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Abstract

Joint entity and relation extraction aims to ex-
tract relation triplets from plain text directly.
Prior work leverages Sequence-to-Sequence
(Seq2Seq) models for triplet sequence gen-
eration. However, Seq2Seq enforces an un-
necessary order on the unordered triplets and
involves a large decoding length associated
with error accumulation. These methods in-
troduce exposure bias, which may cause the
models overfit to the frequent label combina-
tion, thus limiting the generalization ability.
We propose a novel Sequence-to-Unordered-
Multi-Tree (Seq2UMTree) model to minimize
the effects of exposure bias by limiting the
decoding length to three within a triplet and
removing the order among triplets. We eval-
uate our model on two datasets, DuIE and
NYT, and systematically study how exposure
bias alters the performance of Seq2Seq mod-
els. Experiments show that the state-of-the-art
Seq2Seq model overfits to both datasets while
Seq2UMTree shows significantly better gen-
eralization. Our code is available at https:
//github.com/WindChimeRan/OpenJERE.

1 Introduction

Relation extraction aims to extract entity-relation
triplets (h, r, t) from plain text. For example, in the
triplet (Obama, graduate from, Columbia Univer-
sity), Obama and Columbia University are the head
and tail entities appearing in the text, and gradu-
ate from is the relation between these two entities.
For supervised relation extraction, early studies
focus on pipeline methods, which use an entity
extractor to extract entities, and then classify the re-
lations of entity pairs. These methods ignore the in-
trinsic interactions between these two subtasks and
propagate classification errors through the tasks.
Jointly entity and relation extraction (JERE) con-
siders the subtask interaction (Roth and Yih, 2004;

∗ This denotes equal contribution.

Ji and Grishman, 2005; Ji et al., 2005; Yu and Lam,
2010; Riedel et al., 2010; Sil and Yates, 2013; Li
et al., 2014; Li and Ji, 2014; Durrett and Klein,
2014; Miwa and Sasaki, 2014; Lu and Roth, 2015;
Yang and Mitchell, 2016; Kirschnick et al., 2016;
Miwa and Bansal, 2016; Gupta et al., 2016; Katiyar
and Cardie, 2017) , but they mainly exploit feature-
based system or multi-task neural network, which
can not capture inter-triplet dependency.

NovelTagging (Zheng et al., 2017) integrates
these two subtasks into one sequence labeling pro-
cess, which assigns a single entity-relation tag
to each token; when a token belongs to multi-
ple relations, the prediction results will be incom-
plete. Instead of sequence labeling, Sequence-to-
Sequence (Seq2Seq) models (Cho et al., 2014)
are able to extract an entity multiple times, thus
multiple relations can be assigned to one entity,
which solves the problem naturally (Zeng et al.,
2018, 2019a,b; Nayak and Ng, 2019). Specifi-
cally, all existing Seq2Seq models pre-define a se-
quential order for the target triplets, e.g. triplet
alphabetical order, and then decode the triplet se-
quence according to the order autoregressively,
which means the current triplet prediction relies on
the previous output. For exmaple, in Figure 1, the
triplet list is flattened to [Obama]-[graduate from]-
[Columbia University]-[Obama]-[graduate from]-
[Harvard Law School]...

However, the autoregressive decoding of the
Seq2Seq models introduces exposure bias problem
which may severely reduce the performance. Expo-
sure bias refers to the discrepancy between training
and testing phases of the decoding process (Ran-
zato et al., 2015). In the training phase, the current
triplet prediction relies on the gold-standard labels
of the previous triplets, while in the testing phase,
the current triplet prediction relies on the model
prediction of the previous triplets, which can be
different from the gold-standard labels. As a result,

https://github.com/WindChimeRan/OpenJERE
https://github.com/WindChimeRan/OpenJERE
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Figure 1: The training and testing of Seq2Seq and Seq2UMTree for different triplet orders.

in the test phase, a skewed prediction will further
deviate the predictions of the follow-up triplets; if
the decoding length is large, the discrepancy from
the gold-standard labels would be further accumu-
lated. Such accumulated discrepancy may decrease
the performance especially in predicting longer se-
quences, i.e., multi-triplet prediction.

Furthermore, because Seq2Seq model sequen-
tially predicts the triplets, it enforces an unnec-
essary order on the unordered labels, while other
triplet orders are also correct. Thus, the assigned or-
der makes the model prone to memorize and overfit
to the frequent label combinations in the training
set and poorly generalize to the unseen orders. The
overfitting is also the side effect of exposure bias
(Tsai and Lee, 2019), which may result in miss-
ing triplets in Seq2Seq prediction. For example, in
Figure 1, during the training phase, the Seq2Seq
model learns triplet1-triplet2-triplet3 in such an or-
der while the order triplet2-triplet1-triplet3 is also
correct. In the testing phase, the Seq2Seq model
predicts triplet2 first based on the assigned order,
but because triplet2-triplet3 is a frequent order for
the model, it ignores triplet1 and ends with triplet3
directly (i.e.,triplet2-triplet3). When an order is en-
forced on the model, the model proceeds with more
learning constrains.

To mitigate the exposure bias problem while
keeping the simplicity of Seq2Seq, we recast the
one-dimension triplet sequence to two-dimension

Unordered-Multi-Tree (UMTree) and propose a
novel model Seq2UMTree. The Seq2UMTree
model is based on an Encoder-Decoder framework,
which is composed of a conventional encoder and a
UMTree decoder. The UMTree decoder models en-
tities and relations jointly and structurally, using a
copy mechanism with unordered multi-label classi-
fication as the output layer. This multi-label classi-
fication model ensures the nodes in the same layer
are unordered and discards the predefined triplet
order so that the prediction deviation will not ag-
gregate and affect other triplets. Different from the
standard Seq2Tree (Dong and Lapata, 2016; Liu
et al., 2019), the decoding length is limited to three
(one triplet), which is the shortest feasible length
for JERE task. In this way, the exposure bias is
minimized under the triplet-level F1 metrics.

In conclusion, our contributions are listed as fol-
lows:

• We point out the redundancy of the predefined
triplet order of the Seq2Seq model, and pro-
pose a novel Seq2UMTree model to minimize
exposure bias by recasting the ordered triplet
sequence to an Unordered-Multi-Tree format.

• We systematically analyze how exposure bias
diminishes the reliability of the performance
scores of the standard Seq2Seq models.
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Figure 2: The model overview. The decoding order within a triplet is r, t, h. The relation is predicted from a
predefined relation dictionary and the entities are copied from the sentence.

2 Methodology

The Seq2UMTree model consists of a conventional
Seq2Seq encoder and a UMTree decoder. The
UMTree decoder is different from the standard de-
coder in a way that it generates unordered multi-
label outputs and uses the UMTree decoding strat-
egy. The overview of the model is shown in Figure.
2. We illustrate the model details in the following
subsections.

2.1 Model

Formally, the input sentence x = [x0, x1, . . . , xn]
is first transformed to a sequence of context aware
representations by word embedding and Bidirec-
tional Recurrent Neural Network (Bi-RNN) (Schus-
ter and Paliwal, 1997) with Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)

as the encoder:

[sE0 , s
E
1 , . . . , s

E
n ] = Encoder([x0, x1, . . . , xn])

(1)
Then we pass the output s sequence to Conven:

o0 = Conven([sE0 , s
E
1 , . . . , s

E
n ]) (2)

where Conven is the encoder convolutional layer.
Conven maps sE to o0, which is also a sequence
and has the identical dimension as the s sequence.
The output is denoted as o0 ∈ Rn×h, where h is the
hidden size, n is the length of the input sentence.
o0 is the auxiliary representation of the sentence,
which is used for decoding with scratchpad atten-
tion mechanism (Benmalek et al., 2019): on−1 is
used to calculate attention score, and on−1 will be
updated to on at every decoding step.

During decoding, we use different input embed-
dings and output layers for relation and entity ex-
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Figure 3: Seq2UMTree is trained in a teacher-forcing way by aligning the tree to the sequences. In the test phase,
the model decodes the whole tree autoregressively. In the figure, HLR, HLS, CU are the abbreviations of Harvard
Law Review, Harvard Law School and Columbia University. The example uses h-r-t as the order within a triplet.

traction, and they share the same decoder parame-
ters. For the input embedding wt, we use: (a) “start-
of-the-sentence” embedding: wsos

0 ∈ Rh, which is
always the beginning of the decoding and is consid-
ered as depth 0, (b) relation embedding: wr

t ∈ Rh,
(c) entity embedding: we

t = oe1
t−1 + oe2

t−1 ∈ Rh,
where e1 and e2 are the beginning position and
the end position of the predicted entity respectively.
t ∈ {1, 2, 3}, which is the decoding time step. The
decoding order can be predefined arbitrarily, such
as h-r-t or t-r-h.

Given the input embedding wt and the output of
the previous time step sDt−1, a unary LSTM decoder
is used to generate decoder hidden state:

sDt = Decoder(wt, s
D
t−1) (3)

where sDt is the decoder hidden states; sD0 is ini-
tialized by sEn .

Attention mechanism (Luong et al., 2015) is
used to generate context-aware embedding:

at = Attention(ot−1, s
D
t ) (4)

where a ∈ Rh. Then the context-aware represen-
tation at is concatenated with the original ot−1,
followed by a convolution layer:

ot = Convde([at;o
0:n
t−1]) (5)

where Convde maps dimension 2h to h and at is
replicated n times before concatenation.

The output layer of the relation prediction is a
linear transformation followed by a max-pooling
over sequence:

probr = σ(Max(otWr + br)) (6)

where σ is the sigmoid function for multi-relation
classification, Wr ∈ Rh×r, br ∈ Rr and probr ∈
Rr is the predicted probability vector of the rela-
tions.

The output layers of the entity prediction are
two binary classification layers over the whole se-
quence, predicting the positions of the beginning
and the end of the entities respectively:

probeb = σ(W T
eb
ot + beb)

probee = σ(W T
eeot + bee)

(7)

where We ∈ Rh×1, be is a scalar and probe ∈
Rn×1 is the predicted probability vector of the enti-
ties, eb and ee refer to the beginning and the ending
of the entity. Different from Nayak and Ng (2019),
the sigmoid function σ enables the model to predict
multiple entities at a time.

2.2 Training and Testing

In the training phase, for each sentence, we reorga-
nize the training data that each pair of depth 1 and
2 (e.g. h-r) in UMTree would form one training
example, so that this strategy traverses the whole
tree. The training process of each node corresponds
to one time step in Seq2Seq models. We then train
the model in teacher forcing (Williams and Zipser,
1989) manner: the input of each decoding time step
is given by the gold-standard labels. Take the order
h-r-t as an example, in Fig. 3a, the total loss is the
sum of the losses of the following three decoding
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NYT DuIE
test# Prec Rec F1 test# Prec Rec F1

CopyMTL .978 .685 .648 .666 .962 .496 .394 439
WDec .988 .843 .764 .802 .919 .641 .542 .587
MHS .995 .798 .739 .768 .984 .772 .623 .690
Seq2UMTree 1.00 .791 .751 .771 1.00 .756 .730 .743

Table 1: Main Results on NYT and DuIE. #test is the valid sentence percentage of the test set to the models.

NYT DuIE
#sentence #triplet #sentence #triplet

train 56,195 90,967 155,931 314,996
dev 5,000 8,153 17,178 34,270
test 5,000 8,214 21,639 43,749

Table 2: Data statistics of NYT and DuIE datasets.
NYT contains 24 relations and DuIE contains 49 rela-
tions.

steps:

L =− log Pr(hb = h∗b |x; θ)
− log Pr(he = h∗e|x; θ)
− log Pr(r = r∗|h∗b , h∗e,x; θ)
− log Pr(tb = t∗b |r∗, h∗b , h∗e,x; θ)
− log Pr(te = t∗e|r∗, h∗b , h∗e,x; θ)

(8)

where h∗, r∗, t∗ are the ground truth of the triplets,
θ is all of the trainable parameters in the model. In
the testing phase, the UMTree uses auto-regressive
decoding strategy. The decoder predicts the nodes
layer by layer, where the prediction results of the
previous layer are used as the input of the next time
step separately, as shown in Fig. 3b.

3 Experiments

3.1 Settings

Dataset
We evaluate our model on two datasets, NYT and
DuIE1. NYT (Riedel et al., 2010) is a English
news dataset that is generated by distant supervi-
sion without manual annotation, which is widely
used in JERE studies (Zheng et al., 2017; Zeng
et al., 2018; Takanobu et al., 2018; Dai et al., 2019;
Fu et al., 2019; Nayak and Ng, 2019; Zeng et al.,
2019a,b; Chen et al., 2019; Wei et al., 2019). We
use the same data split as CopyRE (Zeng et al.,
2018). DuIE (Li et al., 2019) is a large-scale Chi-
nese JERE dataset where sentences are from Baidu

1https://ai.baidu.com/broad/introduction?
dataset=dureader

News Feeds and Baidu Baike. The whole dataset is
annotated by distant supervision and then checked
manually. We take 10% of the training set ran-
domly as a validation set and the original develop-
ment set as the test set because the original test set
is not released. In prerprocessing, for both datasets,
we filter out the sentences that contain no triplet.
The data statistics of these two datasets are shown
in Table 2.

Baselines
We compare the proposed model, Seq2UMTree,
with strong baselines under the same hyperparame-
ters, as follows: 1) CopyMTL (Zeng et al., 2019a)
is a Seq2Seq model with copy mechanism, and the
entities are found by multi-task learning. 2) WDec
(Nayak and Ng, 2019) is a standard Seq2Seq model
with dynamic masking, and decode the entity to-
ken by token. 3) MHS (Bekoulis et al., 2018) is a
non-Seq2Seq baseline, which enumerates all pos-
sible token pairs. 4) Seq2UMTree is the proposed
method, which generates triplets in a concise tree
structure.

Hyperparameters
For the sake of fair comparison, we reproduce all
the baselines ourselves with the same hyperparam-
eter settings. We use 200-dimension word embed-
ding for English and character embedding for Chi-
nese. Both are initialized from Gaussian distri-
bution N (0, 1), and 200-dimension Bi-LSTM en-
coder is used for both to mitigate the heterogeneity
of these two languages. These models are trained
for 50 epochs by Adam optimizer (Kingma and Ba,
2014), and the models with the highest validation
F1 scores are used for testing. The training of all
compared models can be finished in 24 hours in a
single NVIDIA V100 16GB GPU. The decoding
order of Seq2UMTree in both datasets is r-t-h. We
will discuss the effect of the order in subsection
4.2.

https://ai.baidu.com/broad/introduction?dataset=dureader
https://ai.baidu.com/broad/introduction?dataset=dureader
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Figure 4: The F1 scores of the models on test subsets
NYT and DuIE with different numbers of triplets. The
subsets contain sentences with number of triplets 1, 2,
3, 4 and>4 have 3080, 1127, 298, 315 and 470 in NYT
and 9853, 7034, 2366, 1153 and 1233 in DuIE.

3.2 Main Results

The experiment results are shown in Table 1.
Because of the limitation of GPU memory, the
Seq2Seq models and MHS cannot process all the
testing data. The valid sentence percentage of the
test set is shown in the #test column. WDec sets the
maximal decoding length to 50 and CopyMTL can
only decode 5 triplets at most, resulting in their in-
complete coverage on DuIE testset, in which 8.1%
and 3.8% of the test sentences are deleted in the
preprocessing stage. Moreover, because the enti-
ties in DuIE usually have more tokens than NYT
does, the maximal decoding length of WDec fil-
ters out more examples in DuIE (8.1%) than in
NYT (1.2%). MHS extracts triplets by exhaus-
tively enumerating all token pairs, resulting in a
O(l2r) GPU memory consumption of encoding
sentences, where l is the sentence length and r is
the number of relations. In our reproduction, we
delete sentences longer than 100 tokens in NYT
and 150 in DuIE, which covers 0.5% of the NYT
test set and 1.6% of the DuIE test set. Among
all the models, only Seq2UMTree can be applied
for all sentences in both datasets2 and the space
complexity is O(2l + r).

From the Table 1 we can see that Seq2UMTree
outperforms the previous best Seq2Seq model
WDec by 15.6% F1 score in DuIE, but it underper-
forms WDec in NYT by 3.1%. The inconsistency
of the performances on two datasets motivates us

2The performance scores are calculated in their processed
test sets.

Figure 5: The F1 scores of the models with triplet fre-
quency less than threshold. Triplet frequency repre-
sents how often the test triplets appeared in the training
set.

to conduct deeper investigation in the next section.

4 Investigation on Data & Model Bias

4.1 Exposure Bias and Generalization

While Seq2Seq assigns an order to the triplets,
Seq2UMTree generates triplets in an unordered
way, regardless of the triplet number. To verify the
effectiveness of Seq2UMTree on multiple triplets,
we split NYT and DuIE test sets into five subsets in
which each sentence only contains a specific num-
ber of triplets (1, 2, 3, 4, >4). The performance
of the models in the subsets is shown in Figure. 4.
In DuIE, when the triplet number increases, the F1
scores of WDec decrease drastically from 70% to
40% for triplet numbers greater than 2. MHS and
Seq2UMTree perform better as the triplet number
increases. By contrast, in NYT, all models perform
similarly with different numbers of triplets. To
better address the reasons behind the performance
differences, we conduct qualitative analysis of the
data, finding that in NYT, 90% triplets in the test
set reoccurred in the training set, while in DuIE,
the percentage is only 30%. Based on this observa-
tion, we hypothesize that the Seq2Seq models gain
high score in NYT because of exposure bias: as the
triplets in the test set are highly overlapped with
those in the training set, the models achieve high
scores by memorizing the frequently reoccurred
training set triplets, which causes the overfitting
that makes the models generalize poorly to the un-
seen triplets.

To investigate the effects of data bias from reoc-
curred frequency, we split the test set into 10 sub-
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Prec Rec F1

Test-A
Seq2UMTree .891 .882 .886
WDec .956 .862 .906

Test-B
Seq2UMTree .695 .579 .631
WDec .616 .562 .588

Table 3: AB-Test on NYT. We split NYT test set to
two subsets. The triplets in Test-A set (2,625 sen-
tences) 100% have occurred in the filtered training sub-
set (33,963 sentences) while the triplets in Test-B set
(2,317 sentences) have never occurred in the filtered
training set.

sets according to the reoccurred frequency (1-10)
of triplets in the training set. The results are shown
in Figure. 5. In NYT, the F1 scores of both WDec
and Seq2UMTree increases as the reoccurred fre-
quency increases. In DuIE, the performance curve
is almost flat despite of the reoccurred frequency.
This implies that the performance is highly related
to the reoccurred frequency in NYT (90% reoc-
curred) but is minimally related to that in DuIE
(30% reoccurred).

To further testify the effects of exposure bias on
seen and unseen data, we conduct an AB test on the
NYT dataset. We take a new training set from the
NYT training set, and then take two new test sets,
Test-A and Test-B, from the NYT test set: Test-A’s
triplets is 100% overlapped with these in the new
training set but the triplets in Test-B have never
appeared in the new training set. The new training
set consists of 60% of the original. Test-A and
Test-B contain 53% and 47% of the sentences from
the original, respectively. The results are reported
in Table. 3.

Though Seq2UMTree underperforms WDec in
100%-overlapped set, it outperforms WDec in un-
seen set. The performance drop (from seen to un-
seen) for Seq2UMTree is smaller than WDec’s,
which implies that Seq2UMTree is more robust
and more reliable. This verifies our hypothesis
that the Seq2Seq models suffer more from expo-
sure bias, which results in more overfitting, while
Seq2UMtree with minimized exposure bias is more
generalized to the unseen triplets.

As the NYT dataset intrinsically has high portion
of overlapped triplets in its training and test sets,
and has already been overfitted by existing models,
we suggest that NYT is not unbiased enough to be
used as a baseline dataset, and the F1 scores of the
models on NYT are not reliable.

Order Prec Rec F1

NYT

t, r, h .788 .694 .738
r, t, h .791 .751 .771
t, h, r .765 .495 .601
h, t, r .756 .548 .635
r, h, t .789 .737 .762
h, r, t .796 .685 .737

DuIE

t, r, h .766 .663 .711
r, t, h .756 .730 .743
t, h, r .802 .330 .467
h, t, r .794 .120 .208
r, h, t .760 .712 .735
h, r, t .731 .728 .729

Table 4: Different orders of Seq2UMTree.

4.2 Orders within Triplets

In Seq2UMTree, the relation, head entity and tail
entity are still decoded in a predefined order (e.g.,
h-r-t or r-t-h). We enumerate all six possible de-
coding orders in each dataset and compare the per-
formances. The results are shown in Table. 4. The
performances varies by order within triplets, while
the recalls for orders t-h-r and h-t-r drop drasti-
cally in both datasets, respectively.

We then hypothesize that the order within the
triplets matters in some way. Thinking of this, we
decide to look into the training phase time step by
time step, and find that these 2 orders cannot even
fit training set well: the recall for h-t-r is only 13%
on the training set (12% on the test set). More-
over, most of the the predictions are missing on the
first time step (h). This implies that the position
of r provides information important to the predic-
tions and proved our hypothesis. By thorough error
analysis, we realize that for the order h-t-r (t-h-r
follows the same logic), the model has to predict all
t with regard to h in the second time step, without
constraints from the r, and this makes every pos-
sible entity to be a prediction candidate. However,
the model is unable to eliminate no-relation entity
pairs at the third time step, thus the model is prone
to feed entity pairs to the classification layer with
an low odds (low recall) but high confidence (high
precision).

In contrast, for the order h-r-t, given the pre-
dicted h, the corresponding r can be easily iden-
tified according to the context. Subsequently, the
predicted h-r pair gives strong hint to the last time
step prediction, hence the model will not collapse
from the no-relation. This also applies to any other
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order with r in the first two time steps.

5 Related Work

Previous work uses PIPELINE to extract triplets
from text (Nadeau and Sekine, 2007; Chan and
Roth, 2011). They first recognize all entities in
the input sentence then classify relations for each
entity pair exhaustively. Li and Ji (2014) point out
that the classification errors may propagate across
subtasks. Instead of treating these two subtasks
separately, for joint entities and relations extrac-
tion (JERE), TABLE methods calculate the simi-
larity score of all token pairs and relations by ex-
haustive enumeration and the extracted triplets are
found by the position of the output in the table
(Miwa and Bansal, 2016; Gupta et al., 2016). How-
ever, as a triplet may contain entities with different
lengths, the table methods either suffer from expo-
nential computational burden (Adel and Schütze,
2017) or roll back to pipeline methods (Sun et al.,
2018; Bekoulis et al., 2018; Fu et al., 2019). Fur-
thermore, such table enumeration dilutes the posi-
tive labels quadratically, thus aggravating the class-
imbalanced problem. To model the task in a more
concise way, Zheng et al. (2017) propose a NOV-
ELTAGGING scheme, which represents relation and
entity in one tag, so that the joint extraction can
be solved by the well-studied sequence labeling
approach. However, this tagging scheme cannot
assign multiple tags to one token thus fail on over-
lapping triplets. The follow-on methods revise the
tagging scheme to enable multi-pass sequence la-
beling (Takanobu et al., 2018; Dai et al., 2019) but
they introduce a similar sparsity issue as does the
table method.

Another promising method, SEQ2SEQ, is first
proposed by Zeng et al. (2018). Seq2Seq does
not only decode the triplet list straightforwardly
but also circumvents the overlapping triplets prob-
lem. Although this paper introduces a problem that
multi-token entities cannot be predicted, this prob-
lem has been solved by multiple follow-up papers
(Zeng et al., 2019a; Nayak and Ng, 2019). How-
ever, there still remains a weakness in Seq2Seq
models, i.e., the exposure bias, which has been
overlooked.

Exposure bias originates from the discrepancy
between training and testing: Seq2Seq models use
data distribution for training and model distribution
for testing (Ranzato et al., 2015). Existing work
mainly focuses on how to mitigate the informa-

tion loss of argmax sampling (Yang et al., 2018,
2019; Zhang et al., 2019). Nam et al. (2017) no-
tice that different orders affect the performance of
the Seq2Seq models in Multi-Class Classification
(MCC), and conduct thoroughly experiments on fre-
quency order and topology order. In JERE, Zeng
et al. (2019b) study additional rule-based triplet
prediction orders, including alphabetical, shuffle
and fix-unsort, and then propose a reinforcement
learning framework to generate triplets in adaptive
orders dynamically. Tsai and Lee (2019) first point
out the unnecessary order causes exposure bias al-
tering the performance in MCC, and they find that
Seq2Seq models are prone to overfit to the frequent
label combination and show poor generalization on
unseen target sequence.

Our method solves the exposure bias problem.
As the exposure bias problem stems from the or-
dered left-to-right triplet decoding, we block the
decoding of them from each other by removing the
order of the triplet generation, thus the possible
prediction error cannot propagate from triplet to
triplet. Furthermore, because each triplet is gener-
ated by an independent decoding process, the de-
coding length has been extremely shortened, thus
minimizes the effects of exposure bias. Our method
differs from previous solution on exposure bias that
we remove the order by structure decoding rather
than random sampling (Tsai and Lee, 2019).

CASREL (Wei et al., 2020) is a recently pro-
posed two-step tagging method, which first finds
all the head entities in the sentence then labels a
relation-tail table for each head entity, which can
also be seen as a UMTree decoder with a decoding
length two. However, they overlook the data bias
problem in NYT, which causing model unreliability
and possible model bias.

Note that our task is different from ONEIE (Lin
et al., 2020), which models event extraction, entity
span detection, entity type recognition and rela-
tion extraction in a Seq2Graph way. In contrast to
ONEIE, JERE aims to extract only relation-entity
triplets, which can be modeled by our UMTree
structure naturally. The simplicity of the tree en-
ables the model to conduct global extraction.

6 Conclusions

In this paper, we thoroughly analyze the effects
of exposure bias of Seq2Seq models on joint en-
tity and relation extraction. Exposure bias causes
overfitting that hurts the reliability of the perfor-
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mance scores. To solve the problem of exposure
bias, we point out the order of the target triplets is
redundant and formulate the target triplet sequence
to Unordered-Multi-Tree. The Unordered-Multi-
Tree structure minimizes the effect of exposure bias
by limiting the decoding length to three within a
triplet, and removing the order among triplets. We
conduct in-depth experiments and reveal the rela-
tionship between exposure bias and data bias. The
results show great generalization of our model.
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