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Abstract

Multi-Domain Neural Machine Translation
(NMT) aims at building a single system that
performs well on a range of target domains.
However, along with the extreme diversity of
cross-domain wording and phrasing style, the
imperfections of training data distribution and
the inherent defects of the current sequential
learning process all contribute to making the
task of multi-domain NMT very challenging.

To mitigate these problems, we propose the
Factorized Transformer, which consists of an
in-depth factorization of the parameters of an
NMT model, namely Transformer in this pa-
per, into two categories: domain-shared ones
that encode common cross-domain knowledge
and domain-specific ones that are private for
each constituent domain. We experiment with
various designs of our model and conduct ex-
tensive validations on English to French open
multi-domain dataset. Our approach achieves
state-of-the-art performance and opens up
new perspectives for multi-domain and open-
domain applications.

1 Introduction

Recent advances in Neural Machine Transla-
tion (NMT) (Bahdanau et al., 2015; Vaswani et al.,
2017) have led to significant improvement in terms
of translation quality (Wu et al., 2016; Hassan
et al., 2018), opening new perspectives for Ma-
chine Translation in real-world scenarios. In order
to deliver trust-worthy translations for end users, an
NMT system is often required to meet expert-level
translation quality in one or multiple related target
domains, while performing well enough on a range
of generic subjects, just like human experts do.

However, requiring a single NMT system to
perform well on multiple distant domains simul-
taneously is a very challenging task. First, lan-
guages are highly polysemous: the same words or
expressions may have different meanings in dif-
ferent contexts. Also wording and syntactic style

may significantly vary depending on the domains.
Second, a multi-domain NMT system in general
suffers from two major issues: Domain Bias and
Catastrophic Forgetting (Mccloskey and Cohen,
1989; Kirkpatrick et al., 2016; Thompson et al.,
2019) . While the former biases the model toward
well-represented domains to the detriment of the
low-resource ones, the latter makes the sequential
learning process difficult as the model keeps forget-
ting previously learned knowledge when exposed
to the new training examples.

Most of the existing NMT systems rely on the
same network to model all domains, which means
the same word embedding to represent all the mean-
ings of a word and the same set of parameters to
model its depending contexts. This type of config-
uration in general maximizes the knowledge trans-
fer, but overlooks the specificity of each domain
(Koehn and Knowles, 2017). An obvious solution
for this problem is to dedicate an individual model
to each constituent domain, which is unrealistic
in practice as it dramatically increases the number
of model parameters. Moreover, the recent suc-
cess of multilingual applications (Johnson et al.,
2017) show that a single NMT model where all
parameters are shared can handle translation be-
tween hundred of language pairs, suggesting that
model capacity may not be the key weakness of the
current NMT models to deal with Multi-Domain
problems. Thus, the need for a compact architec-
ture with better parameter efficiency is appealing.

We propose the Factorized Transformer frame-
work to deal with the multi-domain NMT problem.
The Factorized Transformer consists in factorizing
partially or fully basic components (embedding,
attention and FFN layers) of a conventional Trans-
former architecture into domain-specific blocks and
domain-shared blocks. This dual structure has sev-
eral advantages: 1) It allows the model to leverage
all available data, labeled or unlabeled, to build a
generic model at an early stage of domain-agnostic
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training; 2) Domain singularities could be effec-
tively learned by using domain-specific compo-
nents and the respective in-domain training data
during the stage of domain-aware training. The
domain bias issue naturally disappears; 3) Domain-
specific components are independently optimized,
without any interference between target domains.
The original performance of the generic model on
un-adapted source domains is also preserved, over-
coming the limit of catastrophic forgetting. 4) The
design of Factorized Transformer is orthogonal to
any data-driven approach, so that the benefit of
both approaches can be combined.

Our contributions can be summarized as follows:

• We address the weaknesses of existing NMT
systems in multi-domain scenarios by propos-
ing the Factorized Transformer, which sep-
arately model domain-shared and domain-
specific information via its dual structure.

• We validate our method over a large-scale
English to French multi-domain setting. We
study 3 variants of Factorized Transformer
meeting different requirements of perfor-
mance and parameter space limitation, our
approach outperforms all previously state-of-
the-art multi-domain systems, reaching close
to the combined performance of individual
fine-tuned models.

• Our proposed architecture enables new per-
spectives for open domain applications.

2 Related Work

Multi-domain NMT has been an active research
area. Prior work in this area can be divided into
two main categories: data-driven and model-driven,
although they are usually complementary.

Data-Driven Approaches Many researches fo-
cus on the exploration of data-driven approaches
(van der Wees et al., 2017; Sajjad et al., 2017;
Wang et al., 2018). Chu et al. (2017) finetuned
the model using the mix of in-domain and out-of-
domain training corpora. Chen et al. (2017) scaled
the top-level costs of NMT system according to
each training sentence‘s similarity to the develop-
ment set. Contrastingly, Farajian et al. (2017)
utilized the similarity between each test sentence
and the training instances to dynamically set the
hyper-parameters of the learning algorithm and up-
date the generic model on the fly. Li et al. (2018)

went a step further by adapting a separate model
for each sentence to boost the performance. While
data-driven approaches are very effective in alle-
viating the domain bias issue in multi-domain sce-
narios, they in general require a very careful hyper-
parameters tuning and cannot reach optimums for
all domains simultaneously, unless resort to scaling
up brutally the number of models.

The model-driven approaches can be subdivided
into two sub-categories:

Soft-Constraints-Based Approaches The sub-
category consists in injecting domain information
into the model parameters, by the means of side-
constraints, domain embeddings, so as to endow
these parameters with domain knowledge, to make
them domain-aware. Kobus et al. (2017) added an
artificial token to the end of the input sequence to
indicate the required target domain and exploited
domain as a tag or a feature. Britz et al. (2017) em-
ployed discriminators, training objective or GAN-
like techniques to incorporate domain knowledge
into the encoder or decoder. Chu and Dabre (2019)
treated text domains as distinct languages in or-
der to use multi-lingual approaches when imple-
menting multi-domain NMT. Zeng et al. (2018)
combine source-target domain classifiers and adver-
sarial domain classifier during training. However,
since the main model parameters (embeddings, en-
coder, decoder) remain shared across all domains,
the capacity of these methods to deal with the inter-
domain conflicts might be limited.

Hard-Constraints-Based Approaches involve
dedicating extra parameters to directly model
domain-specific knowledge. Michel and Neubig
(2018) introduces speaker-specific softmax bias to
deal with adaptation for a large number of speak-
ers, the idea of parameter factorization is also ex-
ploited. Adapter tuning is a recently arisen ap-
proach for transfer learning (Rebuffi et al., 2017,
2018; Houlsby et al., 2019; Stickland and Murray,
2019). Each task/domain is equipped with its own
set of parameters in order to model and capture
domain specificity, which is decoupled among dif-
ferent tasks. Bapna et al. (2019) successfully adapt
this approach for domain adaptation and multilin-
gual NMT models.

Our work falls into the second sub-category of
the model-driven approaches and we hypothesize
that the idea of introducing decoupled domain-
specific parameters is crucial. We conduct exper-



4223

iments and analysis in the following sections to
validate this hypothesis.

3 Approach

All basic components (embedding, attention and
FFN matrices) of a conventional Transformer are
factorized into multiple domain-specific blocks
(Figure 1), one for each domain (colored ones)
and a domain-shared block (white ones), common
across all domains.

It’s worth to notice that domain information is
necessary for both training and inference, which
could be obtained via external sources. Neverthe-
less, the domain prediction is not the main purpose
of this work and we suppose in the whole paper, ex-
cept otherwise mentioned, that domain information
is known and passed as input to the model during
training and inference.

3.1 Training Curriculum

We first briefly explain the training curriculum be-
fore moving to the detailed schemes of factoriza-
tion, as the former is complementary to the latter
and is designed to take advantage of the latter. The
training curriculum can be theoretically divided
into two stages: an early stage of domain-agnostic
training and a later stage of domain-specific train-
ing, even though in practice, it could be achieved
in an end-to-end curriculum.

Domain-Agnostic Training aims at building a
generic model by sharing the model parameters
across all available training domains. Using all
available training data is beneficial for the model’s
overall performance as it allows the model to lever-
age knowledge from other domains that are related
or close to the target domains. For example, the
“JRC Acquis” domain (a collection of legislative
texts of the European Union) would probably ben-
efit from adding “europarl” domain (a collection
of European Parliament texts) training data. Many
data weighting schemes exist in the literature, how-
ever, this is beyond the scope of this paper and more
importantly, the design of Factorized Transformer
is orthogonal to any data-driven approach, so that
the benefit of both approaches can be combined.

Domain-Specific Training Once the generic
model comes to a convergence, the domain-shared
parameters of the resulting generic model are then
frozen. We unfold all domain-specific components
to the number of target domains and initialize them

with the same corresponding matrix trained during
the first stage. The specialization step is straight-
forward: the optimization of each set of domain-
specific parameters can operate independently us-
ing the respective relevant in-domain data.

As each domain-specific matrix is initialized
with the corresponding parameters from the under-
neath pre-trained network. Therefore, no transition
performance degradation is observed along the ex-
tra module integration if any. In the case where
an additional adaptation layer is involved (Fig 1
(F6)), we initialize it to a block identity tensor to
maintain the exact model performance coming off
the domain-agnostic training. This property is of
great practical value as it allows the network to
adapt directly on top of a set of well-optimized pa-
rameters. Similar design can be found in adapter
modules: (Rebuffi et al., 2018; Houlsby et al.,
2019; Stickland and Murray, 2019), which relies
on skip-connection or residual-connection in order
to obtain a near identity initialization. Moreover,
(Houlsby et al., 2019) observed that if the initial-
ization deviates too far from the identity function,
the model may fail to train with adapter modules
for transferring BERT style parameters across NLP
tasks. However, our proposed Factorized Trans-
former does not suffer from such problem as it has
the exact identity initialization property.

3.2 Factorization Schemes of Basic
Components

Throughout this section, we ignore all bias terms,
as they may or may not exist depending on the vari-
ant/block of the Transformer architecture and also
do not add significantly to the parameter count. We
first go through some notations before getting into
architecture description, dm refers to the dimen-
sion of the model, which is equal to embedding
size de and hidden size dh in a conventional Trans-
former. V refers to the vocabulary size, without
loss of generality, we suppose the source side and
target side both share the same vocabulary size for
the theoretical considerations. dfilter refers to the
filter dimension used in the FFN layers. h denotes
the number of heads used in multi-head attention.
Nd represents the number of constituent domains.
Finally, we introduce an extra dimension dinner as
the inner dimension used for linear factorization
that we will explain in the following paragraphs.

Factorization of Embedding Blocks A conven-
tional Transformer network has three wide embed-
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Figure 1: Factorization schemes for basic blocks. (F1): output embedding, (F2): multi-query attention, (F3):
FFN layer, (F4): input embeddings, (F5): multi-head attention, (F6): FFN layer v2. DF, SF and PA respectively
stands for Deep Factorization, Shallow Factorization and Parallel Attention. Different matrix sizes involved in the
factorization could be identified by segment length at the top left corner.

ding matrices We of dimensions dm ∗V , which are
often tied or partially tied (Press and Wolf, 2016)
to reduce model size. NMT models usually require
the vocabulary size V to be large, V is of the order
of 100 ∗ dm. This can easily result in an embed-
ding matrix with millions of parameters, many of
which are only updated sparsely during training.
We follow the work of Lan et al. (2019) to fac-
torize these blocks (Fig 1 (F1) and (F4)). More
specifically, for each embedding matrix Me, we de-
compose it along an inner dimension dinner (Eq 1):
Wemb = WC×WS

i , whereWC is a shared matrix
and Wi is a specific matrix for i ∈ 1 . . . Nd. The
advantage of such decomposition is two-fold: First,
instead of sharing the same word embedding for all
domains, the domain-specific sub-matrices provide
a capacity for the model to give a domain-specific
meaning to each word embedding. Secondly, from
a practical perspective, by using this decomposi-
tion, we reduce the embedding parameters from
O(V ×dm) to O(V ×dinner +Nd×dinner×dm).
If dinner � dm, the factorized form’s parameter
cost remains inferior to the original embedding

block, resulting in better usage of model parame-
ters.

EMB(h, Dd) =

Nd∑
j=1

δdjEMBDd
(h)

where EMBDd
(h) = WS

Dd
WCh

(1)

Where the weight matrices are of dimension:
WC ∈ RV×dinner , WS

j∈1...Nd
∈ Rdinner×dm

Factorization of Attention Blocks The factor-
ization of the attention blocks operates differently
from the embedding blocks, as each attention block
is composed of four relatively small weight matri-
ces WQ,WK ,W V ,WO. Within the Multi-Head
Attention (MHA) in a conventional Transformer,
they are square matrices of the same dimensions
d2m. In the case of Multi-Query Attention (MQA)
(Shazeer, 2019) instead of multi-head, we share the
same key and value sub-matrices for all the heads,
the dimensions of matrices WK ,W V are reduced
to dm ∗ dk = d2m/h.

We consider two schemes of introducing domain-
specific components. A “full” scheme (Fig 1
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(F5)) which consists in assigning different matri-
ces for each domain for each transformation of
WQ,WK ,W V ,WO in multi-head style attention,
and a “light” scheme (Fig 1 (F2)) which only par-
allelizes the relatively small matrices of WK ,W V

of the multi-query style attention. Concretely, if
we denote the conventional attention mechanism
as follows:

MHA(h) = [(H1(h), . . . ,Hh(h)]WO

Hk(·) = Softmax(
〈WQ

k ·,WK
k ·〉√

dk
)W V

k ·
(2)

where [·, . . . , ·] stands for concatenation and 〈·, ·〉
for dot product.

The factorization of the attention block in the
full scheme with multi-head style attention can be
written as:

MHADd
(h) = [(HDd

1 (h), . . . ,HDd
h (h)]WO

Dd

HDd
k (·) = Softmax(

〈WQ
Dd,k

·,WK
Dd,k

·〉√
dm/h

)W V
Dd,k

·

(3)

And in the case of the light scheme with Multi-
Query Attention:

MQADd
(h) = [(HDd

1 (h), . . . ,HDd
h (h)]WO

HDd
k (·) = Softmax(

〈WQ
k ·,WK

Dd
·〉

√
dk

)W V
Dd

·

(4)

While the latter remains parameter efficient un-
less Nd � h, the former significantly increases the
model parameters.

Factorization of FFN Blocks FFN blocks are
composed of coupled linear matrices joined via a
ReLU activation on their amplifying inner dimen-
sion dfilter. We could perform twice the linear fac-
torization as for case of embedding matrices (Fig
1 (F3)), or introduce an extra layer of square matri-
ces, one for each domain (Fig 1 (F6)). In general,
few additional parameters are needed for the factor-
ization of the FFN blocks unless Nd � dfilter/dm

FFN(h) = W2(max(0,W1h)) (5)

where the weight matrices are of dimension: W1 ∈
Rdm×dfilter , W2 ∈ Rdfilter×dm

The first factorization scheme (Fig 1 (F3)) for
the FFN block can be written as:

FFN(h, Dd) =

Nd∑
j=1

δdjFFNDd
(h)

where FFNDd
(h) = f2,Dd

(max(0, f1,Dd
(h)))

fi,Dd
(h) = WS

i,Dd
WC

i h

(6)

where the weight matrices are of dimension:
WC

1 ∈ Rdm×dinner , WS
1,j∈1...Nd

∈ Rdinner×dfilter ,
WC

2 ∈ Rdfilter×dinner , WS
2,j∈1...Nd

∈ Rdinner×dm

The second factorization scheme (Fig 1 (F6))
for the FFN block can be formulated as:

FFNV 2(h, Dd) =

Nd∑
j=1

δdjW
A
Dd

FFN(h) (7)

where WA
j∈1...Nd

∈ Rdm×dm

3.3 Overall Architecture Designs of
Factorized Transformer

We consider three architecture designs of Factor-
ized Transformer for multi-domain NMT in this pa-
per, namely Deep Factorization (DF), Shallow Fac-
torization (SF) and Parallel Attention (PA). These
designs have been deliberately chosen as extreme
cases to provide insights on the limits of the Fac-
torized Transformer, regarding different require-
ments of performance and parameter space limita-
tion. Other more progressive combination schemes
could be also interesting to be investigated depend-
ing on the final goal and constraints of applications.

Deep Factorization (DF) We combine the fac-
torization schemes (F1), (F2), (F3), (F4), and it’s
called deep factorization, since factorization is ap-
plied to all the main blocks and the combination
of domain-shared parameters and domain-specific
parameters occur through the whole model. We set
the dinner to 280 to obtain the same model capacity
as the Transformer base setting for fair comparison.

Shallow Factorization (SF) We rely on the en-
tire original architecture of Transformer to encode
domain-shared knowledge as a conventional Trans-
former, so that we will not suffer from the loss
of knowledge transfer capacity compared to the
original Transformer. The domain-specific com-
ponents are plugged into the main architecture as
light weight add-on modules. We also duplicate the
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Domain Train Scale Dev Test
OOD 70M x1 - -
Emea 338K x50 1K 1K
Subtitles 34M x1 1K 1K
News 197K x100 1K 1K
Iwslt 223K x100 1K 1K
Jrc 483K x50 1K 1K
Total 105M x2 - -

Table 1: Statistics of training corpora: “OOD” stands
for Out-Of-Domain, “Scale” indicates the scale factor
for oversampling.

key, value matrices as domain-specific components.
It corresponds to the combination of factorization
schemes (F2) and (F6) in Figure 1.

Parallel Attention (PA) We parallelize all the at-
tention matrices of the original multi-head attention
(Vaswani et al., 2017) to boost the model capacity
reserved to each domain. This configuration (Fig
1 (F5)) can be seen as a factorization of the entire
network into domain-shared non-attention blocks
and domain-specific blocks.

4 Experiments

4.1 Experiment settings

Datasets In this paper, we evaluate our proposed
method on a 100 million English-French open
multi-domain dataset from OPUS corpus1. It con-
tains sentences from twelve domains including
News, Spoken, Laws and Medical etc. We di-
vided the corpora into training, development and
test sets. We select five domains of News, Iwslt,
Jrc, Emea and Subtitles as evaluation criteria, all
data from other domains are considered as out-
of-domain data and used for training only. Fol-
lowing (Sajjad et al., 2017), we oversampled the
low-resource domains to match the same order of
size for high resource domains, out-of-domain sen-
tences are not concerned by the oversampling. All
sentence pairs are then concatenated and shuffled
into a final training data. We tokenize English and
French sentences using MOSES script2. Byte-pair
encoding (Sennrich et al., 2016) is employed in
the experiment 50,000 joint pairs, the source and
target vocabulary is set to the 50,000 most frequent
tokens . Table 1 provides the corpora statistics used
in our experiments.

1http://opus.nlpl.eu/
2http://www.statmt.org/moses/

Systems Settings We employ Transformer
(Vaswani et al., 2017) as our basis architecture.
Six layers are stacked in both the encoder and
decoder, and the dimensions of the embedding
vectors and all hidden vectors are set to 512.
The inner layer of the feed-forward sublayer has
the dimension of 2048. We use 8 heads in the
multi-head or multi-query attention. The target
embedding and the output embedding are shared in
our experiments. We use the Adam optimizer with
β1 = 0.9, β2 = 0.997, ε= 10−9 during training. The
initial learning rate is 0.0003. The learning rate
decay schedule is applied for initial warm up and
annealing (Vaswani et al., 2017). During training,
each mini-batch contains 4096 tokens and we
use a dropout rate of 0.1 on all datasets including
attention dropout. During evaluation, we employ
lowercase token BLEU (Papineni et al., 2002) as
our evaluation metric and use mteval-13a script. In
addition, during decoding, we use the beam search
algorithm and the beam size is set to 4.

Benchmark Systems We compare our system
with multi-domain systems previously reported
in the literature, a system is considered as multi-
domain system if all its parameters can be con-
tained within a unified and deployment-friendly
framework. Such candidates are Domain Control
(DC) (Kobus et al., 2017) and Target Token Mix-
ing (TTM) (Britz et al., 2017), which are side-
constraint based pioneer works of using domain
information for multi-domain training; Multitask
Learning (ML) (Britz et al., 2017) method and the
Word-level Domain Context (WDC) (Zeng et al.,
2018) method both add classifiers to the training
so that the network can distinguish mulit-domain
contexts; As mentioned in the introduction, adapter-
based method is also considered. We use the “bot-
tleneck” Residual Adapters (RA) reported in Bapna
et al. (2019) with an inner dimension set to 2048.
We re-implement all previously reported RNN-
based approach with the Transformer architecture
for fair comparison.

We omit any data-driven approach, as it is orthog-
onal to our approach and can be naturally combined
together. We choose a balanced scheme described
above as a pretty strong data-mixing baseline, the
best system after several preliminary experiments.

4.2 Experimental Results and Analysis

The results of our system are shown at the bottom
of Table 2. The performances of benchmark multi-



4227

SYSTEMS #P NEWS IWSLT JRC EMEA SUB AVG-5 ∆

Tranformer-base 1x 35.33 41.49 64.20 56.58 30.66 45.65 -
Tranformer-base+finetuning (FT) 5x 35.46 41.63 69.00 61.96 33.42 48.30 +2.65
Domain Control (DC) 1x 36.12 41.47 63.97 56.15 30.97 45.73 +0.08
Target Token Mixing (TTM) 1x 35.97 41.81 64.05 56.04 30.74 45.72 +0.07
Multitask Learning (ML) 1x 34.87 41.72 64.04 56.57 30.35 45.51 -0.14
Word-level Domain Context (WDC) 1x 36.26 41.73 64.54 56.49 30.78 45.96 +0.31
Residual Adapters (RA) 2.3x 35.33 41.49 65.90 59.72 32.31 46.95 +1.30
Factorized Transformer (ours)

Deep Factorization (DF) 1x 35.92 41.39 66.03† 59.25 32.89† 46.99† +1.34†

Shallow Factorization (SF) 1.1x 36.38† 42.46† 65.47 58.63 32.34† 47.05† +1.40†

Parallel Attention (PA) 1.8x 35.39 41.69 67.21† 61.70† 33.14† 47.78† +2.13†

Table 2: Benchmark results on 105 million English to French multi-domain open data. “#P” denotes the scale factor
of parameter compared to the baseline. “AVG-5” refers to the average score across the 5 domains“†” indicates
the scores of our systems that outperform all other benchmark systems except the combined performance of 5
individual finetuned models.

domain systems are reported at the upper part of
Table 2. A standard Transformer base setting is
used as baseline for our experiments. It worth to
notice that the extensive use of extra out-of-domain
general data contributes for the strong performance
of the baseline model for general domains, no sig-
nificant improvement is observed even after fine-
tuning (Luong and Manning, 2015) with in-domain
data for News and Iwslt domains. We refer to the
average score over the 5 target domains (AVG-5)
as multi-domain performance. We also report the
combined performance of 5 fully fine-tuned mod-
els as the upper bound performance (+2.65 BLEU
in average) for Multi-Domain approaches.

Our proposed Factorized Transformer systems
clearly outperform the baseline and other multi-
domain systems in terms of multi-domain perfor-
mance (AVG-5) as well as individual performance
for most settings: our Deep Factorization, Shallow
Factorization, Parallel Attention systems respec-
tively yield +1.34, +1.40 and +2.13 BLEU gain
over the baseline system. Substantial gains are ob-
served for the domains of JRC (law text), EMEA
(medical text) and SUB (subtitles) which have ev-
ery specific terminologies and syntactic style. No
significant improvement is observed for the do-
mains of NEWS and IWSLT, which are still kinds
of general domains.

Surprisingly, most of the previous multi-domain
techniques, except adapter-based approach, yield
very marginal gain over the Transformer baseline in
our experiment setting. As all these techniques are
re-implemented under the Transformer architecture,
we assert that Transformer may have a stronger out-
of-the-box expressive ability compared to its RNN-
based counterparts. Also, all soft-constraint-based

Parameter Efficiency

0.00

0.35

0.70

1.05

1.40

FT DC TTM ML WDC RA DF SF PA

Figure 2: Parameter Efficiency (= ∆ / #P from Table 2)
for multi-domain benchmark systems.

systems perform better for domains that are closed
to general domains (News, Iwslt) with big amount
of out-of-domain data than the low-resource and
over-sampled ones, which validate the assumption
that models with a single shared set of parameters
are more likely to be biased toward high resource
domains to the detriment of the low-resource ones.
Adapter-based system has the closest overall perfor-
mance, demonstrating the benefit of separating the
training process into domain-shared and domain-
specific stages with the corresponding shared or
domain-specific parameters.

Parameter Efficiency All of our systems
demonstrate better parameter efficiency, measured
by the ratio between the performance gain and the
parameter scale factor (Fig 2).

Impact of Catastrophic Forgetting Our Factor-
ized Transformer can also be used for domain adap-
tation tasks. One of the main concerns of domain
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SYSTEMS In Out-Of-Domain AVG-5
SUB IWSLT EMEA

Transformer 30.66 41.49 56.58 45.65
+ Finetune 33.42 38.22 29.49 33.70
+ L2 reg 31.81 39.47 47.82 42.22
+ EWC 31.96 39.25 50.41 43.10
+ Mix-Finetune 31.98 41.23 58.01 46.32
FactorTrans-PA 33.42 41.52 58.59 46.85

Table 3: Benchmark for Domain Adaptation Tech-
niques. The domain SUB is fine-tuned using in-domain
data, the results of JRC and NEWS domains are omit-
ted for space reason, which are taken into account in
the average score (AVG-5). FactorTrans-PA refers to
the Parallel Attention design of our approach using the
fine-tuned model as pre-trained model.

adaptation is how to limit the degradation caused by
the catastrophic forgetting problem. Table 3 shows
the benchmark results between one of our Factor-
ized Transformer system (PA) and some popular do-
main adaptation techniques. The fine-tuned system
achieves the best in-domain performance (Subtitle),
however, it suffers from severe catastrophic forget-
ting problem as its performance in the domain of
EMEA is nearly halved. Our Factorized Trans-
former can operate on top of the fine-tuned system
to recover most of the performance drop while pre-
serving the optimal in-domain performance, The
resulting system outperforms the fine-tuned sys-
tem by +13.12 BLEU and the baseline system by
+1.20 BLEU in overall performance. Introducing
regularization techniques such as L2 (Barone et al.,
2017), EWC (Kirkpatrick et al., 2016; Thompson
et al., 2019) and mix-finetuning (Chu et al., 2017)
can alleviate the drop in the domains of IWSLT,
however it limits the performance of in-domain.

5 Towards Open-Domain NMT

In many real-world scenarios, the domain infor-
mation is unknown at inference time, and even
worse, the test inputs may also be out-of-domain,
which means the model has never seen data from
the same domains during training. For such un-
known domains, NMT systems are known to have
poor performance, especially adapted ones (Freitag
and Al-Onaizan, 2016; Koehn and Knowles, 2017).

Model ensembling is a reasonable approach
to deal with unknown domains (Freitag and Al-
Onaizan, 2016; Saunders et al., 2019). The com-
pact and unified architecture of Factorized Trans-
former makes it ideal for this purpose as at each
step all domain-specific representations can be

SYSTEMS Open Tag-Free
IT EMEA SUB

Transformer (no IT) 32.33 56.58 30.66

FactorTrans-PA - - -
+ use tag (oracle) 32.33 58.59 33.42
+ ens-uniform 29.47 53.12 30.76
+ ens-soft 31.25 58.21 33.26
+ ens-learnable 31.10 58.38 33.41

Table 4: Experimental results for Open-Domain set-
ting. ens-uniform refers to the ensemble system with
fixed equal weights; ens-soft: weight as classifier’s out-
put distribution, over the known domains only; ens-
learnable: weight vector tuned over balanced train/dev
data from known domains all combined.

computed in parallel and feed-forward to obtain
multiple domain-specific word prediction probabil-
ities (logits). We consider in this section the unseen
IT domain as a new unknown test domain. The test
set is drawn from the GNOME corpus from the
OPUS website. Under the open domain paradigm,
we do not use any development or training data. We
experiment with 3 simple variants of model ensem-
bling based on the Parallel Attention design of our
approach (See Table 4 for details). We ensemble
all of the 5 adapted domains’ output and that of the
“general” domain, which corresponds to the base
model before any domain-aware training and is
more likely to have good performance for unknown
domains than its adapted counterparts (Freitag and
Al-Onaizan, 2016; Saunders et al., 2019).

The results (Table 4) demonstrate the potential
of our Factorized Transformer for open-domain ap-
plications: not surprisingly, a naive combination of
adapted systems (ens-uniform) result in degrada-
tion in all domains. The ens-soft and ens-learnable
systems both manage to preserve the in-domain per-
formance for known domains while still performing
reasonably well for the unknown IT domain.

6 Conclusion

In this paper, we propose the Factorized Trans-
former framework to overcome the limits of tradi-
tional multi-domain NMT approaches in modeling
all domain knowledge within a single shared set of
parameters. By factorizing wisely the parameters
of the Transformer model into domain-shared and
domain-specific parts, we significantly improve the
model’s parameter efficiency and provide new per-
spectives for open domain applications.
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