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Abstract
Neural table-to-text models, which select and
order salient data, as well as verbalizing them
fluently via surface realization, have achieved
promising progress. Based on results from pre-
vious work, the performance bottleneck of cur-
rent models lies in the stage of content plan-
ning (selecting and ordering salient content
from the input). That is, performance drops
drastically when an oracle content plan is re-
placed by a model-inferred one during surface
realization. In this paper, we propose to en-
hance neural content planning by (1) under-
standing data values with contextual numeri-
cal value representations that bring the sense
of value comparison into content planning; (2)
verifying the importance and ordering of the
selected sequence of records with policy gradi-
ent. We evaluated our model on ROTOWIRE
and MLB, two datasets on this task, and results
show that our model outperforms existing sys-
tems with respect to content planning metrics.

1 Introduction

Table-to-text generation refers to the task of gener-
ating text from structured data. Models for this
task can be mainly categorized into two types:
pipeline-style models, which decompose the gen-
eration process into sequential stages, including
content planning (Stage 1, selecting and ordering
salient content from the input) and surface real-
ization (Stage 2, converting the content plan to
surface string) (Kukich, 1983; McKeown, 1985);
and end-to-end models, which entangle aforemen-
tioned stages and generate text directly from struc-
tured data through a neural encoder-decoder frame-
work (Wiseman et al., 2017; Nie et al., 2018). As
in Fig. 1, this task provides tables with redundant
records. Each record has three elements: table row
header (entity, e.g. Conley), table column header
(type, e.g. points) and table cell (value, e.g. 32).
Models are expected to generate descriptive text

Player PTS AST REB BLK STL
Nets

LeVert 14 1 3 0 0
Lopez 8 2 4 0 1
Foye 14 1 3 0 2
Lin 18 1 4 0 0

Booker 8 1 9 1 1
Kilpatrick 23 3 5 1 1

NCP+CC (NCP)

Gold

The Memphis Grizzlies defeated the Brooklyn Nets , 109 - 122 , at FedEx 
Forum on Friday . The Grizzlies ( 36 - 28 ) came into this game as a huge 
favorite and they left no doubt with this result . In fact , there were 10 ties and 
11 lead changes in total , with no team leading by more than 12 points . 
Three-point shooting was the difference in the game , with the Grizzlies going 
53 percent from the field and 47 percent from three - point range , while the 
Grizzlies went 53 percent from the field and 47 percent from three - point 
range . The Grizzlies also dominated the assist - to - turnover ratio , recording 
10 more assists than Brooklyn , while committing five less turnovers . Sean 
Kilpatrick led the Nets in scoring , as he tallied 23 points , five rebounds and 
three assists . Brook Lopez finished with just eight points , four rebounds 
and two assists . Sean Kilpatrick was huge off the bench , providing 23
points , five rebounds and three assists . Mike Conley was the player of the 
game , as he collected 32 points , three rebounds and six assists . Marc Gasol 
collected 18 points , six rebounds , four assists and two blocks . Zach 
Randolph accrued 10 points , seven rebounds and three assists . On deck for 
the Nets is a home matchup against the Portland Trail Blazers on Friday .

Memphis looked poised for an easy win when seeing this matchup on the 
schedule , but Brooklyn had other ideas . The Nets took care of business when 
it mattered most , winning the fourth quarter , 34 - 19 . Shooting was key , as 
Brooklyn shot 53 percent from the field , while holding Memphis to just 44
percent shooting . Sean Kilpatrick led the way for Brooklyn , as he provided 
23 points , five rebounds and three assists off the bench . Jeremy Lin led the 
starters , as he accrued 18 points and four rebounds . The Nets won despite 
getting just eight points and four rebounds from Brook Lopez . Randy Foye
and Caris LeVert scored 14 points apiece . Mike Conley carried the load for 
Memphis , as he collected 32 points , three rebounds and six assists . Marc 
Gasol contributed 18 points , six rebounds , four assists and two blocks .

Extracted Records

Extracted Records

FGP: field goals percentage, FG3P: 3-pointer percentage, QTR4: Team points in 4th quarter
PTS: points, AST: assists,  REB: rebounds, BLK: blocks, STL: steals 

Conley, PTS, 32
Conley, REB, 3
Conley, AST, 6
Gasol, PTS, 18
Gasol, REB, 6
Gasol, AST, 4
Gasol, BLK, 2
Randolph, PTS, 10
Randolph, REB, 7
Randolph, AST, 3

Grizzlies, PTS, 109
Nets, PTS, 122
Grizzlies, WIN, 36
Grizzlies, LOSS, 28
Grizzlies, FGP, 53
Grizzlies, FG3P, 47
Grizzlies, FGP, 53
Grizzlies, FG3P, 47
Kilpatrick, PTS, 23
Kilpatrick, REB, 5
Kilpatrick, AST, 3
Lopez, PTS, 8
Lopez, REB, 4
Lopez, AST, 2
Kilpatrick, PTS, 23
Kilpatrick, REB, 5
Kilpatrick, AST, 3

Conley, PTS, 32
Conley, REB, 3
Conley, AST, 6
Gasol, PTS, 18
Gasol, REB, 6
Gasol, AST, 4
Gasol, BLK, 2

Brooklyn, FGP, 53
Memphis, FGP, 44
Kilpatrick, PTS, 23
Kilpatrick, REB, 5
Kilpatrick, AST, 3
Lin, PTS, 18
Lin, REB, 4
Lopez, PTS, 8
Lopez, REB, 4
Foye, PTS, 14
LeVert, PTS, 14

Player PTS AST REB BLK STL
Grizzlies

Parsons 12 3 1 0 1
Wright 9 1 4 0 0
Gasol 18 4 6 2 0

Conley 32 6 3 0 1
Green 9 0 9 0 0

Randolph 10 3 7 0 0

Type Grizzlies Nets
PTS 109 122
WIN 36 11
LOSS 28 51
FGP 44 53

FG3P 40 47
QTR4 18 34

Figure 1: A ROTOWIRE’s example with NCP’s re-
sult and gold text. Important/unimportant entities and
records are in red/blue. Text that accurately/incorrectly
report statistics in table is in bold/italic.

reflecting salient records. Many neural end-to-end
models have achieved remarkable progress of gen-
erating fluent and natural text on this task (Pudup-
pully et al., 2019b; Gong et al., 2019).

However, previous work notices that the content
planning stage is the key factor in table-to-text gen-
eration (Gkatzia, 2016), but end-to-end models are
difficult to explicitly improve their content plan-
ning ability. Recently, Puduppully et al. (2019a)
proposed Neural Content Planning (NCP), a two-
stage model that explicitly selects and orders salient
records whilst keeping the ability to generate flu-
ent text of end-to-end models. They show that
content planning (referring to both “content selec-
tion and planning” in Puduppully et al. (2019a))
indeed correlates with the quality of final output.
Yet, NCP simply maximizes the log-likelihood of
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pre-extracted sequences of content plans given all
records. According to their reported results, the
inferred content plans are still far from the oracle.
Thus, we focus on bridging the gap between the in-
ferred content plans and the upper-bounds in Stage
1, and thus improving the final generation results.

We observe that whether a record is important
highly depends on its record value. However, NCP,
as well as other neural generation models, treats nu-
merical values in table as tokens, and the prominent
role of values in content planning is not recognized.
Let’s take Fig. 1 for example. Compared to the
gold text, NCP mistakenly states that “The Mem-
phis Grizzlies defeated the Brooklyn Nets” while
“Nets” clearly score more points than “Grizzlies”
in this match. Also, NCP neglects important play-
ers such as “Lin” who performs the second best in
team “Nets”. We hypothesize that this is because
the model lacks understanding of values in their
given context (here context means the structured
table information) when representing correspond-
ing records. In addition, we find that NCP tends
to include redundant information when describing
those players. For example, NCP includes redun-
dant “two assists” when describing “Lopez”. A
possible reason is that the use of maximum likeli-
hood estimation (MLE) is not enough to help verify
important records during training.

To address the aforementioned numeric value un-
derstanding and important record verification prob-
lems, we propose a generation model with Data
Understanding and Verfication (DUV), improving
content planning in the framework of NCP. Specif-
ically, we design contextual numeric value repre-
sentations obtained through a pre-trained ranking
task. In the pre-trained model, we compare pair-
wise numerical values describing the same type of
information and decide which has a higher value.
In the record encoder when training the model, we
replace the value representation with its contex-
tual version from the pre-trained model. In this
way, the constructed record representation is also
context-aware. Besides, instead of using the simple
MLE, we design integrated rewards to verify con-
tent planning results. We conducted experiments
on ROTOWIRE and MLB, showing that our model
outperforms existing systems regarding the content
selection and ordering metric.

2 Background

This task’s input consists of tables S of records.
The basics of a record r include entity r.e, type r.c,
value r.v and features r.f . Models need to generate
text y = (y1, y2, ..., y|y|) (|y| is number of words)
to describe important records in tables. As stated
in Sec.1, this task has two main stages: (i) content
planning, and (ii) surface realization. Puduppully
et al. (2019a) propose Neural Content Planning
(NCP) to explicitly optimize these two stages in
deep neural networks, making the generation pro-
cess more interpretable with an intermediate con-
tent plan. Thus, we use it as base model.

In Stage 1 (content planning), NCP embeds to-
kens into embedding vectors and encodes each
record r with one-layer MLP for ROTOWIRE:

r = ReLU(Wa[r.e; r.c; r.v; r.f ] + ba). (1)

Here, r.∗ represents their embedding vectors. Wa

and ba are trainable parameters and [; ] denotes
vector concatenation. The reason to choose MLP is
that its records are game statistics without sequen-
tial relationship between records. For MLB, we
follow Puduppully et al. (2019b) and use LSTM
instead because its input includes sequential event
data. Next, a content selection gate is applied on
each r to control the amount of information flow-
ing from the record r. A LSTM-based pointer
network (Vinyals et al., 2015) is applied to sequen-
tially decode a content plan, which is a sequence
of important records extracted from the output text,
denoted as r∗ = {r∗1, . . . , r∗T } (T is the number of
records mentioned in y). Here, we follow Pudup-
pully et al. (2019a) to extract content plans using
an information extraction (IE) approach as oracles.
In each time step, the decoder takes previously se-
lected record’s representation as input and use the
attention weights to select the next important one.

In Stage 2 (surface realization), a standard
encoder-decoder model is applied, taking the out-
put content plan from Stage 1 as input and gen-
erating text with attention mechanism (Luong
et al., 2015) and conditional copy mechanism (Gul-
cehre et al., 2016). From results in Puduppully
et al. (2019a), it is observed that performance bot-
tleneck lies in Stage 1. That is, if we feed gold
content plans into Stage 2, final results are much
better, but if inferred content plans are fed instead,
performance decreases drastically. Therefore, we
focus on improving NCP’s Stage 1 for better final
outputs.
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Player PTS AST REB

Parsons 12 3 1
Gasol 18 4 6

Conley 32 6 3
Green 9 0 9

Grizzlies

Player PTS AST REB

LeVert 14 1 3
Foye 14 1 3
Lin 18 1 4

Booker 8 1 9
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Figure 2: The architecture of our approach. To enhance neural content planning in the base model (Module 2), we
propose two modules: Contextual Numerical Value Representation (Module 1) and Content Planning Verification
(Module 3). First, we use Module 1 to pre-train contextual numerical value representation and replace the numer-
ical value’s token embedding. After Module 2 planning records from table, we use Module 3 to optimize with
reinforced supervision signals. Then, Module 2 use the content plans to generate text.

3 Approach

We propose to improve content planning (Stage
1 of NCP) from two aspects: (i) during record
encoding, we design a contextual numeric value
representation to improve the understanding of en-
tities’ (players’ and teams’) performance; (ii) a
reinforced training strategy with targeted supervi-
sion signals is used to compensate maximizing the
MLE in pointer network to boost model’s content
planning ability. Fig. 2 illustrates the overall train-
ing procedure. We first pre-train a model to learn
contextual numeric value representations to under-
stand relationship between records’ numeric values
by pairwise ranking loss. Secondly, given the pre-
trained model and table S, we encode each record
with its contextual numeric value representation.
In decoding phase of Stage 1, the pointer network
is guided to favor important records for content
planning with the help of reinforced supervision
signals. Stage 2 remains the same as in the base
model. We describe details in following parts.

3.1 Contextual Numerical Value
Representation

Current table-to-text models treat numerical values
in table as tokens and use embeddings to repre-
sent them. However, a numerical value has some
attributes that a text token doesn’t have. Gener-
ally, a larger numerical value indicates better per-
formance of a player. Also, considering different

context, an identical numerical value can convey
different meaning. (1) One numerical value de-
scribing same type of records can correspond to
different situations on court. For instance, if a
player got “23” points in a game, top 1 among
all players, it indicates outstanding performance.
But, if there are other players on court with points
over 30, it becomes less outstanding. (2) The same
numerical value describing different types of infor-
mation should not be interpreted in the same way.
For example, “5” assists may indicate good perfor-
mance, while “5” points may suggest disappointing
performance. Hence, it is important to model a nu-
merical value in context of other numerical values
describing the same type of information in order to
understand what is behind those numerical values.
Here, we propose to learn contextual numerical
value representations for this task.

We extract numerical values that describe the
same type of information from the same table to
form training samples (e.g. players’ points in Nets)
for a pre-trained task. Our main idea is to use trans-
former encoder (Vaswani et al., 2017) to compare
each numerical value with others in each training
sample. We first use it to fuse information of nu-
merical values in the same sample and obtain their
contextual numerical value representations. Next,
we optimize the pairwise ranking loss using their
contextual representations such that a large numer-
ical value is with a higher ranking score. Taking
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all raw numerical value embedding ri.v’s of each
training sample as input, we construct the contex-
tual numerical value embeddings R̃ = [̃r1, . . . , r̃n]
via multi-layer transformer encoder:

H0 = [r1.v, . . . , ri.v, . . . , rn.v], (2)

Ak = LN(Hk−1 + MHSelfAtt(Hk−1)) (3)

Hk = LN(Ak + FFN(Ak)), R̃ = HK (4)

where n is the number of numerical values in the
sample, LN is the layer normalization, MHSelfAtt
is the multi-head self-attention function, and FFN
is position-wise feed-forward network.

Given a pair of contextual numerical value rep-
resentations r̃i and r̃j , we use a fully connected
layer f(r̃i) = sigmoid(Wpr̃i + bp) to calculate
the ranking score for each numerical value in the
current input sample. If ri.v ≥ rj .v, we expect
f(r̃i) to be higher than f(r̃j). For training contex-
tual numerical value representations, we use the
hinge loss (Eq.5). ξ is the margin and T (·) gives
+1 if · is true and −1 otherwise.

`pre =
1

n2

n∑
i=1

n∑
j=1
j 6=i

max(0, ξ − T (ri.v ≥ rj .v)

(f(r̃i)− f(r̃j))) (5)

We construct training samples of the pre-trained
task using all training tables. Note that numerical
values from different types of information form
different samples. When the pre-trained model
is converged, we use it in the record encoder in
Eq. 1 by replacing the token embedding ri.v with
its contextual representation r̃i via Eq. 2 to Eq. 4.

3.2 Content Planning Verification
The original NCP uses the pointer network to ex-
plicitly infer a content plan by optimizing the MLE
of gold content plans. As noticed in other gener-
ation tasks (Sordoni et al., 2015; Li et al., 2016a;
Dai et al., 2017), generation models with the MLE
as the objective function tend to generate univer-
sal output sequences observed in the training data
and it is desirable to integrate developer-defined
rewards that better mimic the true goal of an ideal
output sequence (Li et al., 2016b), which is the
sequence of the content plan in our task. In order
to explicitly reflect the quality of content plans, we
explore rewards that measure the following five cri-
teria, and optimized the model according to them
via policy gradient (Sutton and Barto, 1998).

• Entity Importance (EI) evaluates if a predicted
record rt contains an important entity by compar-
ing whether the entity is mentioned in the gold
content plan {r∗i }. R(·) function gives +1 reward
when · is true and -1 otherwise.

EI(rt) = R(rt.e ∈ {r∗i .e}). (6)

• Entity Recall (ER) measures how many impor-
tant entities are covered by the decoded content
plan r = {rt}. 1(·) is the indicator function which
is 1 when · is true, otherwise 0.

ER(r) =
1

|{r∗i .e}|

|{r∗i .e}|∑
i=1

1[r∗i .e ∈ {rt.e}]. (7)

• Record Importance (RI) and Record Recall (RR)
are similar to EI and ER respectively but focus on
each individual record instead of entity only:

RI(rt) = R(rt ∈ {r∗i }) (8)

RR(r) =
1

|{r∗i }|

|{r∗i }|∑
i=1

1[r∗i ∈ {rt}]. (9)

• Record Ordering (RO) calculates the normalized
Damerau-Levenshtein Distance (Brill and Moore,
2000) between the predicted content plan r and
the reference r∗ in order to measure how well the
model organizes the chosen records.

The above designed rewards measure the content
plan on different granularity. EI and ER focus
on whether the selected entity (player/team) is an
important one. It is also crucial to decide which
of the entity’s records are needed to be mentioned.
Therefore, we also include RI and RR. Afterwards,
we sample record sequence, combine all rewards
and use policy gradient to guide the optimization
of content selection given S as the input table:

Lrl = − 1

T

T∑
t=1

Rtok logP (rt|r<t, S)

− 1

T
(Rseq−β) logP (r|S) (10)

Rtok = γ1EI(rt) + γ2RI(rt) (11)

Rseq = γ3ER(r)+γ4RR(r)+γ5RO(r)(12)

Given a batch of input tables {S}G and gold
content plan {r∗}G, we first train the pointer
network by optimizing the MLE: Lgen =

− 1
G

∑G
g=1

1
Tg

∑Tg

t=1 logP (r
∗
t,g|r∗<t,g, Sg). Then,

we further finetune it with both the MLE loss and
policy gradient: L = γ6Lrl+(1−γ6)Lgen. Please
note that T represents length of the content plan.
γ1-γ6 and β are hyper-parameters.
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4 Experiments

4.1 Setup

Dataset and Evaluation Metrics We conducted
experiments on both ROTOWIRE1 and MLB
(Puduppully et al., 2019b) dataset. The former pro-
vides pairs of NBA game statistics and summary.
Differently, the latter provides summary and het-
erogeneous input, consisting of MLB game statis-
tics and event data (including event type, actors,
etc.) in chronological order. For ROTOWIRE, we
follow official training, development and test splits
of 3398/727/728 instances. For MLB, as the con-
tents are not released, we are able to retrieve a split
of 22820/1739/1744 instances via official scripts 2.

For evaluations, we use BLEU (Papineni et al.,
2002) and three extractive metrics, which evalu-
ate the generated results from the following as-
pects: (1) Relation Generation (RG), measuring
the text fidelity about whether to describe informa-
tion from table truthfully. (2) Content Selection
(CS) to measure whether important information is
selected from redundant game statistics. (3) Con-
tent Ordering (CO) evaluates a model’s ability to
plan and order data records naturally in text. More
details can be found in Wiseman et al. (2017).
Implementation Details We follow Puduppully
et al. (2019a)’s and Puduppully et al. (2019b)’s
training configurations in the base model for
ROTOWIRE and MLB respectively. We chose
the proposed hyper-parameters based on perfor-
mance on development set. Due to page limit,
we include model and training details in Ap-
pendix. Codes of our model can be found at
https://github.com/ErnestGong/data2text-duv.

4.2 Results

Comparing Methods In this section, we compare:

• Template: We follow Wiseman et al. (2017) and
Puduppully et al. (2019b) for constructing template-
based generators for ROTOWIRE and MLB re-
spectively. The details and Conditional Copy (CC)
model can be found in those papers.
• NCP+CC (NCP): our base model. Here, we
provide both results reported in the original paper
and reproduced by us, denoted as NCP(R). We
also try a variant of NCP by using separate sets of
embeddings in the encoders of two stages, denoted
as S-NCP. We observe that S-NCP is comparable

1https://github.com/harvardnlp/boxscore-data
2https://github.com/ratishsp/mlb-data-scripts

with reproduced NCP, with the ability to explicitly
improve Stage 1 without affecting Stage 2. Thus.
we use it to further verify our proposed model.
• Entity Modeling (ENT) (Puduppully et al.,
2019b) and Hierarchical Encoder on Three Dimen-
sions (HETD) (Gong et al., 2019) are two state-
of-the-art models on ROTOWIRE and/or MLB.
OpAtt (Nie et al., 2018) introduces pre-executed
operations for text generation.
• Data Understanding with content plan Verifica-
tion (DUV): our proposed full model. We also
include two variants for ablations: S-NCP + Veri-
fication (S-N+V) to study our model without data
understanding, and Data Understanding (DU) to
study without content plan verification.

Automatic Evaluation For ROTOWIRE, as shown
in Table 1, template system achieves high RG P%
(high-fidelity) due to rigid rules. Also, it achieves
high CS R% since it includes vast amount of infor-
mation (high RG #) and some of which are redun-
dant (low CS P%). Compared with it, most neural
models perform significantly better at filtering re-
dundant records (CS P%) while still covering many
important records, leading to better CS F1%. The
higher CO also shows that neural models can bet-
ter organize data records conditioned on the data.
Among all neural models, DUV exceeds other neu-
ral models in terms of content selection (CS F1%)
and content ordering (CO) on test set. Also, by
comparing DUV with its base model (S-NCP), our
model improves more on CS P%. In terms of RG,
our model also performs better than base model,
but still has a gap to ENT and HETD. This is mainly
affected by surface realization (Stage 2), which is
beyond the scope of this paper.

For MLB, we find similar pattern as discussed
above. The differences are (1) improvements on CS
and CO are less significant than on ROTOWIRE.
Since MLB includes additional event data that RO-
TOWIRE doesn’t have, we separate out the statisti-
cal data in Table 4 for fair comparison. We find that
base model (S-NCP) achieves 73.43% (Table 4) re-
garding statistical data on MLB v.s. 44.37% (Table
3) on ROTOWIRE of CS F1% in Stage 1, leaving
much less room for improvement. (2) NCP-style
models achieve less BLEU than ENT on MLB.
The latter (Brevity Penalty, BP 0.736) generates
longer text compared with DUV (BP 0.623). This
is mainly due to surface realization (Stage 2), which
we leave for future work.

Table 1 also includes ablations of our model
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ROTOWIRE (RW) RG CS CO BLEU
P% # P% R% F1% DLD%

TEMP 99.94 54.21 27.02 58.22 36.91 15.07 8.58
ED+CC 74.80 23.72 29.49 36.18 32.49 15.42 14.19
OpAtt - - - - - - 14.74
NCP+CC (NCP) 87.47 34.28 34.18 51.22 41.00 18.58 16.50
ENT 92.69 30.11 38.64 48.51 43.02 20.17 16.12
HETD 91.46 31.47 36.09 48.01 41.21 20.86 16.85
NCP(R) 86.06 26.60 36.56 43.57 39.76 18.84 14.84
S-NCP 85.05 26.93 35.59 43.76 39.25 18.51 14.63
S-NCP+V (S-N+V) 85.29 25.36 37.12 42.82 39.77 18.99 13.77
DU 88.05 29.42 38.19 49.66 43.18 22.14 16.12
DUV 87.45 26.94 40.73 48.78 44.39 23.32 15.92

MLB RG CS CO BLEU
P% # P% R% F1% DLD%

TEMP 97.99 57.11 23.51 65.69 34.63 10.80 2.80
ED+CC 91.74 17.10 63.45 47.27 54.18 25.59 9.65
NCP+CC (NCP) 88.65 15.96 64.16 51.47 57.12 27.11 8.39
ENT 84.61 22.10 55.32 60.92 57.99 23.59 13.11
S-NCP 87.80 16.67 62.63 53.56 57.74 27.22 9.62
S-NCP+V (S-N+V) 88.13 16.73 62.89 53.91 58.06 27.69 9.54
DU 87.99 16.63 62.80 53.75 57.93 27.47 9.53
DUV 89.02 16.65 63.44 53.63 58.12 27.78 9.51

Table 1: Automatic evaluation results on test set. On ROTOWIRE (top), results are obtained with updated ex-
tractive evaluation models (Puduppully et al., 2019a). Those above the dash line, except for TEMP, are from
corresponding papers. On MLB (bottom), since our vocabulary is different from the one in released models, we
re-train the Information Extraction (IE) model via official script (Puduppully et al., 2019b) on re-collected dataset.
It can recall 96.60% of tuples with precision of 96.39% on test set, compared to the released oracle tuples. All
baselines’ results on MLB are reproduced by us. Note that for ENT, we directly use the released code to train.

(S-N+V and DU). Results show that both data un-
derstanding and verification modules contribute to
the overall improvement. Due to page limit, we
include validation performance in Appendix.
Human Evaluation Each example below is evalu-
ated by 3 different annotators from a commercial
annotation company, who are proficient in English
and we report the average of three annotators’ re-
sults in following settings. First, We sample 30
examples from test set and asked annotators to de-
termine how many information in the summary
are correct (#Sup) and how many are contradicting
(#Cont) to the table. On ROTOWIRE, our model
describes the table more concisely (closest #Sup
to gold text) while produces significantly less con-
tradicting facts than NCP thanks to significant im-
provement on Stage 1. We observe that gold text
contains incorrect facts (e.g. wrong field-goal per-
centage) while #Cont of TEMP is due to annotation

error. Gap between ENT and DUV on #Cont shows
potential of Stage 2, which is beyond the scope of
this paper.

Second, we arrange results from models of each
example into 10/15 pairs (ROTOWIRE/MLB) and
asked annotators to determine which one in the
pair performs better in terms of grammaticality,
coherence and conciseness. The reported result is
the subtraction of the percentage of time a system
is considered better and when considered worse.
On ROTOWIRE, DUV can generate most coherent
text among neural models, but less satisfying on
grammaticality and conciseness, compared with
ENT. This is mainly affected by surface realization
(Stage 2). A possible way is to use large-scale pre-
trained language models such as GPT-2 (Radford
et al., 2019) to address this issue. In MLB, DUV
achieves comparable performance with NCP across
5 metrics due to the same Stage 2.
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RW #Sup #Cont Gram Coher Conc
Gold 31.91 1.92? 26.44? 6.44 8.89?

TEMP 53.87? 0.02? -10.67 2.67 29.11?

NCP 40.61? 6.38? -20.44? -8.22? -24.00?

ENT 35.06 2.69 8.22? -2.67 -5.78
DUV 30.74 3.61 -3.56 1.78 -8.22

MLB #Sup #Cont Gram Coher Conc
Gold 15.27 4.30 26.67? 28.74? 32.59?

TEMP 52.02? 0.72? -15.56? -19.11? 14.81?

CC 14.04 1.99? -9.48 -9.33 -22.52?

NCP 13.82 2.87 -1.04 -3.11 -9.33
ENT 18.89? 3.29 4.89? 7.85? -7.70
DUV 13.24 3.80 -5.48 -5.04 -7.85

Table 2: Human evaluation results. Models with ? per-
form significantly different from DUV (p < 0.05), us-
ing a one-way ANOVA with posthoc Tukey HSD tests.
We omit CC on ROTOWIRE because NCP is proven to
be better (Puduppully et al., 2019a).
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Figure 3: Visualization of contextual numerical value
representations of PTS, AST, REB of the example in
Fig. 1 obtained by our pre-trained model (in blue) and
the token embeddings of values from 0 to 49 (in red) via
PCA (Pearson, 1901) on left (ROTOWIRE). The right
one are obtained on a MLB’s example (Appendix).

4.3 Analysis

Visualization Fig. 3 visualizes value’s token em-
beddings (in red) and our contextual numerical
value representations (in blue). Token embeddings
are closer between each other while the contextual
ones are more discriminative and naturally ordered
from low to high along the “blue arc”. We hypoth-
esize this phenomenon contributes to the improve-
ment of content selection.
Content Planning In Table 3, we discuss Stage
1’s content planning (CS and CO) results on RO-
TOWIRE. DU improves on all metrics. It focuses
more on covering important records (CS R%) com-
pared with others. By adding verification on top of
DU (DUV), it can further improve on CS P%, F1%

RW CS P% CS R% CS F1% CO
NCP 38.00 53.72 44.51 20.27
NCP(R) 41.43 48.05 44.50 21.49
S-NCP 40.28 49.39 44.37 21.28
S-N+V 42.52 48.13 45.15 21.34
DU 43.38 54.48 48.30 24.42
DUV 46.97 53.93 50.21 26.63

-EI 46.75 53.69 49.98 26.05
-ER 46.84 53.36 49.89 26.26
-RI 46.70 54.02 50.09 26.18
-RR 47.00 53.85 50.19 26.41
-RO 47.01 53.67 50.12 26.26

Table 3: Results of Stage 1 performance on content
planning metrics on ROTOWIRE’s development set.

and CO. Considering both CS P% and R%, DUV
can generate more concise but informative content
plans with little sacrifice on recall.

Next, by subtracting each reward from DUV,
we observe that all rewards contribute to DUV’s
improvement on content selection and ordering.
ROTOWIRE v.s. MLB Our model’s improve-
ments on CS and CO are significant on RO-
TOWIRE, but less significant on MLB. Different
from ROTOWIRE, MLB additionally provides se-
quential event data. The two different sources of
input can be regards as heterogeneous (Liu et al.,
2019). The average statistical data in gold text
is 12.69 while event data is 4.16 (extracted by IE
model on test set). In Table 4, we discuss CS and
CO for two types of data respectively. DU and
verification both improve over base model, with
verification contributing more overall. They con-
sistently improve on CS F1% and CO on statistical
data, but the high CS of base model indicates little
room for improvement. Meanwhile, event data is
the bottleneck and the drop on that also attributes to
the not so significant overall CS and CO improve-
ment. It reveals potential for content planning on
heterogeneous input on MLB as future work.

4.4 Case Study

Compared with NCP and gold text in Fig. 1, DUV
(Fig. 4) has nice properties: (1) It accurately states
that “Nets” with higher points defeated “Grizzlies”
while NCP fails. This is due to our model’s ability
to compare value; (2) Our model can better filter
unimportant records (CS P%) while cover the im-
portant ones (CS R%) than both NCP and ENT.
Note that our model covers all important players
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MLB CS P% CS R% CS F1% CO
OA STAT EVNT OA STAT EVNT OA STAT EVNT OA STAT EVNT

NCP 70.89 71.04 70.19 70.45 76.31 52.53 70.67 73.58 60.09 36.08 43.70 37.91
S-NCP 69.73 69.64 70.15 71.60 77.66 53.05 70.65 73.43 60.41 36.08 43.25 39.06
S-N+V 69.77 69.65 70.32 72.05 78.79 51.39 70.89 73.94 59.38 36.30 43.71 38.42
DU 69.48 69.48 69.48 72.26 78.45 53.29 70.84 73.69 60.32 36.43 43.66 39.29
DUV 70.16 70.07 70.59 72.31 78.97 51.90 71.22 74.25 59.82 36.54 44.07 38.57

-EI 69.84 69.71 70.46 72.32 78.90 52.17 71.06 74.02 59.95 36.15 43.98 38.69
-ER 69.94 69.86 70.30 72.30 78.69 52.74 71.10 74.01 60.27 36.22 43.89 38.50
-RI 69.76 69.70 70.07 72.41 79.01 52.18 71.06 74.06 59.82 36.29 43.99 38.12
-RR 69.95 69.91 70.15 72.22 78.71 52.36 71.07 74.05 59.96 36.23 43.91 38.54
-RO 69.76 69.65 70.23 72.41 78.75 52.98 71.06 73.92 60.40 36.13 43.81 38.31

Table 4: Results of Stage 1 performance on metrics about content planning on MLB’s development set. We study
overall (OA) results with results for statistical (STAT) data only and event (EVNT) data only.

ENT

DUV (Ours)

The Brooklyn Nets defeated the host Memphis Grizzlies , 122 - 109 , at FedEx 
Forum on Thursday . These are two teams going in opposite directions and this 
result shows just how scary they can be . It was a wire - to - wire win for the Nets , 
as they held a double - digit lead for the final 30 - plus minutes . Defense was key 
for the Nets , as they held the Grizzlies to 44 percent from the field and 47 percent 
from three - point range , while the Grizzlies shot 44 percent from the field and 40
percent from three - point range . The Nets ( 11 - 51 ) have now won three of their 
last four games , as they continue to fall down the standings . Sean Kilpatrick led 
the way for Brooklyn , as he tallied 23 points , five rebounds and three assists . 
Jeremy Lin was second on the team , finishing with 18 points and four rebounds . 
Caris LeVert and Randy Foye each scored 14 points off the bench . Brook Lopez
was Memphis 's best player , as he totaled just eight points and four rebounds . On 
deck for the Nets is a road matchup with the New Orleans Pelicans on Monday . 
The Grizzlies ( 36 - 28 ) have now won five of their last six games , as they 
continue to fall down the standings . Mike Conley did all he could for Memphis , 
as he accumulated 32 points , three rebounds and six assists . Marc Gasol finished 
second on the team , accruing 18 points , six rebounds , four assists and two
blocks . Zach Randolph was the only other starter in double figures , as he accrued 
10 points , seven rebounds and three assists . Memphis will look to keep rolling on 
Wednesday in a home matchup against the Milwaukee Bucks .

The Brooklyn Nets defeated the Memphis Grizzlies , 122 - 109 , at FedEx Forum 
on Monday . The Nets ( 11 - 51 ) checked in to Monday 's contest with only four 
road victories in 34 tries away from Barclays Center , but the Nets ( 36 - 28 ) 
checked in to Monday 's contest with only three road victories in 16 tries away 
from Barclays Center , but the Nets ( 36 - 28 ) checked in to Monday 's contest 
with only three road victories in 16 tries away from Barclays Center , but the Nets 
( 36 - 28 ) have now won three straight and five of their last six games . They were 
led by Mike Conley 's 32 points , which he supplemented with six assists , three
rebounds and a steal . Marc Gasol was right behind him with 18 points , six
rebounds , four assists and two blocks . Sean Kilpatrick was next in line with 23
points , five rebounds , three assists , a steal and a block . Jeremy Lin followed 
with 18 points , four rebounds and an assist . Caris LeVert led the bench with 14
points , three rebounds and an assist . Chandler Parsons was right behind him with 
12 points , three assists , a rebound and a steal over 22 minutes . Randy Foye was 
the only other starter to manage double - digit scoring , supplying 14 points , three
rebounds , an assist and two steals over 16 minutes . Zach Randolph ( 10 points , 
seven rebounds , three assists ) and Trevor Booker ( eight points , nine rebounds , 
an assist , a steal and a block ) were highly productive in reserve roles .
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ExtractedPlanning

Kilpatrick, REB, 5
Kilpatrick, AST, 3
Lin, PTS, 18
Lin, REB, 4
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Kilpatrick, PTS, 23
Kilpatrick, REB, 5
Kilpatrick, AST, 3
Lin, PTS, 18
Lin, REB, 4
LeVert, PTS, 14
Foye, PTS, 14
Lopez, PTS, 8
Lopez, REB, 4
Grizzlies, WIN, 36
Grizzlies, LOSS, 28
Conley, PTS, 32
Conley, REB, 3
Conley, AST, 6 
Gasol, PTS, 18
Gasol, REB, 6
Gasol, AST, 4
Gasol, BLK, 2
Randolph, PTS, 10
Randolph, REB, 7
Randolph, AST, 3
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Kilpatrick, PTS, 23
Kilpatrick, REB, 5
Kilpatrick, AST, 3
Lin, PTS, 18
Lin, REB, 4
LeVert, PTS, 14
Foye, PTS, 14
Lopez, PTS, 8
Lopez, REB, 4
Grizzlies, WIN, 36
Grizzlies, LOSS, 28
Conley, PTS, 32
Conley, REB, 3
Conley, AST, 6
Gasol, PTS, 18
Gasol, REB, 6
Gasol, AST, 4
Gasol, BLK, 2
Randolph, PTS, 10
Randolph, REB, 7
Randolph, AST, 3

Figure 4: Generation examples based on tables in
Fig. 1. Important/unimportant entities and records are
in red/blue. Text that accurately/incorrectly reflects the
statistics in table is in bold/italic. Due to page limit, we
include generation example on MLB in Appendix.

and their records in this case while only mention
one not so impressive player’s records; (3) By com-
paring the content planning (Stage 1) results and
actual records mentioned in our model’s text (Stage
2), the main challenge indeed lies in the content
planning since surface realization can faithfully de-
liver most information (93.10%) in the same order.

5 Related Work

In the past few years, table-to-text generation has
attracted many attentions. To improve text fidelity,
Li and Wan (2018) propose to generate templates
and then fill the slots, while Nie et al. (2018)
use pre-executed operations. However, our work
mainly focuses on improving the content planning.
Puduppully et al. (2019b) propose to specifically
model entities when decoding texts. Different from
them, we model numerical values during encod-
ing. Iso et al. (2019) incorporate writers’ infor-
mation to generate text step-by-step. Our work
can also consider such information in surface re-
alization (Stage 2). For a fair comparison of all
methods, we do not include the use of this model
here. Gong et al. (2019) utilize hierarchical en-
coders with dual attention to consider both the table
structure and history information. In terms of build-
ing numerical value representations, Spithourakis
and Riedel (2018) explore number prediction for
language models while Naik et al. (2019) explore
numerical embeddings to capture the numeration
and magnitude properties of numbers. In our task,
generation models rely heavily on copy mechanism
to cover numerical values in text and achieve good
results. Thus, how to understand numerical val-
ues to select records becomes important and we
propose to understand them through their context.

6 Conclusion

In order to enhance neural content planning for
table-to-text generation, we proposed (1) contex-
tual numerical value representations to help model
understand data values and (2) effective rewards
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to verify a model’s inferred important records dur-
ing training. Experimental results show that our
model outperforms competitive baselines in terms
of content planning. In the future, we would like to
explore enhancement on surface realization jointly
to generate better text.
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