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Abstract

This paper introduces BD2BB, a novel lan-
guage and vision benchmark that requires mul-
timodal models combine complementary infor-
mation from the two modalities. Recently, im-
pressive progress has been made to develop
universal multimodal encoders suitable for vir-
tually any language and vision tasks. However,
current approaches often require them to com-
bine redundant information provided by lan-
guage and vision. Inspired by real-life com-
municative contexts, we propose a novel task
where either modality is necessary but not suf-
ficient to make a correct prediction. To do
so, we first build a dataset of images and cor-
responding sentences provided by human par-
ticipants. Second, we evaluate state-of-the-art
models and compare their performance against
human speakers. We show that, while the task
is relatively easy for humans, best-performing
models struggle to achieve similar results.

1 Introduction

Human communication, in real-life situations, is
multimodal (Kress, 2010): To convey and under-
stand a message uttered in natural language, people
build on what is present in the multimodal con-
text surrounding them. As such, speakers do not
need to “repeat” something that is already provided
by the environment; similarly, listeners leverage
information from various modalities, such as vi-
sion, to interpret the linguistic message. Integrat-
ing information from multiple modalities is indeed
crucial for attention and perception (Partan and
Marler, 1999) since combined information from
concurrent modalities can give rise to different mes-
sages (McGurk and MacDonald, 1976).

The argument that language and vision convey
different, possibly complementary aspects of mean-
ing has been largely made to motivate the need for
multimodal semantic representations of words (Ba-

roni, 2016; Beinborn et al., 2018). However, com-
putational approaches to language and vision typi-
cally do not fully explore this complementarity. To
illustrate, given an image (e.g., the one depicted
in Figure 1), popular tasks involve describing it in
natural language, e.g., “A tennis player about to
hit the ball” (Image Captioning; see Bernardi et al.,
2016); answering questions that are grounded in
it, e.g., Q: “What sport is he playing?”, A: “Ten-
nis” (Visual Question Answering; see Antol et al.,
2015); having a dialogue on its entities, e.g., Q: “Is
the person holding a racket?”, A: “Yes.” (visually-
grounded dialogue; see De Vries et al., 2017; Das
et al., 2017). While all these tasks challenge mod-
els to perform visual grounding, i.e., an effective
alignment of language and vision, none of them
require a genuine combination of complementary
information provided by the two modalities. All the
information is fully available in the visual scene,
and language is used to describe or retrieve it.

In this work, we propose a novel benchmark, Be
Different to Be Better (in short, BD2BB), where
the different, complementary information provided
by the two modalities should push models develop
a better, richer multimodal representation. As il-
lustrated in Figure 1, models are asked to choose,
among a set of candidate actions, the one a per-
son who sees the visual context depicted by the
image would do based on a certain intention (i.e.,
their goal, attitude or feeling). Crucially, the re-
sulting multimodal input (the sum of the image
and the intention) will be richer compared to that
conveyed by either modality in isolation; in fact,
the two modalities convey complementary or non-
redundant information (Partan and Marler, 1999).

To illustrate, a model that only relies on the (non-
grounded) linguistic information conveyed by the
intention, i.e., “If I have tons of energy”, might
consider as equally plausible any actions that have
to do with playing a sport, e.g., “I will play base-
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Ζ Zill Sla\ baVeball ZiWh Whe men
Ζ Zill Sla\ a game of WeQQiV ZiWh Whe PaQ
Ζ Zill compare imageV of me hiWWing Whe WeQQiV ball
Ζ Zill Sla\ baVeball ZiWh Whe Zomen
Ζ Zill applaXd m\ faYoXriWe WeQQiV Sla\eU of all Wime

Δf Δ haYe WonV of eneUg\

ΖMAGE

ΖNTENTΖON

CANDΖDATE ACTΖONS

Figure 1: One real sample of our proposed task. Given an image depicting, e.g., a tennis player during a match
and the intention “If I have tons of energy”, the task involves choosing, from a list of 5 candidate actions, the
target action that unequivocally applies to the combined multimodal input: “I will play a game of tennis with the
man”. The task is challening: a model exploiting a language or vision bias could fall into the trap of decoy actions
containing words highlighted in blue or orange, respectively. Therefore, selecting the target action requires models
perform a genuine integration of the two modalities, whose information is complementary. Best viewed in color.

ball with the men” or “I will play a game of tennis
with the man”. Similarly, a model that only relies
on the visual information conveyed by the image—
a tennis player during a match—might consider as
equally plausible any actions that have to do with
‘tennis’ and/or ‘player’, e.g., “I will applaud my
favourite tennis player of all time” or “I will play a
game of tennis with the man”. In contrast, a model
that genuinely combines information conveyed by
both modalities should be able to select the target
action, namely the only one that is both consistent
with the intention and grounded in the image, i.e.,

“I will play a game of tennis with the man”. More-
over, similarly to real-life communicative scenarios,
in our approach different language inputs modulate
differently the same visual context, and this gives
rise to various multimodal messages. To illustrate,
if the image in Figure 1 is paired with the intention

“If I am tired watching”, the target action “I will
play a game of tennis with the man” is no longer
valid. Indeed, the target action in this context is “I
will leave the tennis court” (see Figure 3).

Our work has the following key contributions:

• We introduce a novel multimodal benchmark:
the set of∼ 10K 〈image, intention, action〉
datapoints collected via crowdsourcing and
enriched with meta-annotation; the multiple
choice task, BD2BB, which requires proper in-
tegration of language and vision and is specif-
ically aimed at testing SoA pretrained multi-
modal models. The benchmark, together with
the code and trained models, is available at:
https://sites.google.com/view/bd2bb

• We test various models (including the SoA
multimodal, transformer-based LXMERT;
Tan and Bansal, 2019) and show that, while
BD2BB is a relatively easy task for humans (∼
80% acc.), best systems struggle to achieve a
similar performance (∼ 60% acc.).

• We extensively analyze the results and show
the advantage of exploiting multimodal pre-
trained representations. This confirms they
are effective, but not enough to solve the task.

2 Related Work

Since the introduction of the earliest multimodal
tasks, such as Image Captioning (IC; see Bernardi
et al., 2016) and Visual Question Answering (VQA;
Antol et al., 2015), a plethora of tasks dealing with
language and vision have been proposed. In paral-
lel, baseline models have been replaced by more
powerful attention-based systems (Anderson et al.,
2018) and, more recently, by transformer-based
architectures pretrained on several tasks (Tan and
Bansal, 2019; Lu et al., 2019; Chen et al., 2019).
These latter models build on multimodal represen-
tations that are meant to be task-agnostic; as such,
they can be transferred to virtually any other mul-
timodal task with minimal fine-tuning. Our work
contribute to these two lines of research by (1)
introducing a novel multimodal task, and (2) by
evaluating a SoA multimodal encoder on it.

Multimodal tasks VQA was originally pro-
posed to overcome the challenge of quantitatively
evaluate IC models. The task (and its evaluation)

https://sites.google.com/view/bd2bb
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is straightforward: given an image and a question
about its visible objects, systems have to provide
the correct answer by aligning information from
the two modalities (Antol et al., 2015). Driven by
VQA, several datasets have been proposed to min-
imize the bias observed in natural images (Goyal
et al., 2017; Ray et al., 2019); to force models
to “reason” over a joint visual and linguistic in-
put (Johnson et al., 2017; Suhr et al., 2019); to deal
with objects’ attributes and relations (Krishna et al.,
2017); to encompass more diverse (Zhu et al., 2016)
and goal-oriented questions and answers (Gurari
et al., 2018). At the same time, some work pro-
posed higher-level evaluations of VQA models
and showed their limitations (Hodosh and Hocken-
maier, 2016; Shekhar et al., 2017); similarly, recent
attention has been paid to understand what makes
a question “difficult” for a model (Bhattacharya
et al., 2019; Terao et al., 2020). Despite impressive
progress, current approaches to VQA do not tackle
one crucial limitation of the task: the answer to a
question is given by the alignment of language and
vision rather than their complementary integration.

Moving from objects to actions, several tasks
have been proposed to mimic more realistic set-
tings where a higher degree of integration be-
tween modalities is required. One is visual sto-
rytelling (Huang et al., 2016; Gonzalez-Rico and
Pineda, 2018; Lukin et al., 2018), where models
have to understand the action depicted in each
photo and their relations to generate a story. Sim-
ilar abilities are required in the task of generating
non-grounded, human-like questions about an im-
age (Mostafazadeh et al., 2016; Jain et al., 2017),
and in that of asking discriminative questions over
pairs of similar scenes (Li et al., 2017). Related
tasks are also those of predicting motivations of
visually-grounded actions (Vondrick et al., 2016)
or generating explanations for a given answer (Park
et al., 2018; Hendricks et al., 2018).

An even higher level of understanding of vi-
sion and language is required in the tasks of fill-
ing the blank with the correct answer (Yu et al.,
2015); answering questions from videos and sub-
titles (Lei et al., 2018); having a dialogue on ob-
jects (De Vries et al., 2017; Das et al., 2017) or
events (Mostafazadeh et al., 2017); answering and
justifying commonsense questions (Zellers et al.,
2019). However, all these tasks require making
commonsense inferences over the two modalities
rather than integrating their complementary infor-

mation to answer a grounded question.
More akin to ours are the approaches by Iyyer

et al. (2017), which aims to predict the subsequent
scene and dialogue in a comic strip, and Kruk et al.
(2019), where the goal is to compute the commu-
nicative intent of a social media post. Though
they both require a challenging integration of lan-
guage and vision, these tasks (as well as the type of
data they use) are crucially different from BD2BB,
where the task is to predict the action that is conse-
quent to a given intention based on the image.

Transformer-based multimodal models Devel-
oping universal multimodal encoders whose pre-
trained representations are suitable for virtually any
multimodal task is a crucial challenge. Inspired
by the success of BERT, a pretrained transformer-
based language encoder (Devlin et al., 2019), simi-
lar architectures have been recently proposed in the
domain of language and vision (Lu et al., 2019;
Tan and Bansal, 2019; Chen et al., 2019; Su et al.,
2020; amd Nan Duan et al., 2020). While these
architectures achieve state-of-the-art performance
in many tasks, their novelty and complexity leave
several questions open, and further work is needed
to better understand, e.g., which layers are more
suitable for transferability (Tamkin et al., 2020), or
what is the relation between pretraining and down-
stream tasks (Zamir et al., 2018; Singh et al., 2020).
Moreover, to prove they are readily applicable to
novel multimodal benchmarks, pretrained univer-
sal encoders should be ideally effective with only
minimal fine-tuning on the target tasks.

In this light, we believe that more efforts should
be put in developing datasets that are challenging
and yet relatively small, in line with the ‘diagnostic’
datasets proposed for VQA (Johnson et al., 2017)
and the easy vs. hard subsets introduced by Akula
et al. (2020) for visual referring expression recogni-
tion. Our contribution follows this line of thought.

3 Data

In this section, we describe how we collected inten-
tions and actions through crowdsourcing, and the
subsequent phase of data meta-annotation. Consis-
tently with our purposes, we needed images that
elicit goals and feelings (the intentions) in the an-
notators, as well as consequent actions. To this end,
we used the partition of the MS-COCO dataset (Lin
et al., 2014) provided by Vondrick et al. (2016),1

1http://visiond1.cs.umbc.edu/webpage/
codedata/intention/motivations_clean.zip

http://visiond1.cs.umbc.edu/webpage/codedata/intention/motivations_clean.zip
http://visiond1.cs.umbc.edu/webpage/codedata/intention/motivations_clean.zip
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Figure 2: Data collection. Examples of good (top) and bad (bottom) annotations provided to participants in the
task instructions. Errors and corresponding warnings are shown to make participants familiarize with the tool.

where each of the 10, 191 images depicts at least
one person. This choice was aimed to make the par-
ticipants’ task more natural: indeed, the presence
of people in the image allows more possibilities
of interaction, and therefore guarantees that some
actions can be performed in that situation.

3.1 Data Collection

We set up an annotation tool on Figure-Eight2 (see
Figure 2) where annotators were shown an image
and asked to imagine themselves being in that sit-
uation, as ideal observers not represented in the
picture. We instructed them to carefully look at
the image and think about 1) an intention, i.e., how
they might feel/behave if they were in that situa-
tion; 2) an action, i.e., what they would do based on
that feeling/behavior. Intentions and actions were
typed in free form by participants in two separate
text boxes; by instructions, their sentences had to
complete the provided opening words If I. . . and I
will. . . , respectively. To ensure that intentions con-
veyed information that was complementary (non-
redundant) to that by the image, participants were
instructed not to mention any of the entities (peo-
ple, objects, etc.) shown in the image. In contrast,
to ensure that actions contained information that
was grounded in the image, participants were asked
to mention at least one visible entity when writing
their action (see errors and warnings in Figure 2).3

We randomly selected ∼ 3.6K images from the
split by Vondrick et al. (2016) and, for each of them,
we collected on average 5 〈intention, action〉 tu-

2https://www.figure-eight.com/
3Further details on data collection and meta-annotation,

dataset and models are given in Appendix A.

 Δf Δ ZaQW WR be RQ a VSRWOighW

 Δf Δ ZaQW WR giYe eQcRXUagePeQW

 Δf Δ ZaQW WR PaNe P\ dUeaP cRPe WUXe

 Δf Δ haYe WRQV Rf eQeUg\

 Δf Δ geW WiUed Rf ZaWchiQg

1.

2.

3.

4.

5.

 Δ Zill VWa\ behiQd Whe SOa\eU

 Δ Zill aSSOaXd Whe SOa\eU

 Δ Zill haYe WR ZiQ Whe WeQQiV PaWch

 Δ Zill SOa\ a gaPe Rf WeQQiV ZiWh Whe PaQ

 Δ Zill OeaYe Whe WeQQiV cRXUW

1.

2.

3.

4.

5.

ΖNTENTΖONS ACTΖONS

Figure 3: Five 〈intention, action〉 tuples provided by
5 unique participants for the image in Figure 1.

ples by 5 participants. In total, ∼ 18K unique
〈image, intention, action〉 datapoints were col-
lected. Participants were recruited from native-
English countries only. Overall, 477 annotators
(based on the IP) took part in the data collection;
on average, each of them provided 38 annotations.
Participants were paid 0.04$ per tuple.4 In total,
the data collection costed ∼ 900$.

A few filtering steps were needed to get rid of
datapoints with invalid annotations. First, we dis-
carded those datapoints where intentions and/or ac-
tions were either not in English (e.g., bot-generated
Lorem Ipsum sequences) or nonsense strings (e.g.,
random sequences of characters). This step was
done semi-manually and filtered out ∼ 3K data-
points. Second, we removed datapoints where the
action did not contain any noun nor pronoun. After
this, we were left with 12, 457 valid datapoints.

To illustrate the type of data collected, Figure 3
reports the 5 〈intention, action〉 tuples provided
by 5 annotators for the image in Figure 1. As
can be noted, the same visual context elicits differ-
ent intentions, which in turn give rise to different
possible actions. Crucially, no intentions refer to

4This corresponds to a hourly wage of around 8$/hour.

https://www.figure-eight.com/
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anything that is visible in the image, which makes
them suitable for virtually any visual context. As
for the actions, in contrast, they all 1) mention at
least one entity that is grounded in the given scene,
e.g., “player” or “tennis court”, which makes them
plausible only for sports contexts, particularly ‘ten-
nis’; 2) match their corresponding intention, but not
(or to a much lesser extent) the others; i.e., differ-
ent intentions trigger different actions, and the verb
in the action is a proxy for such diversity. Below,
we describe the meta-annotation process we per-
formed to categorize each datapoint with respect
to: 1) the topic of its action, e.g., ‘tennis’; and 2)
the argument structure of the verbs in its action.

3.2 Meta-Annotation

Topic For each of the 12, 457 datapoints, we built
a 512-d semantic representation of its action using
the off-the-shelf Universal Sentence Encoder (USE;
Cer et al., 2018). We then run a k-means cluster-
ing algorithm over these vectors and obtained 60
topic clusters.5 By manual inspection, 54 clusters
were found to consistently group together actions
revolving on the same topic, e.g., ‘tennis’ or ‘birth-
day’, in a way that it was easy to label them us-
ing such terms. Since for the remaining 6 clusters
this was not straightforward due to the presence
of rather disconnected actions, we filtered these
clusters out. We further polished the 54 clusters
(a) by manually moving actions to clusters that fit
them better, and (b) by removing actions that were
not in line with the cluster topic. Moreover, we
removed actions that did not comply with the in-
structions provided to annotators during the data
collection. After these steps, we were left with
10, 287 〈image, intention, action〉 datapoints.

Argument structure Using the Stanford NLP
Parser (Chen and Manning, 2014), we annotated
the actions in each of the 10, 287 topic-categorized
datapoints by means of a 4-code annotation schema.
In particular, from each parsed action we extracted
its main verb (code1) and its direct or indirect ob-
ject (code2). Moreover, when present, the verb of
the coordinate or subordinated sentence was also
extracted (code3), as well as other nouns in any
complement position of the main or secondary verb
(code4).6 All the outputs by the parser were man-

5The best number of clusters was chosen based on the
Elbow method, which relies on cluster consistency.

6While verbs were lemmatized, we did not do so for nouns
due to the visual difference between, e.g., player and players.

ually checked and fixed where needed. Given the
action “I will swing the racket to hit the ball”, for
example, we thus obtained the following argument
structure annotation: 〈swing〉 (code1), 〈racket〉
(code2), 〈hit〉 (code3), 〈ball〉 (code4). As can be
seen, this simplified representation of the action
provides information on both its verbs (that are
consequent to the intention) and nouns (grounded
in the image). The 10, 287 annotated datapoints
were used to build the dataset for our task.

4 Task

We introduce the Be Different to Be Better (BD2BB)
task, where the different, i.e., complementary infor-
mation provided by the two modalities should push
models develop a better, i.e., richer multimodal rep-
resentation. To evaluate these abilities, we frame
our task as a multiple-choice problem (similar to
Antol et al., 2015; Yu et al., 2015; Zhu et al., 2016)
where either modality is necessary but not suffi-
cient to perform a correct prediction. The task is
the following (see Figure 1): given an image and a
corresponding intention, the model has to choose
the correct action over a set of 5 candidate actions.
We refer to the correct action as the target action;
to the wrong actions as the decoy actions. Similarly
to Chao et al. (2018), decoy actions are carefully
selected to be as plausible as possible when evalu-
ated against either the intention (2 decoys) or the
image (the other 2) only. Below, we explain how
language-based and image-based decoys were se-
lected based on the meta-annotation.

Language-based decoys For each of the 10, 287
〈image, intention, action〉 datapoints, we ran-
domly selected a number of datapoints from the
entire data that had the following criteria: 1) their
action belonged to a different topic cluster than the
one including the target action; 2) their action did
not share any noun with the target action, i.e., their
〈code2〉 and 〈code4〉 were different. We then com-
puted a similarity score between the target action
and each of these selected actions by means of the
cosine of their USE representations. We ranked
these scores and selected as our language decoys
the two with the highest similarity. This way, we
obtained language-based decoys that are semanti-
cally very similar to the target action, but are on a
different topic and do not share any noun with it.

Vision-based decoys For each datapoint, we ran-
domly selected a number of datapoints from the
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I: If I want to protect myself, I will. . . If I want to enjoy the sun, I will. . . If I want to get the blood pumping, I will. . . If I want to be noticed, I will. . .

L: sit on my skateboard instead of actually riding it take a huge bite out of my sandwich take a ride on the aerial tramway put on a costume and join the parade
L: wear jeans when racing on a skateboard take a bite of the burger ride a horse in the rodeo join the men on the street
T: wear a helmet while riding my motor bike eat my food on the roof patio ride a motorcycle wear a sign
V: look at the motorcycle display use my phone to order from a take out menu seat next to a bike and read a book at least match my colors to look fancy
V: challenge the people to a race assist the group with cutting food help the person who has fallen off their bike teach him how to tie a tie

Figure 4: Four samples from our dataset. I: Intention; T: Target action; L/V: Language-/Vision-based decoys.

entire data that had the following criteria: 1) their
action belonged to the same topic cluster of the tar-
get one; 2) their action did not share any verb with
the target action, i.e., their 〈code1〉 and 〈code3〉
were different. We then ranked these actions with
respect to their USE similarity with the target one,
and selected as our vision-based decoys the two
with the lowest score. This way, we obtained vision-
based decoys that are about the same topic of the
target action; at the same time, they do not share
any verbs with it and are semantically different.

4.1 Dataset
Our final dataset includes 10, 265 samples7 as
the ones depicted in Figure 4: each sample con-
sists of a unique 〈image, intention, action〉 data-
point paired with 4 carefully-selected decoy actions.
Consistently with out purpose of making BD2BB a
challenging benchmark for pretrained multimodal
architectures (see Section 1), we split the dataset
into “unusual” train/val/test partitions; i.e., we se-
lected 20% samples for training; the remaining for
validation (40%) and test (40%). We propose hav-
ing small training data and larger validation and
test sets should become a standard, as pretrained
models already build on a massive amount of data.

Table 1 reports the descriptive statistics of the
dataset, including the number of unique images,
intentions and actions per split, and the average
length of the sentences. All the experiments re-
ported in the paper are performed on these splits.

5 Experiments

To test the importance of combining information
from the two modalities and the independent con-
tribution of either modality, we experiment with
3 settings of the BD2BB task: L, where the target

7For 22 datapoints it was not possible to find all the decoys,
hence they were discarded during the creation of the dataset.

action among the 5 candidates has to be guessed
based on the intention only; V, where only the im-
age is provided; LV, where both the image and the
intention are provided. For each setting of the task,
we evaluate the performance of (1) a simple base-
line trained from scratch on the task; (2) a state-of-
art transformer-based pretrained model fine-tuned
on the task; (3) the same transformer-based model
trained from scratch on the task. Moreover, results
by models are compared to (4) human performance.

5.1 Models
Baseline For each 〈image, intention, action〉
datapoint in the sample, baselineLV builds a mul-
timodal representation by concatenating the 2048-
d visual features of the image (extracted from a
pretrained ResNet-101; He et al., 2016) with the
300-d embedding of the intention and the 300-d
embedding of the action. Embeddings for both the
intention and the action are obtained by summing
the GloVe embeddings (Pennington et al., 2014) of
the words in them. The concatenated features are
linearly projected into a vector (8192-d), passed
through ReLU, and linearly projected into a single
value. Softmax probabilities are computed over
the 5 sample’s candidate values. The baselineL
only concatenates intention and action embeddings
(600-d representation); baselineV concatenates the
visual features with the action embedding (2348-d).
Finally, to account for any bias due to unavoidable
association and repetition patterns among the ac-
tions, we test a version of the baseline which only
encodes the actions. We refer to it as actions-only.

RoBERTa In setting L, we employ the robustly
optimized version of BERT, RoBERTa (Liu et al.,
2019); this model is a universal language en-
coder pretrained on the task of masked lan-
guage modeling, which achieves best-performing
performance in the challenging multiple-choice
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#samples (%) #img #int #act #t-act #d-act avg int len avg act len
train 2102 (20%) 1517 1683 5063 2102 4228 22.15 35.34
val 4082 (40%) 2447 2772 6082 3567 4133 20.76 36.20
test 4081 (40%) 2425 2720 6108 3561 4138 20.49 36.00
total 10265 (100%) 3215 6192 8751 8738 6339 20.94 35.94

Table 1: Descriptive statistics of the dataset including, from left to right: 1) # (and %) of unique samples; 2) # of
unique images; 3) # of unique intentions; 4) # of unique actions; 5) # of unique target actions; 6) # of unique decoy
actions; 7) average number of tokens in intentions; 8) average number of tokens in actions.

SWAG task (Zellers et al., 2018). We adapt
RoBERTaBASE to our task as following: for each
of the 5 〈image, intention, action〉 datapoints
in the sample, RoBERTa encodes the input as
a sequence composed by 〈CLS〉, the intention,
〈SEP 〉, the action, and 〈EOS〉. The encoding cor-
responding to the 〈CLS〉 token (768-d) is passed
through Tanh, linearly projected into a vector (768-
d), passed to Dropout (Srivastava et al., 2014), and
linearly projected into a single value. Softmax
probabilities are computed over the 5 sample’s can-
didate values. As mentioned above, we evaluate
two model versions: RoBERTaL, pretrained and
fine-tuned on our task, and RoBERTasL, trained
from scratch on BD2BB.

LXMERT In settings LV and V, we employ
LXMERT (Learning Cross-Modality Encoder Rep-
resentations from Transformers; Tan and Bansal,
2019), a universal multimodal encoder pretrained
on five language and vision tasks which is state-of-
art on VQA2.0 (Goyal et al., 2017). This model rep-
resents an image by the set of position-aware object
embeddings for the 36 most salient regions detected
by Faster R-CNN (Ren et al., 2015) and processes
the textual input by position-aware randomly-
initialized word embeddings. Like RoBERTa,
LXMERT uses the special tokens 〈CLS〉 and
〈SEP 〉 but, differently from RoBERTa, here
〈SEP 〉 is used both to separate sequences and to
denote the end of the textual input. Hence, we take
this into account when adapting LXMERT to our
task. Similar to RoBERTa, we use the encoding
corresponding to 〈CLS〉 (768-d) to obtain a proba-
bility distribution over the 5 sample’s candidate val-
ues. For each task setting, we evaluate each model
in two versions, i.e., pretrained model fine-tuned
on our task (LXMERTLV and LXMERTV ); trained
from scratch (LXMERTs

LV and LXMERTs
V ).

Experimental setup For baseline models, we
perform hyperparameter search on learning rate,

Dropout, and hidden size; as for transformer-based
models, we use the best configurations reported
in the source papers (reproducibility details in Ap-
pendix B). All models are trained with 3 random
seeds for 50 epochs with Adam (Kingma and Ba,
2015) minimizing a Cross Entropy Loss between
the probability distribution over the 5 sample’s can-
didate actions and the ground-truth action. For
each of the 3 runs, we consider the model with the
highest validation accuracy. Average accuracy and
standard deviation over 3 runs is computed.

5.2 Human Evaluation

We randomly extracted 300 unique samples from
the dataset and split them into 3 partitions including
100 samples each. For each partition, we collected
judgments by 3 participants in each setting of the
task: L, V, and LV. Crucially, participants did the
task only once per partition; i.e., they judged each
sample only in one of the 3 task settings. Using
Quiz Maker,8 we collected 2, 700 unique responses
from 11 subjects who participated on a voluntary
basis. For each setting of the task, we counted as
‘correctly predicted’ the samples where at least 2
out of 3 annotators converged on the target action.
Moreover, for each task setting we computed the
‘best’ accuracy, i.e., the average of the 3 participants
who achieved the highest accuracy in each split.

6 Results

Results by both models and humans are reported
in Table 2. Several key observations can be made.

Multimodal integration is the key. The overall
best-performing model in BD2BB is LXMERTLV

(62.2%), which outperforms the other pretrained
models, i.e., RoBERTaL (56.2%) and LXMERTV

(59.2%). On the one hand, this shows that dispos-
ing of both modalities is beneficial to perform the

8https://www.quiz-maker.com

https://www.quiz-maker.com
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model accuracy
val ± std test ± std

S
C

R
A

T
C

H actions-only 44.0 ± 0.4 44.6 ± 0.8
baselineL 45.3 ± 0.9 45.9 ± 0.9
baselineV 45.8 ± 0.8 46.1 ± 0.8
baselineLV 48.6 ± 0.9 49.0 ± 0.9

S
C

R
A

T
C

H RoBERTasL 47.0 ± 0.2 47.2 ± 0.1
LXMERTs

V 30.9 ± 0.9 31.8 ± 0.4
LXMERTs

LV 50.4 ± 0.3 51.3 ± 0.4

P
R

E
T

R
A

IN RoBERTaL 55.9 ± 0.9 56.2 ± 1.3
LXMERTV 59.1 ± 0.2 59.2 ± 0.6
LXMERTLV 62.8 ± 2.3 62.2 ± 2.2
humansL 50.0 (best 54.0)
humansV 72.3 (best 73.7)
humansLV 79.0 (best 82.3)
chance 20.0 20.0

Table 2: Results for the 3 settings: L, V, and LV. s refers
to transformer-based models trained from scratch. For
each model, we report average accuracy and std over 3
runs. Human accuracy is computed over 300 samples
(we report values based on both majority vote, i.e., 2
out of 3, and average of best participants; see 5.2).

task. This is in line with the results by human partic-
ipants, who achieve the highest accuracy in the mul-
timodal setting (79% vs. 50% of L and 72.3% of
V). On the other hand, the finding that LXMERTV

surpasses RoBERTaL (+3%) confirms that the im-
age provides more information compared to the
intention. This, again, is consistent with human
results, where the gap between V and LV (−7%)
is much smaller compared to that between L and
LV (−29%). For humans, this visual advantage is
likely due to (MS-COCO) images depicting com-
plex events that elicit a broad range of aspects re-
lated to people’s experience of the world. As for
the models, it confirms that LXMERT, thanks to
its massive pretraining, is effective in extracting
fine-grained information from images.

Models are far from humans. Humans achieve
around 80% accuracy (‘best’ 82%) on the multi-
modal version of the task. This is a high result, in
line with previous work with a similar setup (con-
sider, e.g., SWAG, where ‘expert’ human accuracy
is around 85% with 4 choices, i.e., chance level
at 25%; Zellers et al., 2018). At the same time,
the non-perfect human accuracy reveals that the
benchmark is challenging due to the careful selec-

tion of plausible decoys. Compared to humans,
the best-performing LXMERTLV achieves much
lower results (−17%), which indicates that BD2BB
is challenging and far from being solved. Since the
gap between best-performing models and human
participants in unimodal settings is smaller (−13%
in V and −6% in L), the biggest computational
challenge lies in the integration of complementary
information from different modalities.

Pretrained is better. Pretrained models neatly
outperform the baseline in all the versions of the
task9 and, more interestingly, also all their coun-
terparts trained from scratch. As can be seen in
Table 2, indeed, transformer-based models trained
from scratch achieve results that are only slightly
better than those by the baseline in both LV and L;
as for V, LXMERTs

V turns out to perform worse
than the baselinesV (and even worse than the actions-
only baseline). This clearly shows that these archi-
tectures are very effective when building on their
pretraining, but suffer when challenged to learn a
task from scratch with relatively few samples.

7 Analysis

Best models’ errors We perform an analysis on
the errors made by the 3 pretrained models to check
whether they fall more often into the language-
based or vision-based decoys. To do so, we focus
on each model’s best run, and compute the pro-
portion of wrong predictions in the test set that
belong to one or the other decoy type. For com-
parison, a model that makes modality-balanced
wrong predictions should fall into language-/vision-
based decoys 50% of the times. Quite surpris-
ingly, RoBERTaL has only a moderate bias toward
language-based decoys: in fact, only 60.2% of its
errors are of this type. As for LXMERTV , no bias
at all is observed toward the vision-based decoys
(48.6%). Finally, the best-performing LXMERTLV

is shown to be halfway between these models,
with only a slight preference for language-based
(55.1%) over vision-based decoys (44.9%).

In Figure 5, we report two cherrypicked exam-
ples where LXMERTLV either correctly predicts
the target action (left) or choses a wrong one, in this
case a vision-based decoy (right). It is worth men-
tioning that these two cases are challenging: for

9It should be noted that the baselines are only slightly bet-
ter than actions-only; this suggests that these models are only
marginally capable of extracting (and combining) relevant
information for the task from the image and the intention.
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I: If I am in the mood to act silly, I will. . . If I don’t like this, I will. . .

L: attend a dinner like this man holding a gift sit next to the woman on the bench
L: buy him a cake and invite his friends to party get my face painted
T: act silly with this man and eat cake avert my eyes from the man who looks silly
V: help my child cut their cake teach him how to tie a tie
V: have cake with soldiers wear a costume and march in a parade

Figure 5: Two samples where humans give the correct
answer in the LV setting—but neither in L nor in V.
LXMERTLV picks the correct answer (blue) in the left
sample, a wrong one (red) in the right sample. I: Inten-
tion; T: Target action; L/V: Language-/Vision-based
decoys. Best viewed in color.

both of them, human annotators were able to pick
the correct action only in the multimodal version of
the task—but neither in L nor in V. As can be seen,
in the leftmost example the model does a good job
in combining complementary information from lan-
guage and vision. In the rigthmost one, instead, it
picks an action that is very much plausible based
on the image, but not in presence of the given inten-
tion containing a negation (don’t). Taken together,
these analyses indicate that no simple strategies
can be exploited by models to detect and rule out
decoy types. Language- and vision-based decoys
are equally challenging, and combining comple-
mentary information is needed to solve the task.

Hard test To explore the robustness of the pre-
trained models, we check how well they perform
on a subset of the test set where several features of
the samples were unseen in training. In particular,
neither the image nor the intention were seen in
training; moreover, the target action could be seen
as a decoy but never as the target. In Table 3 we
report the results by the 3 pretrained models on this
subset (1, 505 samples); we refer to it as the hard
test. As can be seen, all models experience a small
decrease in accuracy compared to the whole test
set—while humans do not. This indicates that the
hard test is indeed more challenging. However, pre-
trained models are overall robust to unseen features.
In line with the standard test set, LXMERTLV still
outperforms the unimodal models, though its drop
in performance (−4%) is more pronounced com-
pared to them (−1/2%). This suggests that part
of the advantage of the multimodal system over

model accuracy humans
hard test ± std

RoBERTaL 55.1 ± 1.6 56.5
LXMERTV 56.9 ± 0.8 73.9
LXMERTLV 58.3 ± 2.7 78.3

Table 3: Accuracy of the pretrained transformer-based
models on the hard samples of the test set. Human
accuracy is computed over 92 samples.

the unimodal ones is due to its fine-tuning. Indeed,
pretraining on its own is not enough to properly
combine complementary information from the in-
tention and the image. Finally, since humans do not
perform worse in these samples, the performance
gap with LXMERTLV increases to ∼ 20%.

8 Conclusion

Inspired by real-life communicative contexts where
language and vision are non-redundant, we pro-
posed a novel benchmark to challenge models com-
bine complementary multimodal information. This
is a crucial ability that, we believe, our bench-
mark will contribute push further. In particular,
recently proposed universal multimodal encoders
can greatly benefit from relatively small but chal-
lenging resources as is BD2BB, which can be used
to shed light on model abilities and help developing
architectures which exhibit more human-like skills.

Here, we evaluated LXMERT and showed that it
struggles to achieve results that are comparable to
those by humans. In the future, we plan to evaluate
other multimodal encoders on it, and to contribute
to the development of better multimodal systems.
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and Larry S Davis. 2017. The amazing mysteries
of the gutter: Drawing inferences between panels in
comic book narratives. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 6478–6487.

Allan Jabri, Armand Joulin, and Laurens Van
Der Maaten. 2016. Revisiting visual question an-
swering baselines. In European Conference on Com-
puter Vision, pages 727–739. Springer.

Unnat Jain, Ziyu Zhang, and Alexander G Schwing.
2017. Creativity: Generating diverse questions us-
ing variational autoencoders. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 6485–6494.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. 2017. CLEVR: A diagnostic dataset for
compositional language and elementary visual rea-
soning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2901–2910.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Gunther R Kress. 2010. Multimodality: A social
semiotic approach to contemporary communication.
Taylor & Francis.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma,
et al. 2017. Visual genome: Connecting language
and vision using crowdsourced dense image anno-
tations. International Journal of Computer Vision,
123(1):32–73.

Julia Kruk, Jonah Lubin, Karan Sikka, Xiao Lin, Dan
Jurafsky, and Ajay Divakaran. 2019. Integrating
text and image: Determining multimodal document
intent in Instagram posts. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4614–4624.

Jie Lei, Licheng Yu, Mohit Bansal, and Tamara Berg.
2018. TVQA: Localized, compositional video ques-
tion answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1369–1379.

Yining Li, Chen Huang, Xiaoou Tang, and Chen
Change Loy. 2017. Learning to disambiguate by
asking discriminative questions. In Proceedings of
the IEEE International Conference on Computer Vi-
sion, pages 3419–3428.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft COCO:
Common objects in context. In European Confer-
ence on Computer Vision, pages 740–755. Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems, pages 13–23.

Stephanie Lukin, Reginald Hobbs, and Clare Voss.
2018. A pipeline for creative visual storytelling. In
Proceedings of the First Workshop on Storytelling,
pages 20–32.

Harry McGurk and John MacDonald. 1976. Hearing
lips and seeing voices. Nature, 264(5588):746–748.

Nasrin Mostafazadeh, Chris Brockett, Bill Dolan,
Michel Galley, Jianfeng Gao, Georgios Spithourakis,
and Lucy Vanderwende. 2017. Image-grounded
conversations: Multimodal context for natural ques-
tion and response generation. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 462–472.

Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Mar-
garet Mitchell, Xiaodong He, and Lucy Vander-
wende. 2016. Generating natural questions about
an image. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1802–
1813.

Gen Li amd Nan Duan, Yuejian Fang, Ming Gong,
Daxin Jiang, and Ming Zhou. 2020. Unicoder-
VL: A universal encoder for vision and language by
cross-modal pre-training. In Proceedings of AAAI.

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata,
Anna Rohrbach, Bernt Schiele, Trevor Darrell, and
Marcus Rohrbach. 2018. Multimodal explanations:
Justifying decisions and pointing to the evidence. In
31st IEEE Conference on Computer Vision and Pat-
tern Recognition.

Sarah Partan and Peter Marler. 1999. Communication
goes multimodal. Science, 283(5406):1272–1273.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


2762

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543.

Arijit Ray, Karan Sikka, Ajay Divakaran, Stefan Lee,
and Giedrius Burachas. 2019. Sunny and dark
outside?! Improving answer consistency in VQA
through entailed question generation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5860–5865, Hong
Kong, China. Association for Computational Lin-
guistics.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster R-CNN: Towards real-time ob-
ject detection with region proposal networks. In Ad-
vances in Neural Information Processing Systems,
pages 91–99.

Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich,
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Appendices

A Further Details on Data

A.1 Data Collection
Crowdsourcers are presented with detailed instruc-
tions and examples before starting with the anno-
tation task. First, we introduce the task and pro-
vide them with some details to familiarize with the
annotation tool. Then, we give them instructions
regarding the constraints to be observed, i.e., for in-
tentions: (1) to use the present tense and (2) do not
mention any of the entities depicted in the image;
for actions: (1) to use the present tense and (2) do
mention entities that are visible in the image. To
make instructions and constraints clearer, we show
them several examples of good/wrong annotations
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Figure 6: Data collection. One annotation sample presented to participants. Given an image, participants are asked
to provide an intention and an action. To ensure they are doing the task properly, a verification question is asked
preliminarly. Answering the question correctly (multiple correct answers) leads to the proper annotation phase.

(see Figure 2). Moreover, to make sure participants
are performing the task properly (and, crucially, to
avoid collecting fake data from automatic bots), a
verification question is asked at the beginning of
each image’s annotation phase. The verification
question has multiple correct answers, and only
by picking one of these answers participants can
proceed with the annotation phase (see Figure 6).

In addition, we add two sanity checks to the col-
lected intentions. We check that (1) they have a
length of at least 5 tokens; if this is not the case,
participants are shown a warning and asked to fix
their sentence; (2) they do not contain any noun
referring to an entity that is grounded in the im-
age; this is checked by means of a simple heuristic
which extracts all the nouns from a given image’s
MS-COCO captions. Nouns with frequency > 1
are not allowed, and when typing them turkers are
warned to modify their sentence.

A.2 BD2BB Dataset Statistics
As described in Section 4, the final BD2BB

dataset includes 10, 265 samples, where each sam-
ple includes a 〈image, intention, target action〉
triple associated with 4 selected decoy actions.
These triples were provided by 430 unique an-
notators. In particular, 253 were from the USA,
111 from the United Kingdom, 53 from Canada,
6 from Ireland, 5 from New Zealand, 2 from
Australia. Each of them provided, on average,
23.87 〈image, intention, target action〉 tuples
contained in the dataset (min 1, max 192).

Each sample contains 5 actions. On average,
these actions were provided by 4.90 unique annota-
tors (min 3, max 5); moreover, they were collected
for 4.96 (min 3, max 5) unique images, i.e., the de-
coy actions in each sample refer to different images
than the target one in most of the cases.

A.3 Meta-Annotation

Topics We manually inspected the 60 clusters ob-
tained through k-means clustering and removed 6
clusters for which we could not identify a coherent
topic. Examples of the actions for each of the re-
mainining 54 clusters, and the corresponding labels
we assigned to them, are provided in Table 4. The
60 clusters were reviewed by two of the authors.
We kept only clusters for which full agreement was
met.

Numeric 4-Code Annotation We organize our
data through a two-step system of wordcodes using
codes to mark the syntatic class and the word-type.
With the Stanford NLP parser (Chen and Man-
ning, 2014), we extract from each action syntatic
information and mark: 1) the main verb: “code1”;
2) the direct or indirect object of the main verb,
as well as other complements related to the main
verb: “code2”; 3) the second verb – if present (i.e.,
the verb of the coordinated or subordinated sen-
tence): “code3”; 4) the object of the second verb
– if present: “code4”. In this case, we considered
not only the direct object of the second verb, but
also all the words referring to an object grounded



2764

labels action example code1 code2 code3 code4
tennis grab my tennis raquet firmly and hit the ball grab racket hit ball
food grab some delicious food grab food
cake cut the cake cut cake
snacks purchase a hot dog purchase hotdog
actions with ball hit the ball as hard as i can hit ball
skateboard 1 go skateboarding go skateboard
bikes and motos take a ride on the motorbike ride motorbike
skateboard 4 pull off this skateboard trick pull off trick
surf grab my surfboard and join the woman grab surfboard join woman
phone call someone for a chat call someone
interact with people join these people and talk join people talk
baseball 2 yell at the batter to distract him yell batter distract batter
sport audience watch this game watch game
approaching women try to get the woman’s attention get attention
pizza order a slice of pizza order pizza
ski use my ski poles judiciously use ski poles
drink i will drink my drink and watch people walk by drink drink watch people
kids move the baby so i can use the computer move baby use computer
cooking help those women to cook help women cook
videogames grab an extra remote and join the game grab remote join game
pets take a piece of cake and give it to the dog take cake give dog
clothing wear my sun glasses wear glasses
relax i would look for a seat to rest look for seat
umbrella use the pink umbrella use umbrella
urban activities try to cross the street to investigate the trams cross street investigate trams
laptop i will use that laptop the best way use laptop
baseball 3 i will play as batter in a game of baseball play game
baseball 1 watch a baseball game watch baseball game
team sports i play a soccer game play soccer
frisbee 2 join a frisbee team join team
birthday i will sing happy birthday to the girl sing happy birthday girl
water sports grab my board and ride the waves grab board ride wave
photo to go to the bathroom to get a selfie go to bathroom get selfie
zoo animals ride an elephant ride elephant
public transports i will get on the bus and take a trip get on bus take trip
skateboard 2 will sit on the wall and watch the skateboarder sit wall watch skateboarder
frisbee 1 i will leave these men to play their little frisbee game leave men play frisbee
wii play a wii game play wii
bedtime instead go into my room and lay down go room lay
manual work / hobbies use the scissors to make oragmi use scissors make origami
animals farm watch the man shear the sheep watch man shear sheep
good intentions get the right job get job
kite enjoy watching the people fly their kites enjoy watch people
horse riding ride a horse ride horse
toilet things brush my teeth brush teeth
skateboard 3 i will go to skate park go skatepark
street scenes stealthily unzip his backpack and take his possessions unzip backpack take possession
ski and snow take off my shirt and do a big ski jump in front of her take off shirt do jump woman
snowboard go snowboarding go snowboard
airport board that ancient plane board plane
fruit buy and eat a banana buy banana eat banana
haircut use the hairdryer use hairdryer
women and food tell the girl i hope she enjoys her pizza tell girl enjoy pizza
reading read the newspaper read newspaper

Table 4: We report the label assigned to each of the 54 clusters (which summarizes its main topic), and one example
of the actions included in it. Each action was annotated with codes to mark the verb (code1) and the complement
object (code2) of the main sentence, and the verb (code3) and complements (code4) of the secondary sentence.
Clusters are listed by their size: in descending order, from biggest to smallest.
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labels #actions #code1 #code2 #code3 # code4
tennis 580 90 50 79 41
food 408 76 63 81 57
cake 334 60 37 65 74
snacks 316 68 82 26 50
actions with ball 298 71 27 54 34
skateboard 1 270 61 48 51 43
bikes and motos 269 86 55 59 51
skateboard 4 267 54 25 38 33
surf 262 66 50 52 22
phone 261 72 48 60 49
interact with people 261 66 58 62 22
baseball 2 259 82 42 69 30
sport audience 250 70 40 32 46
approaching women 227 84 54 49 70
pizza 226 43 23 37 42
ski 223 53 35 26 34
drink 222 53 46 50 39
kids 213 78 47 41 73
cooking 213 68 70 45 45
videogames 212 47 34 42 40
pets 202 80 47 44 32
clothing 202 54 61 48 47
relax 192 33 14 46 61
umbrella 186 56 24 32 26
urban activities 181 75 56 55 59
laptop 180 69 34 43 45
baseball 3 177 33 30 27 6
baseball 1 177 42 32 60 44
team sports 172 38 31 27 50
frisbee 2 172 25 25 29 22
birthday 170 62 71 46 59
water sports 165 87 60 38 41
photo 163 39 21 30 44
zoo animals 161 57 25 32 39
public transports 159 46 28 23 22
skateboard 2 158 45 36 35 25
frisbee 1 154 39 11 31 27
wii 149 36 22 35 22
bedtime 144 53 38 51 29
manual work / hobbies 139 69 75 44 60
animals farm 139 69 41 32 26
good intentions 132 66 64 44 32
kite 125 28 18 31 17
horse riding 118 49 22 22 29
toilet things 105 43 38 29 24
skateboard 3 98 22 16 18 14
street scenes 96 56 37 26 35
ski and snow 95 48 26 31 23
snowboard 1 94 27 26 21 17
airport 93 48 30 35 12
fruit 89 33 18 24 20
haircut 54 31 21 19 15
women and food 43 24 18 22 14
reading 32 11 11 11 7

Table 5: Statistics on the meta-annotation of the data. For each cluster, we report the number of actions, the number
of verbs in the main (code1) and in the secondary sentence (code3), the number of nouns occuring as complements
in the main (code2) and in the secondary sentence (code4).

in the corresponding image that specify the action
expressed by the sentence. This way, for each ac-
tion in which this was possible, we have a word
that underlines the link between the linguistic and
the visual aspect of the annotation. All the outputs
by the parser were manually checked and fixed

were needed. This was done by two of the authors:
First, a subset of the data was annotated by the two
auhtors together; then, each of the authors anno-
tated a different subset. Only doubtful cases were
discussed. In Table 4, for each action given as an
example of the cluster, we highlight the words cor-
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cluster action code1 code2 code3 code4
food join the people in the restaurant to enjoy a meal join 1 people 77 enjoy 15 meal 28
food get some food with the people get 107 food 6 0 people 666

frisbee join this man playing frisbee join 9 man 11 play 13 frisbee 14
frisbee catch the frisbee and throw it again catch 777 frisbee 777 throw 8 frisbee 14

Table 6: Examples of actions and corresponding word-type codes. Note that: (1) a given verb, e.g., join, is assigned
different codes in different clusters (lines 1 and 3); (2) a given object within the same cluster, e.g., frisbee at line
4, is assigned different codes in different syntactic positions; (3) a given object, e.g., frisbee at lines 3 and 4, is
assigned the same code if belonging to the same cluster and in the same syntactic position.

Model Number of parameters
baselineL 4931585
baselineV 19251201
baselineLV 21708801
RoBERTaL 124646401
LXMERTV 194352385
LXMERTLV 194352385

Table 7: Number of parameters of each model. The
number of parameters is the same both in models
trained from scratch and in pre-trained ones.

responding to each of the four codes. Statistics
about this meta-annotation are reported in Table 5.

Furthermore, for each topic cluster, we assign a
numeric wordcode to each unique word-type in the
4 syntactic classes described above. In other words,
each sentence is translated into a code composed
of 4 numbers, each one representing a unique word
in the corresponding syntactic class.10 Illustrative
examples are given in Table 6.11

B Further Details on Experiments

B.1 Models

The number of parameters of each model is re-
ported in Table 7. The number of parameters is
the same both in models trained from scratch and
in pre-trained ones. The validation accuracy and
epoch of the best models for each one of the three
runs are reported in Table 8. For each of the three
runs, we consider the model obtaining the best val-
idation accuracy. For each model, we report mean
and standard deviation of the test accuracies ob-
tained across the three runs.

Baseline Our baseline is inspired by Jabri et al.
(2016), but we use Softmax instead of Sigmoid as

10When we choose to consider more than one object, we
create a compositional code, using the ’+’ mark

11Here numbers are assigned randomly, just to provide a
concrete example of our meta-annotation.

the final activation function to compute a probabil-
ity distribution over all the candidates and choose
the best one. We consider a version receiving im-
age, intention and actions (baselineLV ), a version
receiving image and actions (baselineV ), and a ver-
sion receiving intention and actions (baselineL).
We used PyTorch 1.4.0. Baseline models were run
on a CPU and their training took 33 seconds per
epoch on average. We used a batch size equal to 32.
We performed a grid search over two hyperparame-
ters: the size of the hidden layer receiving concate-
nated figures (we tried values 8192 and 2048) and
the dropout probability of zeroing elements of the
input tensor right after the ReLU activation func-
tion (we tried values 0.0 and 0.5). The combination
of parameters which leaded to the best validation
accuracy was a hidden layer having size 8192 and
a dropout probability of 0.0 corresponding to not
having any dropout.

RoBERTa The RoBERTaBASE model we used
has 12 self-attention layers with 12 heads each.
It uses three special tokens, namely CLS, which
is taken to be the representation of the given se-
quence, SEP, which separates sequences, and EOS,
which denotes the end of the input. For each
of the 5 〈image, intention, action〉 datapoints in
the sample, RoBERTa encodes the input as a se-
quence composed by CLS, the intention, SEP, the
action, and EOS. As in the original work, we use
the representation corresponding to the CLS to-
ken to use the encoder in the downstream task.
For RoBERTa we used PyTorch 1.0.1 and we
started from the source code available at https://
github.com/huggingface/transformers. Both
when fine-tuning the pre-trained model and when
training the model from scratch, we used a batch
size equal to 32 with 8 gradient accumulation steps,
thereby having a batch size equal to 256, a weight
decay equal to 0.01, gradient clipping equal to 5,
and a learning rate which is warmed up over the

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Model Run 1 Run 2 Run 3
Epoch Valid. acc. Epoch Valid. acc. Epoch Valid. acc.

baselineL 19 0.449 28 0.446 41 0.462
baselineV 25 0.453 21 0.467 23 0.453
baselineLV 22 0.481 34 0.496 36 0.480
RoBERTasL 3 47.1 2 46.8 2 47.1
LXMERTs

V 8 32.0 8 29.9 48 30.7
LXMERTs

LV 35 50.2 9 50.8 28 50.2
RoBERTaL 12 0.571 36 0.557 38 0.550
LXMERTV 38 0.593 49 0.588 31 0.592
LXMERTLV 44 0.643 36 0.647 18 0.595

Table 8: Epoch and validation accuracy of the best models for each run.

first 10% steps to a peak value of 0.00005 and then
linearly decayed.

LXMERT The LXMERT model we used has a
Object-Relationship Encoder and a Language En-
coder which encode relationships between regions
and relationships words, respectively, through a
self-attention mechanism, and a Cross-Modality
Encoder which encode relationships between re-
gions and words and vice-versa through a cross-
modal attention mechanism followed by a self-
attention mechanism. The number of layers in
the Language Encoder, Object-Relationship En-
coder, and Cross-Modality Encoder are 9, 5, and
5, respectively. As in RoBERTa, LXMERT uses
the special tokens CLS and SEP. Differently from
RoBERTa, LXMERT uses the special token SEP
both to separate sequences and to denote the end of
the textual input. As in the original work, we use
the representation corresponding to the CLS token
to use the encoder in the downstream task. For
RoBERTa we used PyTorch 1.0.1 and we started
from the source code available at https://github.
com/airsplay/lxmert. As with RoBERTa, both
when fine-tuning the pre-trained model and when
training the model from scratch, we used a batch
size equal to 32 with 8 gradient accumulation steps,
thereby having a batch size equal to 256, a weight
decay equal to 0.01, gradient clipping equal to 5,
and a learning rate which is warmed up over the
first 10% steps to a peak value of 0.00005 and then
linearly decayed.

https://github.com/airsplay/lxmert
https://github.com/airsplay/lxmert

