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Abstract
As the first step of automatic fact checking,
claim check-worthiness detection is a critical
component of fact checking systems. There
are multiple lines of research which study this
problem: check-worthiness ranking from po-
litical speeches and debates, rumour detection
on Twitter, and citation needed detection from
Wikipedia. To date, there has been no struc-
tured comparison of these various tasks to un-
derstand their relatedness, and no investigation
into whether or not a unified approach to all of
them is achievable. In this work, we illuminate
a central challenge in claim check-worthiness
detection underlying all of these tasks, being
that they hinge upon detecting both how fac-
tual a sentence is, as well as how likely a
sentence is to be believed without verification.
As such, annotators only mark those instances
they judge to be clear-cut check-worthy. Our
best performing method is a unified approach
which automatically corrects for this using
a variant of positive unlabelled learning that
finds instances which were incorrectly labelled
as not check-worthy. In applying this, we out-
perform the state of the art in two of the three
tasks studied for claim check-worthiness detec-
tion in English.

1 Introduction

Misinformation is being spread online at ever in-
creasing rates (Del Vicario et al., 2016) and has
been identified as one of society’s most pressing is-
sues by the World Economic Forum (Howell et al.,
2013). In response, there has been a large increase
in the number of organizations performing fact
checking (Graves and Cherubini, 2016). However,
the rate at which misinformation is introduced and
spread vastly outpaces the ability of any organi-
zation to perform fact checking, so only the most
salient claims are checked. This obviates the need
for being able to automatically find check-worthy
content online and verify it.

Figure 1: Examples of check-worthy and non
check-worthy statements from three different domains.
Check-worthy statements are those which were judged
to require evidence or a fact check.

The natural language processing and machine
learning communities have recently begun to ad-
dress the problem of automatic fact checking (Vla-
chos and Riedel, 2014; Hassan et al., 2017;
Thorne and Vlachos, 2018; Augenstein et al., 2019;
Atanasova et al., 2020a,b; Ostrowski et al., 2020;
Allein et al., 2020). The first step of automatic
fact checking is claim check-worthiness detection,
a text classification problem where, given a state-
ment, one must predict if the content of that state-
ment makes “an assertion about the world that is
checkable” (Konstantinovskiy et al., 2018). There
are multiple isolated lines of research which have
studied variations of this problem. Figure 1 pro-
vides examples from three tasks which are studied
in this work: rumour detection on Twitter (Zubiaga
et al., 2016, 2018), check-worthiness ranking in po-
litical debates and speeches (Atanasova et al., 2018;
Elsayed et al., 2019; Barrón-Cedeño et al., 2020),
and citation needed detection on Wikipedia (Redi
et al., 2019). Each task is concerned with a shared
underlying problem: detecting claims which war-
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rant further verification. However, no work has
been done to compare all three tasks to understand
shared challenges in order to derive shared solu-
tions, which could enable improving claim check-
worthiness detection systems across multiple do-
mains.

Therefore, we ask the following main research
question in this work: are these all variants of the
same task, and if so, is it possible to have a unified
approach to all of them? We answer this question
by investigating the problem of annotator subjec-
tivity, where annotator background and expertise
causes their judgement of what is check-worthy to
differ, leading to false negatives in the data (Kon-
stantinovskiy et al., 2018). Our proposed solution
is Positive Unlabelled Conversion (PUC), an exten-
sion of Positive Unlabelled (PU) learning, which
converts negative instances into positive ones based
on the estimated prior probability of an example be-
ing positive. We demonstrate that a model trained
using PUC improves performance on English cita-
tion needed detection and Twitter rumour detection.
We also show that by pretraining a model on ci-
tation needed detection, one can further improve
results on Twitter rumour detection over a model
trained solely on rumours, highlighting that a uni-
fied approach to these problems is achievable. Ad-
ditionally, we show that one attains better results on
political speeches check-worthiness ranking with-
out using any form of PU learning, arguing through
a dataset analysis that the labels are much more
subjective than the other two tasks.

The contributions of this work are as follows:

1. The first thorough comparison of multiple
claim check-worthiness detection tasks.

2. Positive Unlabelled Conversion (PUC), a
novel extension of PU learning to support
check-worthiness detection across domains.

3. Results demonstrating that a unified approach
to check-worthiness detection is achievable
for 2 out of 3 tasks, improving over the state-
of-the-art for those tasks.

2 Related Work

2.1 Claim Check-Worthiness Detection

As the first step in automatic fact checking, claim
check-worthiness detection is a binary classifica-
tion problem which involves determining if a piece
of text makes “an assertion about the world which
can be checked” (Konstantinovskiy et al., 2018).

We adopt this broad definition as it allows us to
perform a structured comparison of many publicly
available datasets. The wide applicability of the
definition also allows us to study if and how a uni-
fied cross-domain approach could be developed.

Claim check-worthiness detection can be subdi-
vided into three distinct domains: rumour detection
on Twitter, check-worthiness ranking in political
speeches and debates, and citation needed detec-
tion on Wikipedia. A few studies have been done
which attempt to create full systems for mining
check-worthy statements, including the works of
Konstantinovskiy et al. (2018), ClaimRank (Jara-
dat et al., 2018), and ClaimBuster (Hassan et al.,
2017). They develop full software systems con-
sisting of relevant source material retrieval, check-
worthiness classification, and dissemination to the
public via end-user applications. These works are
focused solely on the political domain, using data
from political TV shows, speeches, and debates.
In contrast, in this work we study the claim check-
worthiness detection problem across three domains
which have publicly available data: Twitter (Zu-
biaga et al., 2017), political speeches (Atanasova
et al., 2018), and Wikipedia (Redi et al., 2019).

Rumour Detection on Twitter Rumour detec-
tion on Twitter is primarily studied using the
PHEME dataset (Zubiaga et al., 2016), a set of
tweets and associated threads from breaking news
events which are either rumourous or not. Pub-
lished systems which perform well on this task in-
clude contextual models (e.g. conditional random
fields) acting on a tweet’s thread (Zubiaga et al.,
2017, 2018), identifying salient rumour-related
words (Abulaish et al., 2019), and using a GAN
to generate misinformation in order to improve a
downstream discriminator (Ma et al., 2019).

Political Speeches For political speeches, the
most studied datasets come from the Clef Check-
That! shared tasks (Atanasova et al., 2018; El-
sayed et al., 2019; Barrón-Cedeño et al., 2020) and
ClaimRank (Jaradat et al., 2018). The data con-
sist of transcripts of political debates and speeches
where each sentence has been annotated by an in-
dependent news or fact-checking organization for
whether or not the statement should be checked
for veracity. The most recent and best performing
system on the data considered in this paper consists
of a two-layer bidirectional GRU network which
acts on both word embeddings and syntactic parse
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tags (Hansen et al., 2019). In addition, they aug-
ment the native dataset with weak supervision from
unlabelled political speeches.

Citation Needed Detection Wikipedia citation
needed detection has been investigated recently
in (Redi et al., 2019). The authors present a dataset
of sentences from Wikipedia labelled for whether
or not they have a citation attached to them. They
also released a set of sentences which have been
flagged as not having a citation but needing one (i.e.
unverified). In contrast to other check-worthiness
detection domains, there are much more training
data available on Wikipedia. However, the rules
for what requires a citation do not necessarily cap-
ture all “checkable” statements, as “all material in
Wikipedia articles must be verifiable” (Redi et al.,
2019). Given this, we view Wikipedia citation
data as a set of positive and unlabelled data: state-
ments which have attached citations are positive
samples of check-worthy statements, and within
the set of statements without citations there exist
some positive samples (those needing a citation)
and some negative samples. Based on this, this
domain constitutes the most general formulation of
check-worthiness among the domains we consider.
Therefore, we experiment with using data from this
domain as a source for transfer learning, training
variants of PU learning models on it, then applying
them to target data from other domains.

2.2 Positive Unlabelled Learning

PU learning methods attempt to learn good binary
classifiers given only positive labelled and unla-
belled data. Recent applications where PU learning
has been shown to be beneficial include detecting
deceptive reviews online (Li et al., 2014; Ren et al.,
2014), keyphrase extraction (Sterckx et al., 2016)
and named entity recognition (Peng et al., 2019).
For a survey on PU learning, see (?), and for a
formal definition of PU learning, see §3.2.

Methods for learning positive-negative (PN) clas-
sifiers from PU data have a long history (Denis,
1998; De Comité et al., 1999; Letouzey et al.,
2000), with one of the most seminal papers be-
ing from Elkan and Noto (2008). In this work, the
authors show that by assuming the labelled samples
are a random subset of all positive samples, one
can utilize a classifier trained on PU data in order
to train a different classifier to predict if a sample is
positive or negative. The process involves training
a PN classifier with positive samples being shown

to the classifier once and unlabelled samples shown
as both a positive sample and a negative sample.
The loss for the duplicated samples is weighted by
the confidence of a PU classifier that the sample is
positive.

Building on this, du Plessis et al. (2014) propose
an unbiased estimator which improves the estima-
tor introduced in (Elkan and Noto, 2008) by balanc-
ing the loss for positive and negative classes. The
work of Kiryo et al. (2017) extends this method to
improve the performance of deep networks on PU
learning. Our work builds on the method of Elkan
and Noto (2008) by relabelling samples which are
highly confidently positive.

3 Methods

The task considered in this paper is to predict if a
statement makes “an assertion about the world that
is checkable” (Konstantinovskiy et al., 2018). As
the subjectivity of annotations for existing data on
claim check-worthiness detection is a known prob-
lem (Konstantinovskiy et al., 2018), we view the
data as a set of positive and unlabelled (PU) data.
In addition, we unify our approach to each of them
by viewing Wikipedia data as an abundant source
corpus. Models are then trained on this source cor-
pus using variants of PU learning and transferred
via fine-tuning to the other claim check-worthiness
detection datasets, which are subsequently trained
on as PU data. On top of vanilla PU learning, we
introduce Positive Unlabelled Conversion (PUC)
which relabels examples that are most confidently
positive in the unlabelled data. A formal task defi-
nition, description of PU learning, and explanation
of the PUC extension are given in the following
sections.

3.1 Task Definition

The fundamental task is binary text classification.
In the case of positive-negative (PN) data, we have
a labelled dataset D : {(x, y)} with input features
x ∈ Rd and labels y ∈ {0, 1}. The goal is to learn
a classifier g : x→ (0, 1) indicating the probability
that the input belongs to the positive class. With
PU data, the dataset D instead consists of samples
{(x, s)}, where the value s ∈ {0, 1} indicates if a
sample is labelled or not. The primary difference
from the PN case is that, unlike for the labels y,
a value of s = 0 does not denote the sample is
negative, but that the label is unknown. The goal is
then to learn a PN classifier g using a PU classifier
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Figure 2: High level view of PUC. A PU classifier (f , green box) is first learned using PU data (with s indicating
if the sample is positive or unlabelled). From this the prior probability of a sample being positive is estimated.
Unlabelled samples are then ranked by f (red box) and the most positive samples are converted into positives until
the dataset is balanced according to the estimated prior. The model g is then trained using the duplication and
weighting method of Elkan and Noto (2008) as described in §3.2 with labels l (blue box). Greyed out boxes are
negative weights which are ignored when training the classifier g, as those examples are only trained as positives.

f : x → (0, 1) which predicts whether or not a
sample is labelled (Elkan and Noto, 2008).

3.2 PU Learning
Our overall approach is depicted in Figure 2. We
begin with an explanation of the PU learning algo-
rithm described in (Elkan and Noto, 2008). Assume
that we have a dataset randomly drawn from some
probability distribution p(x, y, s), where samples
are of the form (x, s), s ∈ {0, 1} and s = 1 indi-
cates that the sample is labelled. The variable y
is unknown, but we make two assumptions which
allow us to derive an estimator for probabilities
involving y. The first is that:

p(y = 0|s = 1) = 0 (1)

In other words, if we know that a sample is la-
belled, then that label cannot be 0. The second
assumption is that labelled samples are Selected
Completely At Random from the underlying dis-
tribution (also known as the SCAR assumption).
Check-worthiness data can be seen as an instance
of SCAR PU data; annotators tend to only la-
bel those instances which are very clearly check-
worthy in their opinion (Konstantinovskiy et al.,
2018). When combined across several annotators,
we assume this leads to a random sample from the
total set of check-worthy statements.

Given this, a classifier f : x→ (0, 1) is trained
to predict p(s = 1|x) from the PU data. It is then
employed to train a classifier g to predict p(y =
1|x) by first estimating c = p(s = 1|y = 1) on a
set of validation data. Considering a validation set

V where P ⊂ V is the set of positive samples in
V , c is estimated as:

c ≈ 1

|P |
∑
x∈P

f(x) (2)

This says our estimate of p(s = 1|y = 1) is the av-
erage confidence of our classifier on known positive
samples. Next, we can estimate Ep(x,y,s)[h(x, y)]
for any arbitrary function h empirically from a
dataset of k samples as follows:

E[h] =
1

k
(
∑

(x,s=1)

h(x, 1) +
∑

(x,s=0)

w(x)h(x, 1)

+ (1− w(x))h(x, 0))
(3)

w(x) = p(y = 1|x, s = 0)

=
1− c
c

p(s = 1|x)
1− p(s = 1|x)

(4)

In this case, c is estimated using Equation 2 and
p(s = 1|x) is estimated using the classifier f .
The derivations for these equations can be found
in (Elkan and Noto, 2008).

To estimate p(y = 1|x) empirically, the unla-
belled samples in the training data are duplicated,
with one copy negatively labelled and one copy
positively labelled. Each copy is trained on with
a weighted loss w(x) when the label is positive
and 1− w(x) when the label is negative. Labelled
samples are trained on normally (i.e. a single copy
with unit weight).
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3.3 Positive Unlabelled Conversion
For PUC, the motivation is to relabel those samples
from the unlabelled data which are very clear cut
positive. To accomplish this, we start with the fact
that one can also estimate the prior probability of a
sample having a positive label using f . If instead
of h we want to estimate E[y] = p(y = 1), the
following is obtained:

p(y = 1) ≈ 1

k
(
∑
x,s=1

1 +
∑
x,s=0

w(x)) (5)

This estimate is then utilized to convert the most
confident unlabelled samples into positives. First,
all of the unlabelled samples are ranked according
to their calculated weight w(x). The ranked sam-
ples are then iterated through and converted into
positive-only samples until the distribution of posi-
tive samples is greater than or equal to the estimate
of p(y = 1). Unlike in vanilla PU learning, these
samples are discretized to have a positive weight of
1, and trained on by the classifier g once per epoch
as positive samples along with the labelled samples.
The remaining unlabelled data are trained on in the
same way as in vanilla PU learning.

3.4 Implementation
In order to create a unified approach to check-
worthiness detection, transfer learning from
Wikipedia citation needed detection is employed.
To accomplish this, we start with a training dataset
Ds of statements from Wikipedia featured arti-
cles that are either labelled as containing a cita-
tion (positive) or unlabelled. We train a classi-
fier f s on this dataset and obtain a classifier gs

via PUC. For comparison, we also train models
with vanilla PU learning and PN learning as base-
lines. The network architecture for both f s and gs

is BERT (Devlin et al., 2019), a large pretrained
transformer-based (Vaswani et al., 2017) language
model. We use the HuggingFace transformers im-
plementation of the 12-layer 768 dimensional vari-
ation of BERT (Wolf et al., 2019). The classifier in
this implementation is a two layer neural network
acting on the [CLS] token.

From gs, we train a classifier gt using down-
stream check-worthiness detection dataset Dt by
initializing gt with the base BERT network from gs

and using a new randomly initialized final layer. In
addition, we train a model f t on the target dataset,
and train gt with PUC from this model to obtain the
final classifier. As a baseline, we also experiment

with training on just the datasetDt without any pre-
training. In the case of citation needed detection,
since the data comes from the same domain we
simply test on the test split of statements labelled
as “citation needed” using the classifier gs. We
compare our models to the published state of the
art baselines on each dataset.

For all of our models (fs, gs, f t, gt) we train
for two epochs, saving the weights with the best F1
score on validation data as the final model. Train-
ing is performed with a max learning rate of 3e-5
and a triangular learning rate schedule (Howard
and Ruder, 2018) that linearly warms up for 200
training steps, then linearly decays to 0 for the rest
of training. For regularization we add L2 loss with
a coefficient of 0.01, and dropout with a rate of 0.1.
Finally, we split the training sets into 80% train
and 20% validation, and train with a batch size of
8. The code to reproduce our experiments can be
found here.1

4 Experimental Results

To what degree is claim check-worthiness detec-
tion a PU learning problem, and does this enable
a unified approach to check-worthiness detection?
In our experiments, we progressively answer this
question by answering the following: 1) is PU
learning beneficial for the tasks considered? 2)
Does PU citation needed detection transfer to ru-
mour detection? 3) Does PU citation needed de-
tection transfer to political speeches? To inves-
tigate how well the data in each domain reflects
the definition of a check-worthy statement as one
which “makes an assertion about the world which
is checkable” and thus understand subjectivity in
the annotations, we perform a dataset analysis com-
paring the provided labels of the top ranked check-
worthy claims from the PUC model with the labels
given by two human annotators. In all experiments,
we report the mean performance of our models
and standard deviation across 15 different random
seeds. Additionally, we report the performance of
each model ensembled across the 15 runs through
majority vote on each sample.

4.1 Datasets2

Wikipedia Citations We use the dataset from
Redi et al. (2019) for citation needed detection.

1https://github.com/copenlu/
check-worthiness-pu-learning

2See supplemental material for links to datasets

https://github.com/copenlu/check-worthiness-pu-learning
https://github.com/copenlu/check-worthiness-pu-learning
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Method P R F1 eP eR eF1

Redi et al. 2019 75.3 70.9 73.0 [76.0]* - - -
BERT 78.8 ± 1.3 83.7 ± 4.5 81.0 ± 1.5 79.0 85.3 82.0
BERT + PU 78.8 ± 0.9 84.3 ± 3.0 81.4 ± 1.0 79.0 85.6 82.2
BERT + PUC 78.4 ± 0.9 85.6 ± 3.2 81.8 ± 1.0 78.6 87.1 82.6

Table 1: F1 and ensembled F1 score for citation needed detection training on the FA split and testing on the LQN
split of (Redi et al., 2019). The FA split contains statements with citations from featured articles and the LQN split
consists of statements which were flagged as not having a citation but needing one. Listed are the mean, standard
deviation, and ensembled results across 15 seeds (eP, eR, and eF1). Bold indicates best performance, underline
indicates second best. *The reported value is from rerunning their released model on the test dataset. The value in
brackets is the value reported in the original paper.

The dataset is split into three sets: one coming
from featured articles (deemed ‘high quality’, 10k
positive and 10k negative statments), one of state-
ments which have no citation but have been flagged
as needing one (10k positive, 10k negative), and
one of statements from random articles which have
citations (50k positive, 50k negative). In our exper-
iments the models were trained on the high quality
statements from featured articles and tested on the
statements which were flagged as ‘citation needed’.
The key differentiating features of this dataset from
the other two datasets are: 1) the domain of text is
Wikipedia and 2) annotations are based on the de-
cisions of Wikipedia editors following Wikipedia
guidelines for citing sources3.

Twitter Rumours The PHEME dataset of ru-
mours is employed for Twitter claim check-
worthiness detection (Zubiaga et al., 2016). The
data consists of 5,802 annotated tweets from 5 dif-
ferent events, where each tweet is labelled as ru-
mourous or non-rumourous (1,972 rumours, 3,830
non-rumours). We followed the leave-one-out eval-
uation scheme of (Zubiaga et al., 2017), namely, we
performed a 5-fold cross-validation for all methods,
training on 4 events and testing on 1. The key differ-
entiating features of this dataset from the other two
datasets are: 1) the domain of data is tweets and
2) annotations are collected from professional jour-
nalists specifically for building a dataset to train
machine learning models.

Political Speeches The dataset we adopted in the
political speeches domain is the same as in Hansen
et al. (2019), consisting of 4 political speeches from
the 2018 Clef CheckThat! competition (Atanasova
et al., 2018) and 3 political speeches from Claim-
Rank (Jaradat et al., 2018) (2,602 statements total).

3https://en.wikipedia.org/wiki/
Wikipedia:Citing_sources

We performed a 7-fold cross-validation, using 6
splits as training data and 1 as test in our experi-
mental setup. The data from ClaimRank is anno-
tated using the judgements from 9 fact checking
organizations, and the data from Clef 2018 is an-
notated by factcheck.org. The key differentiating
features of this dataset from the other two datasets
are: 1) the domain of data is transcribed spoken
utterances from political speeches and 2) annota-
tions are taken from 9 fact checking organizations
gathered independently.

4.2 Is PU Learning Beneficial for Citation
Needed Detection?

Our results for citation needed detection are given
in Table 1. The vanilla BERT model already signif-
icantly outperforms the state of the art model from
Redi et al. (2019) (a GRU network with global at-
tention) by 6 F1 points. We see further gains in per-
formance with PU learning, as well as when using
PUC. Additionally, the models using PU learning
have lower variance, indicating more consistent per-
formance across runs. The best performing model
we see is the one trained using PUC with an F1
score of 82.6. We find that this confirms our hy-
pothesis that citation data is better seen as a set of
positive and unlabelled data when used for check-
worthiness detection. In addition, it gives some
indication that PU learning improves the general-
ization power of the model, which could make it
better suited for downstream tasks.

4.3 Does PU Citation Needed Detection
Transfer to Rumour Detection?

4.3.1 Baselines
The best published method that we compare to is
the CRF from (Zubiaga et al., 2017). which utilizes
a combination of content and social features. Con-
tent features include word vectors, part-of-speech

https://en.wikipedia.org/wiki/Wikipedia:Citing_sources
https://en.wikipedia.org/wiki/Wikipedia:Citing_sources
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Method µP µR µF1 eP eR eF1

Zubiaga et al. 2017 66.7 55.6 60.7 - - -
BiLSTM 62.3 56.4 59.0 - - -
BERT 69.9 ± 1.7 60.8 ± 2.6 65.0 ± 1.3 71.3 61.9 66.3
BERT + Wiki 69.3 ± 1.6 61.4 ± 2.6 65.1 ± 1.2 70.7 62.2 66.2
BERT + WikiPU 69.9 ± 1.3 62.5 ± 1.6 66.0 ± 1.1 72.2 64.6 68.2
BERT + WikiPUC 70.1 ± 1.1 61.8 ± 1.8 65.7 ± 1.0 71.5 62.7 66.8
BERT + PU 68.7 ± 1.2 64.7 ± 1.8 66.6 ± 0.9 69.9 65.2 67.5
BERT + PUC 68.1 ± 1.5 65.3 ± 1.6 66.6 ± 0.9 69.1 66.3 67.7
BERT + PU + WikiPU 68.4 ± 1.2 66.1 ± 1.2 67.2 ± 0.6 69.3 67.2 68.3
BERT + PUC + WikiPUC 68.0 ± 1.4 66.0 ± 2.0 67.0 ± 1.3 69.4 67.5 68.5

Table 2: micro-F1 (µF1) and ensembled F1 (eF1) performance of each system on the PHEME dataset. Perfor-
mance is averaged across the five splits of (Zubiaga et al., 2017). Results show the mean, standard deviation, and
ensembled score across 15 seeds. Bold indicates best performance, underline indicates second best.

tags, and various lexical features, and social fea-
tures include tweet count, listed count, follow ratio,
age, and whether or not a user is verified. The
CRF acts on a timeline of tweets, making it contex-
tual. In addition, we include results from a 2-layer
BiLSTM with FastText embeddings (Bojanowski
et al., 2017). There exist other deep learning mod-
els which have been developed for this task, includ-
ing (Ma et al., 2019) and (Abulaish et al., 2019), but
they do not publish results on the standard splits
of the data and we were unable to recreate their
results, and thus are omitted.

4.3.2 Results
The results for the tested systems are given in
Table 2. Again we see large gains from BERT
based models over the baseline from (Zubiaga et al.,
2017) and the 2-layer BiLSTM. Compared to train-
ing solely on PHEME, fine tuning from basic cita-
tion needed detection sees little improvement (0.1
F1 points). However, fine tuning a model trained
using PU learning leads to an increase of 1 F1 point
over the non-PU learning model, indicating that PU
learning enables the Wikipedia data to be useful for
transferring to rumour detection i.e. the improve-
ment is not only from a better semantic representa-
tion learned from Wikipedia data. For PUC, we see
an improvement of 0.7 F1 points over the baseline
and lower overall variance than vanilla PU learning,
meaning that the results with PUC are more consis-
tent across runs. The best performing models also
use PU learning on in-domain data, with the best
average performance being from the models trained
using PU/PUC on in domain data and initialized
with weights from a Wikipedia model trained using
PU/PUC. When models are ensembled, pretraining
with vanilla PU learning improves over no pretrain-
ing by almost 2 F1 points, and the best performing

models which are also trained using PU learning on
in domain data improve over the baseline by over
2 F1 points. We conclude that framing rumour de-
tection on Twitter as a PU learning problem leads
to improved performance.

Based on these results, we are able to confirm
two of our hypotheses. The first is that Wikipedia
citation needed detection and rumour detection on
Twitter are indeed similar tasks, and a unified ap-
proach for both of them is possible. Pretraining a
model on Wikipedia provides a clear downstream
benefit when fine-tuning on Twitter data, precisely
when PU/PUC is used. Additionally, training using
PUC on in domain Twitter data provides further
benefit. This shows that PUC constitutes a unified
approach to these two tasks.

The second hypothesis we confirm is that both
Twitter and Wikipedia data are better seen as pos-
itive and unlabelled for claim check-worthiness
detection. When pretraining with the data as a tra-
ditional PN dataset there is no performance gain
and in fact a performance loss when the models
are ensembled. PU learning allows the model to
learn better representations for general claim check-
worthiness detection.

To explain why this method performs better, Ta-
ble 1 and Table 2 show that PUC improves model
recall at very little cost to precision. The aim of
this is to mitigate the issue of subjectivity in the
annotations of check-worthiness detection datasets
noted in previous work (Konstantinovskiy et al.,
2018). Some of the effects of this are illustrated
in Table 5 and Table 6 in Appendix A The PUC
models are better at distinguishing rumours which
involve claims of fact about people i.e. things that
people said or did, or qualities about people. For
non-rumours, the PUC pretrained model is better at
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Method MAP

Konstantinovskiy et al. 2018 26.7
Hansen et al. 2019 30.2
BERT 33.0 ± 1.8
BERT + Wiki 34.4 ± 2.7
BERT + WikiPU 33.2 ± 1.7
BERT + WikiPUC 31.7 ± 1.8
BERT + PU 18.8 ± 3.7
BERT + PUC 26.7 ± 2.8
BERT + PU + WikiPU 16.8 ± 3.5
BERT + PUC + WikiPUC 27.8 ± 2.7

Table 3: Mean average precision (MAP) of models on
political speeches. Bold indicates best performance,
underline indicates second best.

recognizing statements which describe qualitative
information surrounding the events and informa-
tion that is self-evident e.g. a tweet showing the
map where the Charlie Hebdo attack took place.

4.4 Does PU Citation Needed Detection
Transfer to Political Speeches?

4.4.1 Baselines
The baselines we compare to are the state of the
art models from Hansen et al. (2019) and Kon-
stantinovskiy et al. (2018). The model from Kon-
stantinovskiy et al. (2018) consists of InferSent
embeddings (Conneau et al., 2017) concatenated
with POS tag and NER features passed through a lo-
gistic regression classifier. The model from Hansen
et al. (2019) is a bidirectional GRU network acting
on syntatic parse features concatenated with word
embeddings as the input representation.

4.4.2 Results
The results for political speech check-worthiness
detection are given in Table 3. We find that the
BERT model initialized with weights from a model
trained on plain Wikipedia citation needed state-
ments performs the best of all models. As we add
transfer learning and PU learning, the performance
steadily drops. We perform a dataset analysis to
gain some insight into this effect in §4.5.

4.5 Dataset Analysis
In order to understand our results in the context
of the selected datasets, we perform an analysis
to learn to what extent the positive samples in
each dataset reflect the definition of a check-worthy
claim as “an assertion about the world that is check-
able”. We ranked all of the statements based on
the predictions of 15 PUC models trained with dif-
ferent seeds, where more positive class predictions

Dataset P R F1

81.7 87.0 84.3
Wikipedia 84.8 87.0 85.9

83.3 87.0 85.1
87.5 82.4 84.8

Twitter 86.3 81.2 83.6
86.9 81.8 84.2
33.8 89.3 49.0

Politics 31.1 100.0 47.5
32.5 94.7 48.3

Table 4: F1 score comparing manual relabelling of the
top 100 predictions by PUC model with the original la-
bels in each dataset by two different annotators. Italics
are average value between the two annotators.

means a higher rank (thus more check-worthy),
and had two experts manually relabel the top 100
statements. The experts were informed to label the
statements based on the definition of check-worthy
given above. We then compared the manual anno-
tation to the original labels using F1 score. Higher
F1 score indicates the dataset better reflects the def-
inition of check-worthy we adopt in this work. Our
results are given in Table 4.

We find that the Wikipedia and Twitter datasets
contain labels which are more general, evidenced
by similar high F1 scores from both annotators (>
80.0). For political speeches, we observe that the
human annotators both found many more exam-
ples to be check-worthy than were labelled in the
dataset. This is evidenced by examples such as It’s
why our unemployment rate is the lowest it’s been
in so many decades being labelled as not check-
worthy and New unemployment claims are near the
lowest we’ve seen in almost half a century being
labelled as check-worthy in the same document
in the dataset’s original annotations. This charac-
teristic has been noted for political debates data
previously (Konstantinovskiy et al., 2018), which
was also collected using the judgements of indepen-
dent fact checking organizations (Gencheva et al.,
2017). Labels for this dataset were collected from
various news outlets and fact checking organiza-
tions, which may only be interested in certain types
of claims such as those most likely to be false. This
makes it difficult to train supervised machine learn-
ing models for general check-worthiness detection
based solely on text content and document context
due to labelling inconsistencies.
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5 Discussion and Conclusion

In this work, we approached claim check-
worthiness detection by examining how to unify
three distinct lines of work. We found that check-
worthiness detection is challenging in any domain
as there exist stark differences in how annotators
judge what is check-worthy. We showed that one
can correct for this and improve check-worthiness
detection across multiple domains by using posi-
tive unlabelled learning. Our method enabled us
to perform a structured comparison of datasets in
different domains, developing a unified approach
which outperforms state of the art in 2 of 3 domains
and illuminating to what extent these datasets re-
flect a general definition of check-worthy.

Future work could explore different neural base
architectures. Further, it could potentially benefit
all tasks to consider the greater context in which
statements are made. We would also like to ac-
knowledge again that all experiments have only
focused on English language datasets; develop-
ing models for other, especially low-resource lan-
guages, would likely result in additional challenges.
We hope that this work will inspire future research
on check-worthiness detection, which we see as an
under-studied problem, with a focus on developing
resources and models across many domains such
as Twitter, news media, and spoken rhetoric.
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A Examples of PUC Improvements for
Rumour Detection

Examples of improvements for rumour detection
using PUC can be found in Table 5.

B Reproducibility

B.1 Computing Infrastructure

All experiments were run on a shared cluster. Re-
quested jobs consisted of 16GB of RAM and 4
Intel Xeon Silver 4110 CPUs. We used a single
NVIDIA Titan X GPU with 12GB of RAM.

B.2 Average Runtimes

See Table 7 for model runtimes.

B.3 Number of Parameters per Model

We used BERT with a classifier on top for each
model which consists of 109,483,778 parameters.

B.4 Validation Performance

Validation performances for the tested models are
given in Table 8.

B.5 Evaluation Metrics

The primary evaluation metric used was F1
score. We used the sklearn implementation
of precision recall fscore support,
which can be found here: https://scikit-learn.
org/stable/modules/generated/sklearn.

metrics.precision_recall_fscore_support.

html. Briefly:

p =
tp

tp+ fp

r =
tp

tp+ fn

F1 =
2 ∗ p ∗ r
p+ r

where tp are true positives, fp are false positives,
and fn are false negatives.

Additionally, we used the mean average
precision calculation from the Clef19 Check That!
challenge for political speech data, which can
be found here: https://github.com/apepa/

clef2019-factchecking-task1/tree/master/

scorer Briefly:

AP =
1

|P |
∑
i

tp(i)

i
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Rumour text nPUC nBaseline

Germanwings co-pilot had serious depressive episode: Bild newspaper
http://t.co/RgSTrehD21

13 5

Now hearing 148 passengers + crew on board the #A320 that has crashed in
southern French Alps. #GermanWings flight. @BBCWorld

10 2

It appears that #Ferguson PD are trying to assassinate Mike Brown’s character
after literally assassinating Mike Brown.

13 5

#Ferguson cops beat innocent man then charged him for bleeding on them:
http://t.co/u1ot9Eh5Cq via @MichaelDalynyc http://t.co/AGJW2Pid1r

9 2

Table 5: Examples of rumours which the PUC model judges correctly vs the baseline model with no pretraining
on citation needed detection. n* is the number of models among the 15 seeds which predicted the correct label
(rumour).

Non-Rumour text nPUC nBaseline

A female hostage stands by the front entrance of the cafe as she turns the lights
off in Sydney. #sydneysiege http://t.co/qNfCMv9yZt

11 5

Map shows where gun attack on satirical magazine #CharlieHebdo took place
in central Paris http://t.co/5AZAKumpNd http://t.co/ECFYztMVk9

10 4

”Hands up! Don’t shoot!” #ferguson https://t.co/svCE1S0Zek 12 7
Australian PM Abbott: Motivation of perpetrator in Sydney hostage situation is
not yet known - @9NewsAUS http://t.co/SI01B997xf

10 6

Table 6: Examples of non-rumours which the PUC model judges correctly vs the baseline model with no pretrain-
ing on citation needed detection. n* is the number of models among the 15 seeds which predicted the correct label
(non-rumour).

mAP =
1

|Q|
∑
q∈Q

AP(q)

where P are the set of positive instances, tp(i) is
an indicator function which equals one when the
ith ranked sample is a true positive, andQ is the set
of queries. In this work Q consists of the ranking
of statements from each split of the political speech
data.

B.6 Links to Data
• Citation Needed Detection (Redi

et al., 2019): https://drive.google.

com/drive/folders/1zG6orf0_

h2jYBvGvso1pSy3ikbNiW0xJ

• PHEME (Zubiaga et al., 2016):
https://figshare.com/articles/PHEME_

dataset_for_Rumour_Detection_and_

Veracity_Classification/6392078.

• Political Speeches: We use the same 7
splits as used in (Hansen et al., 2019).
The first 5 can be found here: http:

//alt.qcri.org/clef2018-factcheck/

data/uploads/clef18_fact_checking_

lab_submissions_and_scores_and_

combinations.zip. The files can be found
under ”task1 test set/English/task1-en-
file(3,4,5,6,7)”. The last two files can
be found here: https://github.com/

apepa/claim-rank/tree/master/data/

transcripts_all_sources. The files are
“clinton acceptance speech ann.tsv” and
“trump inauguration ann.tsv”.

B.7 Hyperparameters
We found that good defaults worked well, and thus
did not perform hyperparameter search. The hyper-
parameters we used are given in Table 9.
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Method Wikipedia PHEME Political Speeches

BERT 34m30s 14m25s 8m11s
BERT + PU 40m7s 20m40s 15m38s
BERT + PUC 40m8s 21m20s 15m32s
BERT + Wiki - 14m28s 8m50s
BERT + WikiPU - 14m25s 8m41s
BERT + WikiPUC - 14m28s 8m38s
BERT + PU + WikiPU - 20m41s 15m32s
BERT + PUC + WikiPUC - 21m52s 15m40s

Table 7: Average runtime of each tested system for each split of the data

Method Wikipedia PHEME Political Speeches

BERT 88.9 81.6 31.3
BERT + PU 89.0 83.7 18.2
BERT + PUC 89.2 82.8 32.0
BERT + Wiki - 80.8 32.3
BERT + WikiPU - 82.0 35.7
BERT + WikiPUC - 80.4 34.3
BERT + PU + WikiPU - 82.9 33.3
BERT + PUC + WikiPUC - 84.1 34.0

Table 8: Validation F1 performances for each tested model.

Hyperparameter Value

Learning Rate 3e-5
Weight Decay 0.01
Batch Size 8
Dropout 0.1
Warmup Steps 200
Epochs 2

Table 9: Validation F1 performances used for each
tested model.


