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Abstract

Pretrained Language Models (PLMs) have im-
proved the performance of natural language
understanding in recent years. Such mod-
els are pretrained on large corpora, which
encode the general prior knowledge of natu-
ral languages but are agnostic to information
characteristic of downstream tasks. This of-
ten results in overfitting when fine-tuned with
low resource datasets where task-specific in-
formation is limited. In this paper, we inte-
grate label information as a task-specific prior
into the self-attention component of pretrained
BERT models. Experiments on several bench-
marks and real-word datasets suggest that the
proposed approach can largely improve the
performance of pretrained models when fine-
tuning with small datasets. The code repos-
itory is released in https://github.com/

RayWangWR/BERT_label_embedding.

1 Introduction

Recently, Pretrained Language Models (PLMs)
(Devlin et al., 2018; Radford et al., 2019) have yield
significant progress on various natural language
processing (NLP) tasks, e.g., neural language un-
derstanding, text generation, etc. Existing PLMs
are usually pretrained in a task-agnostic manner, in
which the model is expected to capture the general
knowledge of natural language from a large corpus,
independent of downstream-specific information.
This is not a problem when data is abundant in the
downstream dataset, in which case, the model can
effectively extract task-specific information during
fine-tuning. However, in real scenarios, data may
be difficult to collect and labeling is usually expen-
sive. We show that PLMs pretrained with general
knowledge can overfit without enough guidance
from the task-specific information, resulting in de-
graded performance during testing.

*These authors contributed equally to this work

A clear-cut solution to this problem is to focus
more on samples that are more relevant to the tar-
get task during pretraining. However, this requires
a task-specific pretraining, which in most cases
is computational or time prohibitive. Another ap-
proach is to pretrain on an auxiliary dataset before
fine-tuning on the target task (Phang et al., 2018).
Such method requires the availability of an appro-
priate auxiliary datasets. Unfortunately, in some
cases it may negatively impact the downstream
transfer (Wang et al., 2018a). Label embeddings
(Akata et al., 2015) can be regarded as a feature-
based definition of a classification task, in which
detailed information of the task is encoded. One
natural question is whether we can combine the
general knowledge in a PLM and the task-specific
characterization contained within label embeddings
for better fine-tuning on low-resource tasks.

In this paper, we propose to utilize the label em-
beddings as a task-specific prior, complementary to
the general prior already encoded during pretrain-
ing. We learn and integrate these label embeddings
into BERT models (Devlin et al., 2018) to regular-
ize its self-attention modules, so the task-irrelevant
tokens or patterns can be readily filtered out, while
the task-specific information can be enhanced dur-
ing fine-tuning. Such a modification is compatible
with any PLM built upon self-attention and will not
degrade the original pretrained structure.

In order to validate the performance of our ap-
proach in a real-world setting, we collected two text
classification datasets from the online patient portal
of a large academic health system, each with a few
thousand sequences. These are the first datasets
for automatic patient message triage, which consti-
tute an important problem in the field of clinical
data analysis. Experimental results show that our
approach significantly improves the performance
of fine-tuning on low-resource datasets, e.g., those
consisting of only several thousand data samples.

https://github.com/RayWangWR/BERT_label_embedding
https://github.com/RayWangWR/BERT_label_embedding
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2 Related Work

Label embeddings have been previously leveraged
for image classification (Akata et al., 2015), multi-
modal learning between images and text (Kiros
et al., 2014), text recognition in images (Rodriguez-
Serrano and Perronnin, 2015), zero-shot learning
(Li et al., 2015; Ma et al., 2016) and text classifica-
tion (Zhang et al., 2017). Notably, LEAM (Wang
et al., 2018b) jointly embeds words (tokens) and
labels in a common latent space as a means to im-
prove the performance on general text classification
tasks. Further, Moreo et al. (2019) concatenates
label embedding with word embeddings. However,
this approach cannot be directly implemented into
PLMs since the new (concatenated) embedding is
not compatible with the pretrained parameters. We
integrate label embeddings into the self-attention of
BERT models, so the attention can be regularized
to better focus on task-relevant information.

3 Methods

3.1 The BERT Model

The encoder of BERT and other popular PLMs
are built upon the transformer architecture, which
is composed of multiple layers of multi-head self-
attention and position-wise feed-forward layers.
Multi-head Self-attention The multi-head self-
attention is an ensemble of multiple single-head
self-attention modules. Let X ∈ RL×D be the em-
bedding matrix of the input sequence with length
L. For each single head, the input sequence is
first mapped into the key, query and value triplet,
denoted as,

K = XWK , Q = XWQ, V = XWV , (1)

where {WK ,WQ,WV } ∈ RD×d are projection
matrices. The self-attention can be formalized as

A =
QKT

√
d
∈ RL×L, (2)

Hi = softmax(A)V ∈ RL×D, (3)

where i = 1, . . . , h, h is the number of heads,
softmax(·) is the row-wise softmax function and
d is the head dimension. A is the attention score
matrix representing the compatibility between Q
and K. The multi-head self-attention is defined by
concatenating and projecting {Hi}hi=1, the repre-
sentation of each head, into Ĥ ∈ RL×D.

Positional-wise Feed Forward Layer After self-
attention, a fully connected network is applied on
each token representation x using

FFN(x) = max(0,max(0, xW1 + b1)W2 + b2),

which consists of two linear transformations and
ReLU activations.

In BERT, the input sequence starts with a [CLS]
token, whose hidden state will be extracted as
the sequence representation for classification. Let
CE(·, ·) be the cross-entropy loss, C(·) be the final
classifier and enc(·) be the encoder consisting of a
stack of transformer layers. The classification loss
can be written as,

Lc = E(X,y)∼D[CE(C(enc(X)[CLS]), y)] (4)

where enc(X)[CLS] is the representation of [CLS]
after encoding, y is the classification label and D
is a dataset.

In the context of graph embeddings (Kipf and
Welling, 2016), the [CLS] token acts as a super
node that connects to all other tokens (nodes) and
aggregates global information during self-attention
(convolution). After training, the embedding of
the [CLS] token should contain the task-specific
information, so that it can mostly attend to task rel-
evant information in self-attention during inference.
However, embeddings of the PLMs are pretrained
agnostic to downstream tasks. When fine-tuning
with low-resource datasets where label informa-
tion is scarce, a single [CLS] token may not cap-
ture enough task specific information, resulting in
model overfitting to task irrelevant tokens or pat-
terns in the input sequences.

3.2 Integrating Label Embedding into
Self-Attention

In this paper, we propose to leverage label embed-
dings to optimize the self-attention modules, so the
model can better focus on task-relevant information
when fine-tuned with small datasets.

We reformulate the representations in (1) as
{Kw, Qw, Vw} by replacing X with block ma-
trix Xw = [XCLS , X], where XCLS ∈ R1×D

and X ∈ R(L−1)×D represent the embeddings of
[CLS] and the other tokens in the sequence, respec-
tively. The attention score matrix can be rewritten
as,

A =
1√
d

[
Q[CLS]K

T
[CLS] Q[CLS]K

T

QKT
[CLS] QKT

]
. (5)
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(a) (b)

Figure 1: (a) Incorporating label embeddings into multi-head self-attention. C(·) is the classifier for the BERT
model. (b) Modifying self-attention scores with label embeddings.

⊕
indicates row concatenation.

We denote the cross-attention between the [CLS]
token and all the other input tokens as S ,
QT

[CLS]K
T ∈ R1×(L−1). Let Xl ∈ RM×D be the

label embedding matrix, where M is the number
of classes. We first compute the cross attention
between Xl and X as

Al =
QlK

T

√
d
, Ql = XlWQ, (6)

where Xl is encoded in to Ql with the same map-
ping matrix WQ as in (1). Then, we compute a
modified cross-attention row vector S′ by concate-
nating S and Al by row and keeping the maximum
value of each column,

S′ = max([S;Al]) ∈ R1×L. (7)

As a result, S′ represents the maximum attention
score of a input token with both [CLS] and the
label embeddings. A new attention score matrix A′

can be obtained by replacing S with S′ in (5),

A′ =
1√
d

[
Q[CLS]K

T
[CLS] S′

QKT
[CLS] QKT

]
. (8)

In (8), when a token is highly relevant to one of the
labels, it will result in a larger attention score in
S′, thus the [CLS] embedding will be less affected
by irrelevant information in the sequence, unlike
(2) where only attention from the current [CLS]
embedding is considered. The proposed attention
layer is shown in Figure 1(b). The attention score
matrix A in (2) is replaced as A′ in (8). All other
components are the same as the original layers in
BERT as in (1)–(3.1).

We share the same label embedding Xl for all
the layers. The label embedding is adapted on each
layer via WQ in the multi-head attention module.
As shown in Figure 1a, we also feed Xl into the
final classifier C(·), so the label embeddings can

be classified into their corresponding classes. The
final loss for classification is then

Llabel =
M∑
i=1

CE(C(Xi
l ), i), (9)

Lfinal = Lc + λLlabel. (10)

where Xi
l is the i-th label embedding, λ is a trade-

off parameter between the regularization on label
embeddings and the original classification loss.

The label embeddings can be initialized ran-
domly or by the pretrained embeddings of rele-
vant keywords. When the label is not identified by
keywords, e.g., in sentence entailment tasks, their
embeddings can be initialized with the represen-
tations of [CLS], averaged over samples from the
same class. All other parameters can be initialized
from the pretrained BERT. This modification can
be adapted to any PLM with self-attention modules.

4 Experiments

We focus on fine-tuning with small datasets. We
integrate label embeddings into the pretrained
(Bio)BERT models, and fine-tune on various clas-
sification benchmarks as well as two real-world
clinical datasets that we collected from the online
patient portal of a large academic health system.

4.1 Public Benchmarks

Table 1 shows the results of integrating label em-
bedding into the pretrained bert-based-uncased
model on 9 public classification benchmarks of var-
ious sizes. We find that our method improves the
results from BERT on small datasets, e.g, WNLI,
MRPC, CoLA, etc, which typically have only sev-
eral thousand data samples available for fine-tuning.
This shows that the BERT model, which is pre-
trained with task-agnostic objectives, is more likely
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Table 1: Results on public benchmarks.

Method
TREC
(5.5k)

WNLI
(0.6k)

RTE
(2.5k)

MRPC
(3.7k)

CoLA
(8.5k)

IMDB
(25k)

SST-2
(67k)

MNLI-M/MM
(393k)

QQP
(364k) Avg

BERT (Devlin et al., 2018) 97.00 55.11 63.90 87.29 54.47 92.36 92.32 84.38/ 84.87 87.53 79.92

Our Method 97.40 57.75 66.43 89.48 56.26 92.43 92.58 84.12/ 84.62 87.84 80.89

(a) Attention from the BioBERT.

(b) Attention from our method.

Figure 2: Examples of the attention from the [CLS]
token in the final attention layer. The sequences are
sampled from the Message-urgency dataset. Red color
indicates higher attention score. It can be shown that
our method can better focus on keywords, e.g., ’chest’,
’bad’ and ’stairs’, which are more likely to ocurr on
urgent requests. Alternatively, BioBERT fine-tuned on
such a small dataset tends to overfit to task-irrelevant
words, such as ’holiday’, ’school’, ’tests’, etc.

to overfit when there is limited task-specific infor-
mation during fine-tuning. However, our method
produces comparable results on larger datasets such
as MNLI and QQP. This is consistent with the study
in Lazar (2003) where additional priors are less use-
ful when the size of dataset grows larger. These
results suggest that our method is more suitable
for fine-tuning with smaller amounts of data, and
that our approach to injecting the label informa-
tion is at least not detrimental to the original pre-
trained model. This supports the intuition of com-
bining the pretrained general knowledge and the
task-specific information for better fine-tuning with
small datasets.

We note that label information can improve the
results on many tasks of neural language inference,
e.g., WMLI and QQP, where classes are not iden-
tified by keywords, but rather certain patterns in
the input sentence pair. This may be because the
self-attention will encode these input patterns into
intermediate tokens, which act as pseudo keywords

Table 2: Results on our healthcare datasets. Values are
shown as F1/Precision/Recall.

Dataset
Message-urgency

(1.7k)
Acknowledgment

(1.6k)

BERT
(Devlin et al., 2018) 0.761/0.762/0.761 0.980/0.976/0.984

BioBERT
(Lee et al., 2020) 0.764/0.774/0.758 0.985/0.990/0.980

Our Method 0.789/0.784/0.797 0.990/0.993/0.987

that can be emphasized by the attention from label
embeddings.

4.2 Patient Message Triage
We further evaluate the proposed approach in real-
world scenarios of patient message classification.
This is a task motivated by the increasing popular-
ity of online patient portals. Most of the patient
messages generated from the portal are non-urgent,
while the doctors are expected to focus on the ur-
gent requests, which amount to only a small por-
tion (about 10%) of all messages. As a result, the
heath providers will have to spend considerable
time just identifying urgent messages, thus being
less efficient at emergency responses. We obtain
two healthcare datasets –Message-urgency and Ac-
knowledgment– from a large academic health sys-
tem online portal. Detailed description of these two
datasets can be found in Appendix A.

We employ our method on the BioBERT pre-
trained model (Lee et al., 2020), which has the
same architecture as BERT but further pretrained
on the clinical corpora. Results are shown in Ta-
ble 2. Our model improves on all the baselines in
terms of F1 score, which validates the usefulness of
the proposed method for low-resource fine-tuning
in the real scenarios.

5 Conclusion

We propose to integrate task specific information
into PLMs that are pretrained with task-agnostic ob-
jectives. To do this, we leverage label embeddings
to regularize the self-attention in PLMs. Results on
public benchmarks and real-world datasets suggest
that our method can effectively improve the results
for low resource fine-tuning.
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Léon Bottou. 2010. Large-scale machine learning
with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath.
2019. Clinicalbert: Modeling clinical notes and
predicting hospital readmission. arXiv preprint
arXiv:1904.05342.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Ryan Kiros, Ruslan Salakhutdinov, and Rich Zemel.
2014. Multimodal neural language models. In In-
ternational conference on machine learning, pages
595–603.

Nicole A Lazar. 2003. Bayesian empirical likelihood.
Biometrika, 90(2):319–326.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

Xirong Li, Shuai Liao, Weiyu Lan, Xiaoyong Du, and
Gang Yang. 2015. Zero-shot image tagging by hi-
erarchical semantic embedding. In Proceedings of
the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 879–882.

Yukun Ma, Erik Cambria, and Sa Gao. 2016. Label
embedding for zero-shot fine-grained named entity
typing. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 171–180.

Alejandro Moreo, Andrea Esuli, and Fabrizio Se-
bastiani. 2019. Word-class embeddings for
multiclass text classification. arXiv preprint
arXiv:1911.11506.

Jason Phang, Thibault Févry, and Samuel R Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jose Antonio Rodriguez-Serrano and Florent C Per-
ronnin. 2015. Label-embedding for text recognition.
US Patent 9,008,429.

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pap-
pagari, R Thomas McCoy, Roma Patel, Najoung
Kim, Ian Tenney, Yinghui Huang, Katherin Yu, et al.
2018a. Can you tell me how to get past sesame
street? sentence-level pretraining beyond language
modeling. arXiv preprint arXiv:1812.10860.

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe
Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo
Henao, and Lawrence Carin. 2018b. Joint embed-
ding of words and labels for text classification. In
ACL.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5754–5764.

Honglun Zhang, Liqiang Xiao, Wenqing Chen,
Yongkun Wang, and Yaohui Jin. 2017. Multi-task la-
bel embedding for text classification. arXiv preprint
arXiv:1710.07210.

A Description of healthcare datasets

In this work, we utilized 1,756 web portal mes-
sages generated from 10/2014 to 08/2018 by adult
patients (> 18 years old) of a large academic med-
ical center. The Electronic Health Record (EHR)
system (Epic Verona, WI, USA) with associated pa-
tient portal (MyChart) was the source of all patient
messages. A custom-built Application Program-
ming Interface (API) securely made available the
portal messages from the EHR enterprise data ware-
house into a highly protected virtual network space
offered by the medical center. Approved users
were allowed access to work with the identifiable
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Label Count Typical Example
Non-urgent 631 That would be awesome... thank you.
Medium 955 Dr. [name]. All seems well now. I am at home resting.

My wife and I have a trip planned to Maryland this week
beginning on Wednesday. We can fly, drive or stay home
if I should not travel. Are there any reasons that I should
not fly.

Urgent 170 I have continued having chest pain shortness of breath
since waking. Please tell me what to do. I have tried in
hailers am going to try nebulizers. I just feel extremely
tight in my chest.

Table 3: Typical examples of patient messages to providers grouped by urgency. These are examples of the message
urgency dataset used in the experiments.

Label Count Typical Example
1 1123 Thank you. Have a

good day.
0 566 I have continued hav-

ing chest pain short-
ness of breath since
waking. Please let me
know what to do.

Table 4: Typical examples of patient messages to
providers. Label 1 for messages being pure acknowl-
edgment, while 0 for non-trivial messages.

protected health information. These messages in-
cluded free, unstructured plain text sent by patients
to their healthcare team. Responses and messages
sent from the clinician or health system to the pa-
tient were excluded from the analysis.

A.1 Message-urgency dataset
In message-urgency dataset, portal messages were
manually labeled by experienced sub-specialty (car-
diology) clinicians into three levels of priority:
non-urgent, medium and urgent. Non-urgent la-
bels include notes of appreciation (e.g., thank you).
The Medium urgency class contains messages that
could be reasonably responded to in 1-3 days. Ur-
gent messages are those requiring an immediate
phone call to the patient by the clinician. Condi-
tions suggesting acute myocardial infarction, ex-
acerbation of heart failure respiratory distress or
possible stroke were labeled as urgent and would
be inappropriate for an asynchronous patient portal.

A.2 Acknowledgment dataset
This acknowledgment dataset is randomly selected
from patient’s responses to the hospital. A signifi-

cant portion of these messages is purely acknowl-
edgment, like ’Thank you’. It would be helpful if
this type of messages can be filtered out, so that
hospital staff can focus on non-trivial messages.
A doctor and a nurse labelled and validated this
dataset.

B Implementation Details

For all the experiments, we use finetune the pre-
trained model for 3 epoches with learning rate 2e-5
and batch size 32. We use the Adam training al-
gorithm. λ is generally set to 3. We set warm up
steps as 10 percent of the total training steps. We
do not apply weight decay and the norm of all the
gradients are clipped by 1. Experiments on the
public benchmarks are run on a TITAN X (Pascal)
1080 gpu. The healthcare experiment are run on
the CPU in a secured virtual machine system.


