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Abstract

Distant supervision has been a widely used
method for neural relation extraction for its
convenience of automatically labeling datasets.
However, existing works on distantly super-
vised relation extraction suffer from the low
quality of test set, which leads to considerable
biased performance evaluation. These biases
not only result in unfair evaluations but also
mislead the optimization of neural relation ex-
traction. To mitigate this problem, we propose
a novel evaluation method named active test-
ing through utilizing both the noisy test set
and a few manual annotations. Experiments
on a widely used benchmark show that our pro-
posed approach can yield approximately unbi-
ased evaluations for distantly supervised rela-
tion extractors.

1 Introduction

Relation extraction aims to identify relations be-
tween a pair of entities in a sentence. It has been
thoroughly researched by supervised methods with
hand-labeled data. To break the bottleneck of man-
ual labeling, distant supervision (Mintz et al., 2009)
automatically labels raw text with knowledge bases.
It assumes that if a pair of entities have a known re-
lation in a knowledge base, all sentences with these
two entities may express the same relation. Clearly,
the automatically labeled datasets in distant super-
vision contain amounts of sentences with wrong
relation labels. However, previous works only fo-
cus on wrongly labeled instances in training sets
but neglect those in test sets. Most of them estimate
their performance with the held-out evaluation on
noisy test sets, which will yield inaccurate evalua-
tions of existing models and seriously mislead the
model optimization. As shown in Table 1, we com-
pare the results of held-out evaluation and human
evaluation for the same model on a widely used
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benchmark dataset NYT-10 (Riedel et al., 2010).
The biases between human evaluation and existing
held-out evaluation are over 10%, which are mainly
caused by wrongly labeled instances in the test set,
especially false negative instances.

Evaluations P@100 P@200 P@300
Held-out Evaluation 83 77 69
Human Evaluation 93(+10) 92.5(+15.5) 91(+22)

Table 1: The Precision at top K predictions (%) of the
model Lin et al. (2016) upon held-out evaluation and
human evaluation on NYT-10. Results are obtained by
our implementations.

A false negative instance is an entity pair labeled
as non-relation, even if it has at least one relation in
reality. This problem is caused by the incomplete-
ness of existing knowledge bases. For example,
over 70% of people included in Freebase have no
place of birth (Dong et al., 2014). From a ran-
dom sampling, we deduce that about 8.75% entity
pairs in the test set of NYT-10 are misclassified
as non-relation.1 Clearly, these mislabeled entity
pairs yield biased evaluations and lead to inappro-
priate optimization for distantly supervised relation
extraction.

In this paper, we propose an active testing ap-
proach to estimate the performance of distantly
supervised relation extraction. Active testing has
been proved effective in evaluating vision mod-
els with large-scale noisy datasets (Nguyen et al.,
2018). In our approach, we design an iterative ap-
proach, with two stage per iteration: vetting stage
and estimating stage. In the vetting stage, we adopt
an active strategy to select batches of the most
valuable entity pairs from the noisy test set for an-
notating. In the estimating stage, a metric estimator
is proposed to obtain a more accurate evaluation.

1We randomly selected 400 entity pairs from the test set,
in which 35 are misclassified as non-relation.
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With a few vetting-estimating iterations, evaluation
results can be dramatically close to that of human
evaluation by using limited vetted data and all noisy
data. Experimental results demonstrate that the pro-
posed evaluation method yields approximately un-
biased estimations for distantly supervised relation
extraction.

2 Related Work

Distant supervision (Mintz et al., 2009) was pro-
posed to deal with large-scale relation extraction
with automatic annotations. A series of studies
have been conducted with human-designed features
in distantly supervised relation extraction (Riedel
et al., 2010; Surdeanu et al., 2012; Takamatsu et al.,
2012; Angeli et al., 2014; Han and Sun, 2016).
In recent years, neural models were widely used
to extract semantic meanings accurately without
hand-designed features (Zeng et al., 2015; Lin et al.,
2017; Zhang et al., 2019). Then, to alleviate the
influence of wrongly labeled instances in distant
supervision, those neural relation extractors inte-
grated techniques such as attention mechanism (Lin
et al., 2016; Han et al., 2018; Huang and Du, 2019),
generative adversarial nets (Qin et al., 2018a; Li
et al., 2019), and reinforcement learning (Feng
et al., 2018; Qin et al., 2018b). However, none
of the above methods pay attention to the biased
and inaccurate test set. Though human evaluation
can yield accurate evaluation results (Zeng et al.,
2015; Alt et al., 2019), labeling all the instances in
the test set is too costly.

3 Task Definition

In distant supervision paradigm, all sentences
containing the same entity pair constitute a bag.
Researchers train a relation extractor based on
bags of sentences and then use it to predict re-
lations of entity pairs. Suppose that a distantly
supervised model returns confident score2 si =
{si1, si2 . . . sip} for entity pair i ∈ {1 . . . N},
where p is the number of relations, N is the
number of entity pairs, and sij ∈ (0, 1). yi =
{yi1, yi2 . . . yip} and zi = {zi1, zi2 . . . zip} respec-
tively represent automatic labels and true labels for
entity pair i, where yij and zij are both in {0, 1}3.

In widely used held-out evaluation, existing
methods observe two key metrics which are preci-
sion at top K (P@K) and Precision-Recall curve

2Confident scores are estimated probabilities for relations.
3An entity pair may have more than one relations.

(PR curve). To compute both metrics, confident
score for all entity pairs are sorted in descending or-
der, which is defined as s′ = {s′1, s′2 . . . s′P } where
P = Np. Automatic labels and true labels are de-
noted as y′ = {y′1, . . . , y′P } and z′ = {z′1, . . . , z′P }.
In summary, P@K and R@K can be described by
the following equations,

P@K{z′1 . . . z′P } =
1

K

∑
i≤K

z′i (1)

R@K{z′1 . . . z′P } =

∑
i≤K z′i∑
i≤P z

′
i

(2)

Held-out evaluation replaces z′ with y′ to calculate
P@K and R@K, which leads to incorrect results
obviously.

4 Methodology

In this section, we present the general framework
of our method. A small random sampled set is
vetted in the initial state. In each iteration there
are two steps: 1) select a batch of entity pairs with
a customized vetting strategy, label them manu-
ally, and add them to the vetted set; 2) use a new
metric estimator to evaluate existing models by
the noisy set and the vetted set jointly. After a few
vetting-evaluating iterations, unbiased performance
of relation extraction is appropriately evaluated. In
summary, our method consists of two key compo-
nents: a vetting strategy and a metric estimator.

4.1 Metric Estimator

Our test set consists of two parts: 1) a noisy set
U in which we only know automatic label y′i; 2)
a vetted set V in which we know both automatic
label y′i and manual label z̃′i. We treat the true label
z′i as a latent variable and z̃′i is its observed value.
The performance evaluation mainly depends on
the estimation of z′i. In our work, we estimate the
probability as

p(z′i) =
∏
i∈U

p(z′i|Θ)
∏
i∈V

δ(z′i = z̃′i) (3)

where Θ represents all available elements such as
confident score, noisy labels and so on. We make
the assumption that the distribution of true latent
labels is conditioned on Θ.

Given posterior estimates p(z′i|Θ), we can com-
pute the expected performance by replacing the true
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latent label by its probability. Then, the precision
and recall equations can be rewritten as

E[P@K] =
1

K
(
∑
i∈VK

z̃′i+
∑
i∈UK

p(z′i = 1|Θ)) (4)

E[R@K] =

∑
i∈VK

z̃′i +
∑

i∈UK
p(z′i = 1|Θ)∑

i∈V z̃
′
i +

∑
i∈U p(z

′
i = 1|Θ)

(5)
where UK and VK denote the unvetted and vetted
subsets of K highest-scoring examples in the total
set U ∪ V .

To predict the true latent label z′i for a specific
relation, we use noisy label y′i and confident score
s′i. This posterior probability can be derived as (see
appendix for proof)

p(z′i|y′i, s′i) =
p(yjk|zjk)p(zjk|sjk)∑

v p(yjk|zjk = v)p(zjk = v|sjk)

(6)

where v ∈ {0, 1}. sjk, yjk, zjk are the correspond-
ing elements of s′i, y

′
i, z
′
i before sorting confident

score. Given a few vetted data, we fit p(yjk|zjk) by
standard maximum likelihood estimation (counting
frequencies). p(zjk|sjk) is fitted by using logistic
regression. For each relation, there is a specific
logistic regression function to fit.

4.2 Vetting Strategy
In this work, we apply a strategy based on
maximum expectedmodel change(MEMC) (Set-
tles, 2009). The vetting strategy is to select the
sample which can yield a largest expected change
of performance estimation. Let Ep(z′|V )Q be the
expected performance based on the distribution
p(z′|V ) estimated from current vetted set V . After
vetting example i and updating that estimator, it
will become Ep(z′|V,z′i)Q. The change caused by
vetting example i can be written as

∆i(z
′
i) = |Ep(z′|V )Q− Ep(z′|V,z′i)Q| (7)

For precision at top K, this expected change can be
written as

Ep(z′i|V )[∆i(z
′
i)] =

2

K
pi(1− pi) (8)

where pi = P (z′i = 1|Θ). For the PR curve, every
point depends on P@K for different K. Thus, this
vetting strategy is also useful for the PR curve.

With this vetting strategy, the most valuable data
is always selected first. Therefore, vetting budget

is the only factor controlling the vetting procedure.
In this approach, we take it as a hyper parameter.
When the budget is used up, the vetting stops. The
procedure is described in Algorithm 1.

Algorithm 1 Active Testing Algorithm

Require: unvetted set U , vetted set V , vetting bud-
get T , vetting strategy VS, confident score S,
estimator p(z′)

1: while T > 0 do
2: select a batch of items B ∈ U with vetting

strategy VS
3: vet B and get manual label z̃′

4: U=U−B, V=V∪B
5: fit p(z′) with U, V, S
6: T=T−|B|
7: end while

5 Experiment

We conduct sufficient experiments to support our
claims; 1) The proposed active testing is able to get
more accurate results by introducing very few man-
ual annotations. 2) The held-out evaluation will
misdirect the optimization of relation extraction,
which can be further proved through re-evaluation
of eight up-to-date relation extractors.

5.1 Experimental Setting
Dataset. Our experiments are conducted on a
widely used benchmark NYT-10 (Riedel et al.,
2010) and an accurate dataset named NYT-19,
which contains 500 randomly selected entity pairs
from the test set of NYT-10. It contains 106 pos-
itive entity pairs and 394 negative entity pairs, in
which 35 entity pairs are false negative. NYT-19
has been well labeled by NLP researchers.

Initialization. We use PCNN+ATT (Lin et al.,
2016) as baseline relation extractors. To be more
convincing, we provide the experimental results
of BGRU+ATT in the appendix. The initial state
of vetted set includes all the positive entity pairs
of the test set in NYT-10 and 150 vetted negative
entity pairs. The batch size for vetting is 20 and
the vetting budget is set to 100 entity pairs.

5.2 Effect of Active Testing
We evaluate the performance of PCNN+ATT with
held-out evaluation, human evaluation and our
method. The results are shown in Table 2, and
Figure 1. Due to high costs of manual labeling for
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the whole test set, we use the PR-curve on NYT-19
to simulate that on NYT-10.

Model Evaluations P@100 P@200 P@300

PCNN+ATT
Held-out Evaluation 83 77 69

Our method 91.2 88.4 83.4
Human Evaluation 93 92.5 91

Table 2: The Precision at top K predictions (%) of
PCNN+ATT upon held-out evaluation, our method and
human evaluation on NYT-10.

Figure 1: The PR curve of PCNN+ATT on NYT-19.

To measure the distance between two curves, we
sample 20 points equidistant on each curve and
calculate the Euclidean distance of the two vectors.
In this way, our method gets the distances 0.17 to
the curve of human evaluation while corresponding
distances for held-out evaluation is 0.72. We can
observe that 1) The performance biases between
manual evaluation and held-out evaluation are too
significant to be neglected. 2) The huge biases
caused by wrongly labeled instances are dramati-
cally alleviated by our method. Our method obtains
at least 8.2% closer precision to manual evaluation
than the held-out evaluation.

5.3 Effect of Vetting Strategy
We compare our MEMC strategy with a random
vetting strategy as shown in Figure 2. The distance
from curves of different vetting strategies to that of
human evaluation is 0.176 and 0.284. From the fig-
ure, we can conclude that the proposed vetting strat-
egy is much more effective than the random vetting
strategy. With the same vetting budget, MEMC
gets more accurate performance estimation at most
parts of the range.

5.4 Re-evaluation of Relation Extractors
With the proposed performance estimator, we re-
evaluate eight up-to-date distantly supervised rela-

Figure 2: The PR curves of PCNN+ATT evaluated with
various vetting strategies on NYT-19

tion extractors.

Model P@100(%) P@200(%) P@300(%)
Zeng et al. 2015 88.0 85.1 82.3
Lin et al. 2016 91.2 88.9 83.8
Liu et al. 2017 94.0 89.0 87.0

Qin et al. 2018b 88.8 86.2 84.8
Qin et al. 2018a 87.0 83.8 80.8
Liu et al. 2018 95.7 93.4 89.9

BGRU 94.4 89.5 84.7
BGRU+ATT 95.1 90.1 87.1

Table 3: The P@N precision of distantly supervised
relation extractors on NYT-10. All the methods are im-
plemented with the same framework and running in the
same run-time environment.

From Table 3, we can observe that: 1) The rela-
tive ranking of the models according to precision
at top K almost remains the same except Qin et al.
2018b and Qin et al. 2018a. Although GAN and re-
inforcement learning are helpful to select valuable
training instances, they are tendentiously to be over-
fitted. 2) Most models make the improvements as
they mentioned within papers at high confident
score interval. 3) BGRU performs better than any
other models, while BGRU based method Liu et al.
2018 achieves highest precision. More results and
discussions can be found in the Appendix.

6 Conclusion

In this paper, we propose a novel active testing
approach for distantly supervised relation extrac-
tion, which evaluates performance of relation ex-
tractors with both noisy data and a few vetted data.
Our experiments show that the proposed evaluation
method is appropriately unbiased and significant
for optimization of distantly relation extraction in
future.
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A Appendices

A.1 Logistic Regression
Here we provide the derivation of Equation.6 in the
main paper.

p(z′i|y′i, s′i) =
p(z′i, y

′
i, s
′
i)∑

v p(z′i = v, y′i, s
′
i)

=
p(zjk, yjk, sjk)∑

v p(zjk = v, yjk, sjk)

=
p(yjk|zjk, sjk)p(zjk|sjk)∑

v p(yjk|zjk = v, sjk)p(zjk = v|sjk)

We assume that given zjk, the observed label yjk
is conditionally independent of sjk, which means
p(yjk|zjk, sjk) = p(yjk|zjk). The expression is
simplified to:

p(z′i|y′i, s′k) =
p(yjk|zjk)p(zjk|sjk)∑

v p(yjk|zjk = v)p(zjk = v|sjk)

A.2 Vetting Strategy
Here we provide the derivation of Equation.8 in the
main paper.

Ep(z′i|V )[∆i(z
′
i)] = pi

1

K
|1− pi|+ (1− pi)

1

K
|0− pi|

=
2

K
pi(1− pi)

Model Evaluations P@100 P@200 P@300

BGRU+ATT
Held-out Evaluation 82 78.5 74.3

Our method 95.2 90.1 87.1
Human Evaluation 98 96 95

Table 4: The Precision at top K predictions (%) of
BGRU+ATT upon held-out evaluation, our method and
human evaluation on NYT-10.

Figure 3: The PR curve of BGRU+ATT on NYT-19.

A.3 Experimental result of BGRU+ATT
We also evaluate the performance of BGRU+ATT
with held-out evaluation, human evaluation and our
method. The results are shown in Table 4, and
Figure 3. Our method gets the distances 0.15 to
the curve of human evaluation while corresponding
distances for held-out evaluation is 0.55.

A.4 The result of different iterations
We have recorded the distance of different itera-
tions between the curves obtained by our method
and manual evaluation in Figure 4. With the re-
sults, we can observe that the evaluation results
obtained by our method become closer to human
evaluation when the number of annotated entity
pairs is less than 100. When the number is more
than 100, the distance no longer drops rapidly but
begins to fluctuate.

B Case Study

We present realistic cases in NYT-10 to show the ef-
fectiveness of our method. In Figure 6, all cases are
selected from Top 300 predictions of PCNN+ATT.
These instances are all negative instances and has
the automatic label NA in NYT-10. In held-out
evaluation, relation predictions for these instances
are judged as wrong. However, part of them are
false negative instances in fact and have the corre-
sponding relations, which cause considerable bi-
ases between manual and held-out evaluation. In
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Figure 4: The result of different iterations for the active
testing algorithm with PCNN+ATT and BGRU+ATT

our approach, those relation predictions for false
negative instances are given a high probability to
be corrected. At the same time, true negative in-
stances are accurately identified and given a low
(near zero) probability.

C Re-evaluation Discussion

The detailed descriptions and discussions of re-
evaluation experiments are conducted in this sec-
tion.

C.1 Models

PCNN (Zeng et al., 2015) is the first neural
method used in distant supervision without human-
designed features.
PCNN+ATT (Lin et al., 2016) further integrates
a selective attention mechanism to alleviate the in-
fluence of wrongly labeled instances. The selective
attention mechanism generates attention weights
over multiple instances, which is expected to re-
duce the weights of those noisy instances dynami-
cally.
PCNN+ATT+SL (Liu et al., 2017) is the develop-
ment of PCNN+ATT. To correct the wrong labels at
entity-pair level during training, the labels of entity
pairs are dynamically changed according to the con-
fident score of the predictive labels. Clearly, this
method highly depends on the quality of label gen-
erator, which has great potential to be over-fitting.
PCNN+ATT+RL (Qin et al., 2018b) adopts re-
inforcement learning to overcome wrong labeling
problem for distant supervision. A deep reinforce-
ment learning agent is designed to choose correctly
labeled instances based on the performance change
of the relation classifier. After that, PCNN+ATT is
adopted on the filtered data to do relation classifi-

cation.
PCNN+ATT+DSGAN (Qin et al., 2018a) is an
adversarial training framework to learn a sentence
level true-positive generator. The positive samples
generated by the generator are labeled as negative
to train the generator. The optimal generator is
obtained when the discriminator cannot differen-
tiate them. Then the generator is adopted to filter
distant supervision training dataset. PCNN+ATT is
applied to do relation extraction on the new dataset.
BGRU is one of recurrent neural network, which
can effectively extract global sequence information.
It is a powerful fundamental model for wide use of
natural language processing tasks.
BGRU+ATT is a combination of BGRU and the
selective attention.
STPRE (Liu et al., 2018) extracts relation features
with BGRU. To reduce inner-sentence noise, au-
thors utilize a Sub-Tree Parse(STP) method to re-
move irrelevant words. Furthermore, model param-
eters are initialized with a prior knowledge learned
from the entity type prediction task by transfer
learning.

Figure 5: PR curve of distantly supervised relation ex-
tractors on NYT-10 with the proposed active testing.

C.2 Discussion

In this section, we additionally provide PR curves
to show the performance of baselines. From both
Table 3 and Figure 5, we are aware of that: 1)
The relative ranking is quite different from that on
held-out evaluation according to PR curve. 2) The
selective attention has limited help in improving
the overall performance, even though it may have
positive effects at high confident score. 4) The
soft-label method greatly improves the accuracy at
high confident score but significantly reduces the
overall performance. We deduce that it is severely
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Figure 6: A case study of active testing approach for distantly supervised relation extraction. The entities are
labeled in red. 1.0(vetted) and 0.0(vetted) mean that the entity pair is vetted in our method.

affected by the unbalanced instance numbers of
different relations, which will make label generator
over-fitting to frequent labels. 4) For the overall
performance indicated by PR curves, BGRU is the
most solid relation extractor.


