068
Training set 2 18 031 26 873 3 106 347
Test set 1 9 195 4 620 405 286
Test set 2 18 031 4 307 406 324

Table 2: Training and test data sets

way as the training data, but from poems not in-
cluded in the training data and only containing
tokens included in the training data vocabularies.
The test data sets are also shown in Table 2.

The training of the neural network is done by
creating input sequences to be fed through the net-
work, but also creating the correct output which is
then compared to the output of the network. The
input is therefore created by choosing a sequence
of the training data with a given length, and the
token following that sequence as the correct output.
A training data sequence length of 5 was chosen,
both for memory storage reasons and since 5 was
decided to be the shortest possible line length of the
generated poetry. Resticting the sequence length
will also make the network predict the next words
based on just a short sequence, instead of all of
the poem that is already generated, which could
lead to more variation. Before creating the network
input matrices, every poem was reversed, with the
last word being the first, and so on, following the
approach used by Benhart et al. (2018). This is
done so it is possible to start with the ending rhyme
word of a line of poetry, and generate the rest of
the line backwards from that rhyme-word.

4 Architecture

This section introduces the architecture for the sys-
tem implemented in this project. The first part
describes the long short-term memory network that
was implemented, while the second part describes
the complete poetry generation process.

4.1 The LSTM network

A bi-directional Long Short-Term Memory neural
network is the main component in the poetry gen-
eration process. After being trained on a large data
set of human-written poetry, its task is to give a
prediction on the next word that should follow after
a given input sequence of words. The prediction
consists of an array, with a predicted score of every
unique word in the vocabulary.

Figure 1 shows the Bi-LSTM network. The in-
put with a sequence length of 5 is transformed into
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Figure 1: LSTM network prediction process

a matrix representation before being fed to the net-
work. The network’s input layer represents the
matrix data given to the network, which accounts
for both the data used for training and for the input
during the poetry generation process. The output
layer is a softmax activation function layer that out-
puts a matrix representing the network predictions
for all possible words. During training, the result of
these predictions are compared to the actual follow-
ing word of a given sequence, which will update
the hidden layer(s) based on a loss function, which
the network tries to minimise. Between the input
and output layers are hidden layers, consisting of
(recurrent) LSTM cells that compute the possible
values for the next predictions, based on the current
input and the (stored memory of) the previous part
of the input sequence.

During training, the network tries to minimise
the cross entropy loss:

L = − 1

N

N∑
c=1

ln(pc) (1)

where N is the total training set, p the prediction,
and c the category (the word) being looked at. The
loss is the cross entropy between the distribution of
the true labels and the network predictions. To min-
imise the loss function, backpropagation is used
to update the network weights during training, by
taking the error found by the loss function L and
calculating the gradient of L with respect to the
weights, w, in the network, ∂L

∂w . The gradient is fed
to the optimiser, which updates the weights in an at-
tempt to minimise the loss function. The optimiser
used is stochastic gradient descent, a first-order
iterative optimisation algorithm. It is possible to
get stuck in a local minimum when minimising the

loss function, therefore the learning rate is initially
set higher, and decreases during the training to try
to find the global minimum. In addition, dropout
(Srivastava et al., 2014) was used during network
training to reduce overfitting.

4.2 Poetry generation system

The network output consist of an array containing
the predicted value for each word in the vocab-
ulary, to follow the input word sequence fed to
the network. In addition to the LSTM, the poetry
generator has three important components: rhyme
pair generation, prediction score updating, and tree
search. The generation of rhyme pairs is used as
initial input for generating each poetry line and
ensures that the poetry contains end rhymes. The
score updating algorithm adjusts the prediction val-
ues gained from the LSTM, by adding rules and
different weightings on certain types of possible
words, to enhance the quality of the generated se-
quences. The search tree expands the number of
possible sequences created during the generation,
increasing the chance of finding the best possible
sequence to create a poem from.

Rhyme word generation: The first part of the
generation process consists of finding rhyme word
pairs, that are used as input for producing a poetry
line, as it is generated backwards from the rhyme
words. For this, a unique word having a sentiment
value matching the decided sentiment is randomly
chosen from the vocabulary, using Vader (Hutto
and Gilbert, 2015), with words with a sentiment
value above 0.0 selected if the sentiment is to be
positive, and less than 0.0 for negative.

The vocabulary is then searched for another
word of the same sentiment rhyming with the first
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Figure 2: Poetry generation with rhyme word input

word, with CMUdict identifying the syllables. The
conditions that need to be met to complete a rhyme
do not form a perfect rhyme (i.e., with identical
stressed vowel sounds in both words, as well as any
subsequent sounds, but with different consonant
preceding the stressed vowel), but rather a form of
imperfect rhyme, where the last three sounds, in-
cluding a consonant, are equal for two words. Each
word in a rhyme pair is used for one line of poetry,
and the rhyme form chosen is ABAB, so two pairs
are needed to generate one 4-line stanza.

The first rhyme word found is used to predict
the following words for the first line (which will
be the final line of the poem, since it is generated
backwards). The last four words of the generated
sequence, plus the rhyme word for the next line, are
used as input to generate the next line. This process
is presented in Figure 2, where the rhyme word A1
is used to generate the first line, consisting of the
rhyme word and a sequence of n words w. The
next rhyme word B1 is then added to the sequence
of the four words from wn−3 to wn from the last
sequence, and used as input to generate the next
line. The last generated line with the rhyme word
B2 is the first line of the complete poem.

Updating prediction scores: For every word
generated in a sequence, predictions on all the
possible words are given by the LSTM, based on
network input consisting of the previously gener-
ated words. Four algorithms were implemented for
updating and adjusting the prediction scores, to im-
prove the generated poetry. These algorithms were
similarly used in other state-of-the-art-solutions, in-
cluding Benhart et al. (2018) implementing repeti-
tion and sentence structure restrictions, and Colton
et al. (2012) measuring sentiment values of poetry
lines against a set value.

(i) Since some popular words often appear in the
data set, they will have a high prediction value. To

avoid a repetitive use of these words and to achieve
better variety, related words are found using Word-
Net (Miller, 1995) for the 20 unique words with
the highest prediction value, and the predictions
for those words are increased, thus increasing the
probability of choosing a less used word.

(ii) To reduce the likelihood of a line of poetry con-
taining repeated words, a word’s predicted score
is reduced during sequence generation, if it has
previously appeared in the sequence.

(iii) It was observed that the generated poetry con-
sistently had obvious part-of-speech (POS) errors.
Sequences were thus POS-tagged using the Natural
Language ToolKit (Bird et al., 2009), and used to
implement sentence structure restrictions, such as
disallowing a pronoun directly preceding another
pronoun and a verb directly preceding another verb.

(iv) Based on the intended sentiment for the po-
ems, the scores for the possible words with a cor-
responding sentiment were increased, using Vader
to find all the possible next words in a sequence
having a sentiment value corresponding to the in-
tended sentiment and increasing their predicted
score, resulting in an increased chance of choos-
ing words with the correct sentiment value when
generating sequences. The degree of increasing
predicted scores is based of the sentiment value
of each word. Words that Vader evaluates as hav-
ing a higher correct sentiment value get a larger
predicted score increase; words with the opposite
sentiment get their predicted scores decreased.

Search tree algorithm: To increase the chances
of finding the best possible sequences to create
a poem from, a tree search algorithm was imple-
mented to expand the number of sequences created.
Instead of generating a single next word based on
the highest score, the search takes a number of
the possible words with the highest score values,
and generates different possible sequences. This is
repeated for every new word in the sequence.

The first word w1 can be one of the rhyme words
used to generate the rest of the sequence, but it can
also be a sequence of previously generated words
plus the new rhyme word. Using this as the input
to the LSTM network, we get the predictions for
the next words. These prediction scores are then
updated by the four algorithms described above,
before 20 new sequences are created, that all con-
sist of the first word w1 plus one of the next words
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x with one of the highest scores, where every se-
quence has a unique next word x. This generation
step is then performed on all the possible sequences
created in the previous step, for adding the third
word in the sequence, and so on.

The search continues with a number of steps i
equal to the total number of words to be gener-
ated in a given sequence. As the search tree grows
exponentially, the possible sequences that are cre-
ated with the lowest scores are continuously pruned
throughout the process.

When all the possible sequences have been cre-
ated, the sentiment values for each complete se-
quence are evaluated using Vader. These sentiment
values are again used to adjust the score for all the
possible sequences. After this final score update,
the sequence with the highest score is chosen, and
used to generate a new line of the current poem.

The process described above is used to generate
8-line poems consisting of two 4-line stanzas with
a rhyming scheme of ABAB CDCD. The system
adds commas after each of the first three lines of
a stanza, a period after the last line, and an empty
line between the two stanzas. The first letter of the
first word of every line is capitalised, in addition
to other letters where capitalising is grammatically
correct. Finally, Vader is used to calculate the senti-
ment value of the entire complete poem. This final
sentiment value is used in the experiments where it
is compared to human evaluations.

5 Network Experiments

Experiment were conducted to decide the final ar-
chitecture of the LSTM network, and what param-
eters to use in the implementation of the poetry
generation system. The network training was per-
formed on a Tesla P100-PCIE-16GB GPU. The
learning rate was initially set to 0.9 for the training
of all networks. A monitor was implemented on
the validation loss calculated on validation samples
each epoch, reducing the learning rate after a given
period when the validation loss has not decreased.
The period before reducing the learning rate was
set to 5 epochs, and the reduction of the learning
rate to a factor of 0.3. The minimum limit for the
learning rate was set to 0.001. The dropout proba-
bility rate was 0.6 for all non-recurrent units. This
value was chosen based on Zaremba et al. (2014),
where the dropout rate used for medium LSTM
(650 units per layer) was 0.5, and 0.65 for large
LSTM (1500 units per layer).

M1 M2 M3 M4 M5

CA 2.25 2.38 2.46 2.41 2.33
L 8.997 8.097 7.951 8.131 8.813
WP 8,077 3,286 2,839 3,400 6,722

Table 3: Results using Training Data set 1

Two different data sets were used in the exper-
iments and the parameters tested were the num-
bers of hidden layers, units in each hidden layer,
and training epochs. The test data input was fed
through the networks, and predictions were mea-
sured against true values, using three measures:

(i) Categorical accuracy (CA) is calculated for the
entire test data set, by taking the mean accuracy rate
across all the predictions, to check if the predicted
word is equal to the true word.

(ii) Categorical cross entropy loss gives the loss
function (L; Eq. 1) used during network training.

(iii) Word perplexity (WP) measures how well a
probability distribution can predict a sample: the
lower the perplexity, the less confused a network is
about predicting the next word. It is calculated by
using the loss function as exponent to the power of
the constant e:

WP = eL = exp(− 1

N

N∑
c=1

ln(pc)) (2)

5.1 LSTM network training

Five LSTM networks were trained over 25, 50 or
75 training epochs on each of the training data sets:
two network models with two hidden layers, with
256 (denoted as model M1 below) resp. 1024 (M2)
hidden units; and three models with three hidden
layers, with the number of hidden units being 256
(M3), 512 (M4) or 1024 (M5).

The LSTM models trained on Training set 1
(with a vocabulary size of 9, 195) were only eval-
uated on the Test set 1, since it has the same size.
Table 3 displays the categorical accuracy, cross
entropy loss, and perplexity for those networks.

The LSTM network models trained on the Train-
ing set 2 on the other hand (with a vocabulary size
of 18, 031), were evaluated on both Test set 1 and
Test set 2, in order to be able to compare LSTM
models trained on different vocabulary sizes, with
results presented in Table 4.
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M1 M2 M3 M4 M5

Evaluation Data set 1 results

CA 2.53 2.38 2.51 2.41 2.25
L 7.986 8.617 8.000 8.315 9.729
WP 2,939 5,522 2,981 4,084 16,789

Evaluation Data set 2 results

CA 2.34 2.24 2.38 2.24 2.07
L 8.266 8.893 8.617 8.540 9.983
WP 3,888 7,279 5,522 5,117 21,653

Table 4: Results using Training Data set 2

5.2 LSTM network evaluation

The perplexity varied greatly for the different
LSTMs, ranging from 2, 939 to 21, 653, and in-
creasing with increased network complexity. How-
ever, networks trained on a smaller vocabulary did
not have better perplexity scores than those trained
on the larger vocabulary, so the ones trained on
the smaller vocabulary were disregarded, since a
smaller vocabulary means fewer possible unique
words in the generated poems.

The network trained on the large vocabulary with
best perplexity (3, 888 for Test set 2) had 2 hidden
layers and 256 hidden units per layer. However,
generating text solely based on predictions given
by this network, it showed signs of being highly
overfitted, repeating a few select words. Since
this network did not achieve perplexity scores sig-
nificantly better than the alternatives, the larger
network with the next-best perplexity was chosen
instead. It has 3 hidden layers, 512 hidden units
per layer, and was trained for 25 epochs, achieving
a perplexity of 5, 117 for Test set 2, with a cross
entropy loss of 8.540 and a categorical accuracy
of 0.0224. A network with the same architecture,
but trained for an additional 25 epochs, resulted
in a much higher word perplexity score (21, 653),
likely due to underfitting the training data, since it
had a much harder time predicting correct words.

While the perplexity differed greatly for the
LSTMs, it was consistently very high, representing
poor network training results. Zaremba et al. (2014)
achieved a word perplexity of 78.4 with a regu-
larised LSTM where dropout was used, training on
the Penn Tree Bank (PTB) 10k vocabulary (Mar-
cus et al., 1993). While the vocabulary size of the
training data does not differ, there are several no-
table differences that will impact the results: Word
perplexity will be greater for data with a larger vo-
cabulary size (plainly due to the word possibilities

Positive Negative
sentiment sentiment

Rated positive 58.8% 2.7%
Rated neutral 36.2% 27.6%
Rated negative 5.0% 69.7%

Human average 0.360 -0.372
Vader average 0.977 -0.925

Table 5: Sentiment evaluation results

increasing, clearly shown in Table 4. Furthermore,
the PTB consists of grammatically correct litera-
ture, while the data used here consists of publicly
written poetry, which is more irregular and with
greater variation (especially in sentence structure
and grammaticality), which could impact the net-
works’ ability to learn patterns from the texts. The
networks here were also trained on short sequences
with a length of 5, making it harder for them to
learn connections and general rules in the data.

6 Evaluating the generated poetry

Human judges evaluated the generated poetry both
in itself and with regard to the intended senti-
ment. The poetry was rated along the dimensions
suggested by Manurung (2004): Grammaticality,
Meaningfulness, and Poeticness, on a 1–3 scale (1
being “not”, 2 “partially, and 3 “fully”). For the
sentiment rating, the human judges evaluated the
poetry using three categories: Negative sentiment,
No sentiment (neutral), and Positive sentiment. If
a poem was evaluated as having negative or posi-
tive sentiment, it was graded with a score of 1–3
(“Slightly”, “Quite”, and “Very” negative/positive).

Twenty poems were evaluated (i.e., 40 stanzas
and 160 lines), generated to contain 10 each with
positive and negative sentiment. Thirty human
judges participated, evaluating a selection of 6 or 7
poems each, with a near-equal amount of positive
and negative sentiments.

The 20 poems were scored with an average mean
of Grammaticality: 1.488 ± 0.0476, Meaningful-
ness: 1.582 ± 0.0338, and Poeticness: 2.012 ±
0.0342. Table 5 shows the percent of the judges
who rated the poems to contain positive, neutral
or negative sentiment. The evaluators also rated
the degree of perceived sentiment for each poem
they had evaluated to contain a positive or negative
sentiment, with ratings for every poem normalised
to values between 0–1. The poems included in the
experiments were also rated using Vader. Table 5
also shows the average sentiment degree scores.
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The results show that on average the majority
of judges perceived the poems to contain the senti-
ment value intended by the system, but the degrees
of the sentiment value, both for negative and pos-
itive poems, are rated considerably lower by the
human judges than the ratings given by Vader. One
reason for this is the very high ratings that Vader
assigns, both for negative and positive sentiment
scores, with the generator discouraging the use of
words with an opposite sentiment value (compared
to the intended value), while encouraging the use
of words with a “correct” sentiment value, given by
Vader. The degree ratings from the human judges
on the other hand reflect that a lack of the words
with an opposite sentiment value does not result
in a high degree of sentiment being perceived. It
is also interesting to note the consistency of the
degree ratings given by the human judges, where
positive and negative sentiment poems are on aver-
age rated with almost the same degree of sentiment.

Three of the generated poems are presented be-
low: #8 with one of the lowest scores in the ex-
periment results, and #3 and #14 with some of
the highest. Along with each poem are its scores,
with the first array presenting the grammaticality,
meaningfulness and poeticness scores. The second
array shows the percentage of human judges who
found the poem to contain negative, neutral, or pos-
itive sentiment. Poem 8 achieved a score of 1.22
for both grammaticality and meaningfulness, while
Poem 14 achieved a score of 1.73 for those. The
poeticness scores for both Poem 8 and 14 are below
average, while Poem 3 achieved the highest poetic-
ness score of all the poems with 2.5, and also high
scores for grammaticality and meaningfulness.

A common trait among all the generated poems
is incorrect use of articles and conjunctions, in ad-
dition to erroneous use of other word classes and
poor sentence structure. Examples of this are the
sequences So most from an till and Amid to our so
most from currently in Poem 8. Another noticeable
aspect is the rhyme pairs in the poetry not always
rhyming, e.g., exceptions and solutions at the end
of lines 6 and 8 in Poem 14. This is due to the
system pairing rhyme words based on the last three
syllables using CMUdict. A similar aspect is the
consistent lack of repetitiveness found in the poetry,
since repeated use of words is highly discouraged
by the system, to avoid constant use of the same
high predictions words, resulting in the poems lack-
ing an often used poetic technique, to consciously

Poem 3
Of ravishing sin was naturally deprivation, 1

Of war suffering it tired than two then a situation, 2
And the go on no lies at finding they frustration, 3

Of voice are their seven then limitation. 4

The forest in mystic hands understood, 5
A trapped on must words most from your unarmed, 6

With wind raging to our misunderstood, 7
As a entire my that alarmed. 8

Metric evaluation scores: [ 1.7, 1.5, 2.5 ]
Sentiment evaluation scores: [ 0%, 20%, 80% ]

Poem 8
For worst the all sleep as hearted of unpredictable, 1

So most from an till sensations, 2
Poor tall being eye in goes horrible, 3

Without the when todays so most from contradictions. 4

Kept on humanitys your soft in night a frightening, 5
Amid to our so most from currently, 6

In unwanted of feminine with sickening, 7
By no lies at impatiently. 8

Metric evaluation scores: [ 1.22, 1.22, 1.89 ]
Sentiment evaluation scores: [ 0%, 56%, 44% ]

Poem 14
Without the oozing in night quickly divine thin lovable, 1

Like non focused best gods so wearing on contentment, 2
Bliss most from victory like favorable, 3

Without the respected of your improvement. 4

A dusty amid to governments, 5
Like mother of god be will certain the exceptions, 6

Amid to our so most from the do innocents, 7
In love a feeling most which are their solutions. 8

Metric evaluation scores: [ 1.73, 1.73, 1.91 ]
Sentiment evaluation scores: [ 82%, 18%, 0% ]

repeat words or phrases. Other noticeable factors
include misspellings (e.g., humanitys in Poem 8),
and use of rare and special words. The generator
vocabulary consists of the 20, 000 most frequently
used words in the chosen data set, so any spelling
error would mean that a high frequency of that
misspelling occurs in the data.

The average scores for both grammaticality and
meaningfulness are rather low. This correlates di-
rectly with the results from the LSTM training:
the poor word perplexity scores for the LSTM net-
works have an effect on the words chosen by the
poetry generator, creating poems having poor gram-
maticality, and therefore being more difficult to
perceive meaningfulness from. The variables that
update the word predictions during the generation
could be improved to positively impact the evalu-
ation scores, in particular the feature that updates
prediction values based on sentence structure.

Poeticness had a significantly higher score,
which could be due to factors not influenced by
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the LSTM model’s performance, specifically in-
cluding the generation and use of rhyming pairs
and the form of the poetry. The form of the poetry
is also not influenced by the LSTM predictions,
as the length of each line is randomly decided be-
tween two outer bounds, and proper punctuation
is added after each line, including a line break be-
tween stanzas. While consistent rhyme form, punc-
tuation, and varying line lengths likely account for
the good poeticness results, possible weaknesses
that might have affected the results are the lack of
perfect rhymes and the lack of known poetry forms
with consistent syllable lengths, such as sonnets.
The lack of repetitiveness as encouraged by the
system might also negatively affect the score.

7 Conclusion and Future Work

A system capable of generating poetry with in-
herent sentiment has been designed and imple-
mented, with the main system component being
a bi-directional Long Short-Term Memory network
used for generating word predictions based on a
given input sequence. The network was trained on
a data set consisting of poetry written by humans.
Other components of the final generation system
are algorithms and rule-based methods for influ-
encing word predictions and word choices during
the generation process, and a search algorithm for
expanding the possibilities of generated sequences.

The implemented system was used to generate
20 poems in total, all consisting of two stanzas with
four lines each. 10 of the poems were generated to
contain an inherent positive sentiment value, while
the other 10 were generated to contain a negative
sentiment value. Several experiments were con-
ducted, both regarding the LSTM network and on
the generated poetry. The first experiment was on
training different LSTM networks with varying ar-
chitecture details, with the goal of training the best
performing network model to use in the implemen-
tation of the final poetry generation system.

Two other experiments were conducted on the fi-
nal generated poetry, both involving human judges
evaluating the generated poetry. The first of these
experiment consisted of the judges evaluating the
poetry based on three standard evaluation criteria.
This enabled evaluation of the performance of the
poetry generation system, and comparison to other
works that have been conducted in this field. In
the second experiment the human judges evaluated

the sentiment value they perceived generated po-
etry to contain, in order to investigate whether the
system was capable of generating poetry with an
inherent sentiment value that would be perceived
as intended by human readers.

The results of the experiments varied, with
LSTM experiments giving word perplexity scores
worse than state-of-the-art solutions. Applying
some standard evaluation metrics showed one of
the metrics achieving similar values to state-of-the-
art solutions, while the other metric gave poorer
results, one reason being the influence from the sub-
par prediction performance of the LSTM network.
The experiment for evaluating the sentiment of the
generated poetry produced good results. While
there is a lack of similar experiments by others to
compare to, the results show a clear trend of the
human judges perceiving the poetry to contain the
intended sentiment value.

Possible future work could include implement-
ing additional features or other architectures, such
as word embedding models or language models like
BERT (Devlin et al., 2018) that show prominent
results for text analysis, or use mutual reinforce-
ment, which has given state-of-the-art results in
poetry generation (Yi et al., 2018). The data set
used to train the neural network model has a consid-
erable effect on the system’s performance and the
generated poetry. Hence using different data sets,
especially data containing poetry of a generally
accepted higher quality, would probably improve
the system. Adding only perfect rhymes for rhyme
pair generation, or a strict poetic form based on
syllables, such as the sonnet form, could improve
the poetic qualities of the output.

The main feature of the generation system is to
generate poetry with an inherent sentiment, and
this can also be further developed. First, the sys-
tem needs to generate poetry with a wider range
of sentiment value words, as it current only uses
words with neutral sentiment or sentiment values
corresponding to the intended sentiment. Adding
more words with opposite sentiment could increase
the poetry’s emotional dynamic. The sentiment
feature could also be extended to generate poetry
with a wider range of emotions, e.g., by using emo-
tional modelling similarly to Misztal and Indurkhya
(2014), or by adapting the system to generate po-
etry with an inherent degree of a specific sentiment,
not just a general negative or positive value.
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