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Abstract

Multi-criteria Chinese word segmentation
(MCCWS) aims to exploit the relations among
the multiple heterogeneous segmentation cri-
teria and further improve the performance of
each single criterion. Previous work usually
regards MCCWS as different tasks, which are
learned together under the multi-task learn-
ing framework. In this paper, we propose a
concise but effective unified model for MC-
CWS, which is fully-shared for all the cri-
teria. By leveraging the powerful ability of
the Transformer encoder, the proposed unified
model can segment Chinese text according to
a unique criterion-token indicating the output
criterion. Besides, the proposed unified model
can segment both simplified and traditional
Chinese and has an excellent transfer capabil-
ity. Experiments on eight datasets with differ-
ent criteria show that our model outperforms
our single-criterion baseline model and other
multi-criteria models. Source codes of this pa-
per are available on Github'.

1 Introduction

Chinese word segmentation (CWS) is a prelimi-
nary step to process Chinese text. The mainstream
CWS methods regard CWS as a character-based se-
quence labeling problem, in which each character
is assigned a label to indicate its boundary infor-
mation. Recently, various neural models have been
explored to reduce efforts of the feature engineer-
ing (Chen et al., 2015a,b; Qun et al., 2020; Wang
and Xu, 2017; Kurita et al., 2017; Ma et al., 2018).

Recently, Chen et al. (2017) proposed multi-
criteria Chinese word segmentation (MCCWS)
to effectively utilize the heterogeneous resources
with different segmentation criteria. Specifically,
they regard each segmentation criterion as a single

*Corresponding author.
"https://github.com/acphile/MCCWS
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Table 1: Illustration of different segmentation criteria.

task under the framework of multi-task learning,
where a shared layer is used to extract the criteria-
invariant features, and a private layer is used to
extract the criteria-specific features.

However, it is unnecessary to use a specific pri-
vate layer for each criterion. These different criteria
often have partial overlaps. For the example in Ta-
ble 1, the segmentation of “#Kf}(Lin Dan)” is the
same in CTB and MSRA criteria, and the segmen-
tation of /&7t % (the championship)” is the same
in PKU and MSRA criteria. All these three crite-
ria have the same segmentation for the word “/i,
& (won)”. Although these criteria are inconsistent,
they share some partial segmentation. Therefore,
it is interesting to use a unified model for all the
criteria. At the inference phase, a criterion-token is
taken as input to indicate the predict segmentation
criterion. Following this idea, Gong et al. (2018)
used multiple LSTMs and a criterion switcher at
every position to automatically switch the routing
among these LSTMs. He et al. (2019) used a shared
BiLSTM to deal with all the criteria by adding two
artificial tokens at the beginning and end of an input
sentence to specify the target criterion. However,
due to the long-range dependency problem, BiL-
STM is hard to carry the criterion information to
each character in a long sentence.

In this work, we propose a concise unified model
for MCCWS task by integrating shared knowledge
from multiple segmentation criteria. Inspired by
the success of the Transformer (Vaswani et al.,
2017), we design a fully shared architecture for
MCCWS, where a shared Transformer encoder is
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Figure 1: Unified model for MCCWS. “[-]” is a spe-
cial token indicating the output criterion. The label
{B, M, E, S} of each character indicates it is the begin,
middle, end of a word, or a word with single character.

used to extract the criteria-aware contextual fea-
tures, and a shared decoder is used to predict the
criteria-specific labels. An artificial token is added
at the beginning of the input sentence to deter-
mine the output criterion. The similar idea is also
used in the field of machine translation, Johnson
et al. (2017) used a single model to translate be-
tween multiple languages. Figure 1 illustrates our
model. There are two reasons to use the Trans-
former encoder for MCCWS. The primary reason
is its neatness and ingenious simplicity to model
the criterion-aware context representation for each
character. Since the Transformer encoder uses self-
attention mechanism to capture the interaction each
two tokens in a sentence, each character can im-
mediately perceive the information of the criterion-
token as well as the context information. The sec-
ondary reason is that the Transformer encoder has
potential advantages in capturing the long-range
context information and having a better parallel
efficiency than the popular LSTM-based encoders.
Finally, we exploit the eight segmentation criteria
on the five simplified Chinese and three traditional
Chinese corpora. Experiments show that the pro-
posed model is effective in improving the perfor-
mance of MCCWS.

The contributions of this paper could be summa-
rized as follows.

* We proposed a concise unified model for MC-
CWS based on Transformer encoder, which
adopts a single fully-shared model to segment
sentences with a given target criterion. It is
attractive in practice to use a single model to
produce multiple outputs with different crite-
ria.

* By a thorough investigation, we show the fea-
sibility of using a unified CWS model to seg-
ment both simplified and traditional Chinese
(see Sec. 4.3). We think it is a promising
direction for CWS to exploit the collective
knowledge of these two kinds of Chinese.

* The learned criterion embeddings reflect the
relations between different criteria, which
make our model have better transfer capability
to a new criterion (see Sec. 4.4) just by find-
ing a new criterion embedding in the latent
semantic space.

e It is a first attempt to train the Transformer
encoder from scratch for CWS task. Although
we mainly address its conciseness and suit-
ability for MCCWS in this paper and do not
intend to optimize a specific Transformer en-
coder for the single-criterion CWS (SCCWS),
we prove that the Transformer encoder is also
valid for SCCWS. The potential advantages
of the Transformer encoder are that it can ef-
fectively extract the long-range interactions
among characters and has a better parallel abil-
ity than LSTM-based encoders.

2 Background

In this section, we first briefly describe the back-
ground knowledge of our work.

2.1 Neural Architecture for CWS

Usually, CWS task could be viewed as a character-
based sequence labeling problem. Specifically,
each character in a sentence X = {z1,...,z7} is
labelled as one of y € £ = {B, M, E, S}, indicat-
ing the begin, middle, end of a word, or a word with
single character. The aim of CWS task is to figure
out the ground truth of labels Y* = {y},...,y}}:

Y* = argmax p(Y|X). (1)
YecT

Recently, various neural models have been
widely used in CWS and can effectively reduce
the efforts of feature engineering. The modern ar-
chitecture of neural CWS usually consists of three
components:

Embedding Layer: In neural models, the first
step is to map discrete language symbols into dis-
tributed embedding space. Formally, each char-
acter z; is mapped as e;, € R4, where d, is a
hyper-parameter indicating the size of character
embedding.
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Figure 2: Architectures of SCCWS and MCCWS. The shaded components are shared for different criteria.

Encoding Layer: The encoding layer is to ex-
tract the contextual features for each character.

For example, a prevalent choice for the encod-
ing layer is the bi-directional LSTM (BiLSTM)
(Hochreiter and Schmidhuber, 1997), which could
incorporate information from both sides of se-
quence.

%
h, = BiLSTM(eq,, Be—1, hos,0), )

where ﬁt and %t are the hidden states at step ¢ of
the forward and backward LSTMs respectively, 6.
denotes all the parameters in the BiLSTM layer.

Besides BiLSTM, CNN is also alternatively used
to extract features.

Decoding Layer: The extracted features are
then sent to conditional random fields (CRF) (Laf-
ferty et al., 2001) layer or multi-layer perceptron
(MLP) for tag inference.

When using CRF as decoding layer, p(Y|X) in
Eq (1) could be formalized as:

(Y|X)

PV = = TRy

©))

where U(Y'|X) is the potential function. In first
order linear chain CRF, we have:

\IJ(Y|X) = Hw(thaytflayt)v (4)
t=2

¢(X7 t) y/7 y) = exp(é(Xv t)y + by’y)v (5)

where b/, € R is trainable parameters respective
to label pair (y/, %), score function §(X, t) € RI#|
calculates scores of each label for tagging the ¢-th
character:

§(X,t) = W4 h; + by, (6)

where h; is the hidden state of encoder at step
t, W5 € R%>ILl and by € RIZI are trainable
parameters.

When using MLP as decoding layer, p(Y|X) in
Eq (1) is directly predicted by a MLP with softmax
function as output layer.

p(yf|X) = MLP(htvgd)v vt € [LT] @)

where 6, denotes all the parameters in MLP layer.

Most current state-of-the-art CWS models (Chen
et al., 2015a; Xu and Sun, 2016; Liu et al., 2016;
Yang et al., 2018; Qun et al., 2020) mainly focus on
single-criterion CWS (SCCWS). Figure 2a shows
the architecture of SCCWS.

2.2 MCCWS with Multi-Task Learning

To improve the performance of CWS by exploiting
multiple heterogeneous criteria corpora, Chen et al.
(2017) utilize the multi-task learning framework to
model the shared information among these different
criteria.

Formally, assuming that there are M corpora
with heterogeneous segmentation criteria, we refer
D, as corpus m with N, samples:

D = {(X™, V™)), ®)
where X{™ and Y,\"™ denote the n-th sentence and
the corresponding label in corpus m respectively.

The encoding layer introduces a shared encoder
to mine the common knowledge across multiple
corpora, together with the original private encoder.
The architecture of MTL-based MCCWS is shown
in Figure 2b.

Concretely, for corpus m, a shared encoder and a
private encoder are first used to extract the criterion-
agnostic and criterion-specific features.

HO) :encs(eX;Ggs)),
H™) :encm(ex;e(m)), Vm € [1, M]

€

(©))
(10)

where ex = {e;,, -+, e, } denotes the embed-
dings of the input characters x1, - - - , 7, encg(-)
represents the shared encoder and enc,,(+) repre-

sents the private encoder for corpus m; 9&5) and

2889



Qt(gm) are the shared and private parameters respec-

tively. The shared and private encoders are usually
implemented by the RNN or CNN network.

Then a private decoder is used to predict
criterion-specific labels. For the m-th corpus, the
probability of output labels is

pm(Y|X) = dec,, (H®; HO); 057, (11)

where dec,,(+) is a private CRF or MLP decoder
for corpus m(m € [1, M]), taking the shared and

private features as inputs; Oém) is the parameters of
the m-th private decoder.

Objective The objective is to maximize the log
likelihood of true labels on all the corpora:

M Ny,

Toeg(©™,0°) = 3" > " logpm (V™| X ™07, 0%,
m=1n=1

12)

where O™ = {Hém), QC(lm)} and ©° = {E, 9&8)} de-
note all the private and shared parameters respec-
tively; E is the embedding matrix.

3 Proposed Unified Model

In this work, we propose a more concise architec-
ture for MCCWS, which adopts the Transformer
encoder (Vaswani et al., 2017) to extract the con-
textual features for each input character. In our pro-
posed architecture, both the encoder and decoder
are shared by all the criteria. The only difference
for each criterion is that a unique token is taken as
input to specify the target criterion, which makes
the shared encoder to capture the criterion-aware
representation. Figure 2 illustrates the difference
between our proposed model and the previous mod-
els. A more detailed architecture for MCCWS is
shown in Figure 3.

3.1 Embedding Layer

Given a sentence X = {x1,..., 2z}, we first map
it into a vector sequence where each token is a
dmoder dimensional vector. Besides the standard
character embedding, we introduce three extra em-
beddings: criterion embedding, bigram embedding,
and position embedding.

1) Criterion Embedding: Firstly, we add a
unique criterion-token at the beginning of X to
indicate the output criterion. For the m-th criterion,
the criterion-token is [m]. We use e, to denote its
embedding. Thus, the model can learn the relations

Y1 Y2 Y3 Ya
t ) t t

Output

[ CRF/MLP ] Decoder
| | | |
| | | |
ho hy h, hs hy
Transformer Encoder Encoder
hg h, h, hs hy
1 1 ) 1 1
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Figure 3: Proposed Model for MCCWS.

between different criteria in the latent embedding
space.

2) Bigram Embedding: Based on (Chen et al.,
2015b; Shao et al., 2017; Zhang et al., 2018), the
character-level bigram features can significantly
benefit the task of CWS. Following their settings,
we also introduce the bigram embedding to aug-
ment the character-level unigram embedding. The
representation of character x; is

/

€ = Fc(ezt Dey 2 D e$z$t+1)7

(13)
where e denotes the d-dimensional embedding vec-
tor for the unigram and bigram, & is the con-
catenation operator, and FC is a fully connected
layer to map the concatenated character embed-
ding with the dimension 3d into the embedding
e/a:t € R%modet

3) Position Embedding: To capture the order
information of a sequence, a position embedding
PFE is used for each position. The position embed-
ding can be learnable parameters or predefined. In
this work, we use the predefined position embed-
ding following (Vaswani et al., 2017). For the ¢-th
character in a sentence, its position embedding is
defined by

PE; 5; = sin(t/10000%"/ dmodet ),
PE; ;41 = cos(t/10000%"/ dmodet )

(14)
15)

where 7 denotes the dimensional index of position
embedding.

Finally, the embedding matrix of the sequence
X = {z1,- -, zp} with criterion m is formulated
as

H = [e(,,) + PEo; e}, + PEi;--- ey, + PEr], (16)

where H € R(T*TDXdmoder (T 4 1) and dpoqer
represent the length and the dimension of the input
vector sequence.
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3.2 Encoding Layer

In sequence modeling, RNN and CNN often suf-
fer from the long-term dependency problem and
cannot effectively extract the non-local interac-
tions in a sentence. Recently, the fully-connected
self-attention architecture, such as Transformer
(Vaswani et al., 2017), achieves great success in
many NLP tasks.

In this work, we adopt the Transformer encoder
as our encoding layer, in which several multi-head
self-attention layers are used to extract the contex-
tual feature for each character.

Given a sequence of vectors H €
RT+DXdmoder g single-head self-attention
projects H into three different matrices: the
query matrix @ € RT+Dxdk - the key ma-
trix K € RI*+DXdk apd the value matrix
V e RI*Dxdv and uses scaled dot-product
attention to get the output representation.

Q,K,V=HWY gwE gwV
T

Attn(Q, K, V) = softmax(cf/i;)V,
k

where the matrices W@ € R¥mederxdr 7K ¢
Rémoderxdr 7V ¢ RémodetXdv are Jearnable pa-
rameters and softmax(-) is performed row-wise.

The Transformer encoder consists of several
stacked multi-head self-attention layers and fully-
connected layers. Assuming the input of the multi-
head self-attention layer is H, its output H is cal-
culated by

(17)

(18)

7 =layer-norm (H n MultiHead(H)), (19)

i :layer—norm<Z + FFN(Z)), (20)
where layer-norm(-) represents the layer normal-
ization (Ba et al., 2016) .

All the tasks with the different criteria use the
same encoder. Nevertheless, with the different
criterion-token [m], the encoder can effectively ex-
tract the criterion-aware representation for each
character.

3.3 Decoding Layer

In the standard multi-task learning framework, each
task has its private decoder to predict the task-
specific labels. Different from the previous work,
we use a shared decoder for all the tasks since we
have extracted the criterion-aware representation
for each character. In this work, we use CRF as the

decoder since it is slightly better than MLP (see
Sec. 4.2).

With the fully-shared encoder and decoder, our
model is more concise than the shared-private ar-
chitectures (Chen et al., 2017; Huang et al., 2019).

4 Experiments

Datasets We use eight CWS datasets from
SIGHAN2005 (Emerson, 2005) and SIGHAN2008
(Jin and Chen, 2008). Among them, the AS,
CITYU, and CKIP datasets are in traditional Chi-
nese, while the MSRA, PKU, CTB, NCC, and
SXU datasets are in simplified Chinese. Except
where otherwise stated, we follow the setting of
(Chen et al., 2017; Gong et al., 2018), and translate
the AS, CITYU and CKIP datasets into simplified
Chinese. We do not balance the datasets and ran-
domly pick 10% examples from the training set
as the development set for all datasets. Similar to
the previous work (Chen et al., 2017), we prepro-
cess all the datasets by replacing the continuous
Latin characters and digits with a unique token,
and converting all digits, punctuation and Latin let-
ters to half-width to deal with the full/half-width
mismatch between training and test set.

We have checked the annotation schemes of dif-
ferent datasets, which are just partially shared and
no two datasets have the same scheme. According
to our statistic, the averaged overlap is about 20.5%
for 3-gram and 4.4% for 5-gram.

Table 2 gives the details of the eight datasets
after preprocessing. For training and development
sets, lines are split into shorter sentences or clauses
by punctuations, in order to make a faster batch.

Pre-trained Embedding Based on on (Chen
et al., 2015b; Shao et al., 2017; Zhang et al., 2018),
n-gram features are of great benefit to Chinese
word segmentation and POS tagging tasks. Thus
we use unigram and bigram embeddings for our
models. We first pre-train unigram and bigram
embeddings on Chinese Wikipedia corpus by the
method proposed in (Ling et al., 2015), which im-
proves standard word2vec by incorporating token
order information.

Hyper-parameters We use Adam opti-
mizer (Kingma and Ba, 2014) with the same
warmup strategy as (Vaswani et al., 2017). The
development set is used for parameter tuning. All
the models are trained for 100 epochs. Pre-trained
embeddings are fixed for the first 80 epochs and
then updated during the following epochs. After
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Table 2: Details of the eight datasets after preprocessing. “Word Types” represents the number of unique word.
“Char Types” is the number of unique characters. “OOV Rate” is Out-Of-Vobulary rate.

Corpora Words#  Chars#  Word Types  Char Types ooV
Train 2.4M 4.0M 75.4K 5.1K
MSRA Test 0.1M 0.2M 11.9K 28K  1.32%
Train 5.4M 8.3M 128.8K 5.8K
3 AS Test 0.IM  02M 18.0K 34K 2.20%
<
=y Train 1.IM 1.8M 51.2K 4.6K
» PKU Test 0.1M 0.2M 12.5K 29K 2.06%
Train 1.IM 1.8M 43.4K 42K
CITYU  Test 0.2M 0.4M 23.2K 3.6K  3.69%
Train 0.6M 1.0M 40.5K 42K
CTB Test 0.1IM 0.IM 11.9K 29K  3.80%
Train 0.7M 1.1IM 44.7K 45K
§ CKIP Test 0.IM 0.1IM 14.2K 31K 4.29%
< Train ~ 09M  1.4M 53.3K 53K
) NCC Test 0.2M 0.2M 20.9K 39K 3.31%
Train 0.5M 0.8M 29.8K 4.1K
SXU Test 0.1M 0.2M 11.6K 28K  2.60%
Embedding Size d 100 In the multi-criteria scenario, we compare our
;hddefn State ESlze élmidez 226 unified model with the BILSTM (Chen et al., 2017)
ransrormer cncoder Layers .
Attention Heads Y 4 and Switch-LSTMs (Gong et al., 2018). The lower
Batch Size 256 block of Table 4 displays the contrast. Firstly, al-
Dropout Ratio 0.2 : e :
Warmup Steps 4000 though different criteria are trained together, our

Table 3: Hyper-Parameter Settings

each training epoch, we test the model on the dev
set, and models with the highest F'1 in the dev set
are used in the test set. Table 3 shows the detailed

hyperparameters.

4.1 Overall Results

Table 4 shows the experiment results of the pro-
posed model on test sets of eight CWS datasets.
We first compare our Transformer encoder with

the previous models in the single-criterion sce-
nario. The comparison is presented in the upper
block of Table 4. Since Switch-LSTMs (Gong
et al., 2018) is designed form MCCWS, it is just
slight better than BiLSTM in single-criterion sce-
nario. Compared to the LSTM-based encoders, the
Transformer encoder brings a noticeable improve-
ment compared to (Chen et al., 2017; Gong et al.,
2018), and gives a comparable performance to (Ma
et al., 2018). In this work, we do not intend to
prove the superiority of the Transformer encoder
over LSTM-based encoders in the single-criterion
scenario. Our purpose is to build a concise unified
model based on Transformer encoder for MCCWS.

unified model achieves better performance besides
CTB. Compared to the single-criterion scenario,
0.42 gain in average F'l score is obtained by
the multi-criteria scenario. Moreover, our unified
model brings a significant improvement of 5.05
in OOV recall. Secondly, compared to previous
MCCWS models, our unified model also achieves
better average F'1 score. Especially, our unified
model significantly outperforms the unified BiL-
STM (He et al., 2019), which indicates the Trans-
former encoder is more effective in carrying the
criterion information than BiLSTM. The reason
is that the Transformer encoder can model the in-
teraction of the criterion-token and each character
directly, while BILSTM needs to carry the crite-
rion information step-by-step from the two ends
to the middle of the input sentence. The criterion
information could be lost for the long sentences.

There are about 200 sentences are shared by
more than one datasets with different segmentation
schemes, but it is not much harder to correctly
segment them. Their F1 score is 96.84.

Figure 4 visualizes the 2D PCA projection of the
learned embeddings of eight different criteria. Gen-
erally, the eight criteria are mapped into dispersed
points in the embedding space, which indicates
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Models MSRA AS PKU CTB CKIP CITYU NCC SXU Avg.
Single-Criterion Models

Stacked BiLSTM (Maetal., 2018) F 974 962 96.1 96.7 - 97.2 - - -
BiLSTM (Chen et al., 2017) F 95.84 942 933 953 93.06 94.07 92.17 95.17 94.14
Switch-LSTMs (Gong et al., 2018)  F 96.46 94.51 9574 97.09 92.88 93.71 92.12 9557 94.76
Transformer Encoder F 98.07 96.06 96.39 96.41 95.66 9632 95.57 97.08 96.45
Transformer Encoder OOV 7375 73.05 72.82 82.82 79.05 8372 71.81 7795 76.87
Multi-Criteria Models

BiLSTM (Chen et al., 2017) F 96.04 94.64 9432 96.18 9426 95.55 92.83 96.04 94.98
Switch-LSTMs (Gong et al., 2018)  F 97.78 9522 96.15 97.26 9499 96.22 94.12 97.25 96.12
Unified BiLSTM (He et al., 2019) F 972 954 96.0 96.7 - 96.1 - 96.4 -
Our Unified Model F 98.05 96.44 96.41 9699 96.51 9691 96.04 97.61 96.87
Our Unified Model OOV 7892 7639 7891 87 8289 8691 793 85.08 81.92

Table 4: Overall results on eight CWS datasets. F and OOV indicate the F'1 score and OOV recall, respectively.
The upper block consists of single-criterion models. Since Stacked BiLSTM (Ma et al., 2018) is a strong SOTA
model, the other comparable CWS models are omitted for brevity. The lower block consists of multi-criteria

models.

Models MSRA AS PKU CTB CKIP CITYU NCC SXU Avg.
Unified Model 98.05 96.44 9641 96.99 96.51 9691  96.04 97.61 96.87
w/o CRF 98.02 96.42 9641 969 9659 9687 9596 975 96.83
w/o bigram 97.41 96 96.25 96.71 96 96.31 94.62 96.84 96.27
w/o pre-trained emb. 9751  96.06 96.02 9647 9622 9599 9482 96.76 96.23

Table 5: Ablation experiments.

that each criterion is different from others. Among
them, MSRA is obviously different from others. A
possible reason is that the named entity is regarded
as a whole word in the MSRA criterion, which is
significantly distinguishing with other criteria.

. o AS
10 . MSRA
e PKU
e NCC
5 « CITYU
e CKIP
CTB
0 . SXU
.
—5 &
-10 °
-15 -10 -5 0 5 10 15

Figure 4: Visualization of the criterion embeddings.

4.2 Ablation Study

Table 5 shows the effectiveness of each component
in our model.

The first ablation study is to verify the effective-
ness of the CRF decoder, which is popular in most
CWS models. The comparison between the first
two lines indicates that with or without CRF does
not make much difference. Since a model with
CRF takes a longer time to train and inference, we
suggest not to use CRF in Transformer encoder
models in practice.

The other two ablation studies are to evaluate
the effect of the bigram feature and pre-trained
embeddings. We can see that their effects vary in
different datasets. Some datasets are more sensitive
to the bigram feature, while others are more sensi-
tive to pre-trained embeddings. In terms of average
performance, the bigram feature and pre-trained
embeddings are important and boost the perfor-
mance considerably, but these two components do
not have a clear winner.

4.3 Joint Training on both simplified and
Traditional Corpora

In the above experiments, the traditional Chinese
corpora (AS, CITYU, and CKIP) are translated into
simplified Chinese. However, it might be more at-
tractive to jointly train a unified model directly on
the mixed corpora of simplified and traditional Chi-
nese without translation. As a reference, the single
model has been used to translate between multi-
ple languages in the field of machine translation
(Johnson et al., 2017).

To thoroughly investigate the feasibility of this
idea, we study four different settings to train our
model on simplified and traditional Chinese cor-
pora.

1. The first setting (“8Simp”) is to translate all
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Models MSRA AS PKU CTB CKIP CITYU NCC SXU Avg. Fl
8Simp 98.05 96.44 9641 96.99 9651 9691 96.04 97.61 96.87
8Trad 97.98 96.39 9649 96.99 9649 96.86 9598 9748  96.83

5Simp, 3Trad  98.03  96.52 96.6 96.94 96.38 96.8 96.02 9755 96.86
8 Simp, 8 Trad  98.04 96.41 96.43 96.99 96.54 96.85 96.08 9752 96.86

Table 6: Joint training on both the simplified and traditional Chinese corpus.

3 F (apple) HEF: (apple) Elf(hobby)  if(hobby)  FH.L:(worry) L (worry)
X5 (nut) T3 (Microsoft) Z(love) E15% (love) XiLx(care) /0> (care)

A (Google) # Hi(butter) M (interest) ZHF(hobby)  F%E(doubt) JEH € (misgiving)
£ (Huawei)  FiE(goods in stock) Zlf(hobby)  Hlii(interest) JiifE (misgiving) [3%E(doubt)

¥ JHi (butter) S elly) BAE(dream) 2 fH(dream)  fH{l(concern)  #E%(concern)

B 5R (fresh fruit) FLH D) ZBr(Playful) #Di(playful) Bi{%(blame) 518 (anxiety)
B (Microsoft) & % (seller) Fik(addict)y =% (adore) 155.05(sad) & % (blame)
5L (Nokia) 35 (apple) Kilh(pleasure) i H(habbit)  HEFF(disfavour) 5/ (sad)

HEH (Apple) 1% (after-sales) HZ(adore)  “Eil(pleasure) [LfE(anxiety) Ly (worry)

the corpora into simplified Chinese. For the
pre-trained embeddings, we use the simplified
Chinese Wikipedia dump to pre-train the un-
igram and bigram embeddings. This way is
the same as the previous experiments.

. The second setting (“8Trad”) is to translate
all the corpora into traditional Chinese. For
the pre-trained embeddings, we first convert
the Wikipedia dump into traditional Chinese
characters, then we use this converted corpus
to pre-train unigram and bigram embeddings.

. The third setting (“S5Simp, 3Trad”) is to keep
the original characters for five simplified Chi-
nese corpora and three traditional Chinese cor-
pora without translation. The unified model
can take as input the simplified or traditional
Chinese sentences. In this way, we pre-train
the joint simplified and traditional Chinese
embeddings in a joint embedding space. We
merge the Wikipedia corpora used in “8Trad”
and “8Simp” to form a mixed corpus, which
contains both the simplified and traditional
Chinese characters. The unigram and bigram
embeddings are pre-trained on this mixed cor-
pus.

. The last setting (“8Simp, 8Trad”) is to si-
multaneously train our model on both the
eight simplified Chinese corpora in “8Simp’
and the eight traditional Chinese corpora in
“8Trad”. The pre-trained word embeddings
are the same as “5Simp, 3Trad”.

’

Table 6 shows that there does not exist too much

Table 7: Qualitative analysis for the joint embedding space of simplified and traditional Chinese. Given the target
bigram, we list its top 8 similar bigrams. The bigram with red color indicates it is traditional Chinese.

difference between different settings. This inves-
tigation indicates it is feasible to train a unified
model directly on two kinds of Chinese characters.

To better understand the quality of the learned
joint embedding space of the simplified and tradi-
tional Chinese, we conduct a qualitative analysis
to illustrate the most similar bigrams for a target
bigram. Similar bigrams are retrieved based on
the cosine similarity calculated using the learned
embeddings. As shown in Table 7, the traditional
Chinese bigrams are similar to their simplified Chi-
nese counterparts, and vice versa. The results show
that the simplified and traditional Chinese bigrams
are aligned well in the joint embedding space.

4.4 Transfer Capability

Since except for the criterion embedding, the other
parts of the unified model are the same for differ-
ent criteria, we want to exploit whether a trained
unified model can be transferred to a new criterion
only by learning a new criterion embedding with
few examples.

We use the leave-one-out strategy to evaluate the
transfer capability of our unified model. We first
train a model on seven datasets, then only learn
the new criterion embedding with a few training
instances from the left dataset. This scenario is
also discussed in (Gong et al., 2018), and Figure
5 presents their and our outcomes (averaged F'1
score). There are two observations: Firstly, for the
different number of samples, the transferred model
always largely outperforms the models learned
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Figure 5: Evaluation of the transfer capability. Switch-
LSTMs and Ours are models trained on the given
instances from scratch. Switch-LSTMs(#7%"5) and
Ours(*7*"%) are models learned in transfer fashion.

from scratch. We believe this indicates that learn-
ing a new criterion embedding is an effective way
to transfer a trained unified model to a new crite-
rion. Secondly, our model also has superior trans-
ferability than Switch-LSTMs (Ours(*"%"5) yersus
Switch-LSTMs(trans)).

5 Related Work

The previous work on the MCCWS can be catego-
rized into two lines.

One line is multi-task based MCCWS. Chen et al.
(2017) proposed a multi-criteria learning frame-
work for CWS, which uses a shared layer to extract
the common underlying features and a private layer
for each criterion to extract criteria-specific fea-
tures. Huang et al. (2019) proposed a domain adap-
tive segmenter to capture diverse criteria based on
Bidirectional Encoder Representations from Trans-
former (BERT) (Devlin et al., 2018).

Another line is unified MCCWS. Gong et al.
(2018) presented Switch-LSTMs to segment sen-
tences, which consists of several LSTM layers,
and uses a criterion switcher at every position to
change the routing among these LSTMs automati-
cally. However, the complexity of the model makes
Switch-LSTMs hard to be applied in practice. He
et al. (2019) used a shared BiLSTM by adding two
artificial tokens at the beginning and end of an input
sentence to specify the output criterion. However,
due to the long-range dependency problem, BiL-
STM is hard to carry the criterion information to
each character in a long sentence.

Compared to the above two unified models, we
use the Transformer encoder in our unified model,

which can elegantly model the criterion-aware con-
text representation for each character. With the
Transformer, we just need a special criterion-token
to specify the output criterion. Each character can
directly attend the criterion-token to be aware of the
target criterion. Thus, we can use a single model
to produce different segmented results for differ-
ent criteria. Different from (Huang et al., 2019),
which uses the pre-trained Transformer BERT and
several extra projection layers for different criteria,
our model is a fully-shared and more concise.

6 Conclusion and Future Work

We propose a concise unified model for MCCWS,
which uses the Transformer encoder to extract
the criterion-aware representation according to a
unique criterion-token. Experiments on eight cor-
pora show that our proposed model outperforms
the previous models and has a stronger transfer ca-
pability. The conciseness of our model makes it
easy to be applied in practice.

In this work, we only adopt the vanilla Trans-
former encoder since we just want to utilize its self-
attention mechanism to model the criterion-aware
context representation for each character neatly.
Therefore, it is promising for future work to look
for the more effective adapted Transformer encoder
for CWS task or to utilize the pre-trained models
(Qiu et al., 2020), such as BERT-based MCCWS
(Ke et al., 2020). Besides, we are also planning
to incorporate other sequence labeling tasks into
the unified model, such as POS tagging and named
entity recognition.
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