
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1896–1907
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

1896

UNIFIEDQA: Crossing Format Boundaries with a Single QA System

Daniel Khashabi1 Sewon Min2 Tushar Khot1 Ashish Sabharwal1
Oyvind Tafjord1 Peter Clark1 Hannaneh Hajishirzi1,2

1Allen Institute for AI, Seattle, U.S.A.
2University of Washington, Seattle, U.S.A.

Abstract

Question answering (QA) tasks have been
posed using a variety of formats, such as ex-
tractive span selection, multiple choice, etc.
This has led to format-specialized models, and
even to an implicit division in the QA commu-
nity. We argue that such boundaries are artifi-
cial and perhaps unnecessary, given the reason-
ing abilities we seek to teach are not governed
by the format. As evidence, we use the latest
advances in language modeling to build a sin-
gle pre-trained QA model, UNIFIEDQA, that
performs well across 20 QA datasets spanning
4 diverse formats. UNIFIEDQA performs on
par with 8 different models that were trained
on individual datasets themselves. Even when
faced with 12 unseen datasets of observed for-
mats, UNIFIEDQA performs surprisingly well,
showing strong generalization from its out-of-
format training data. Finally, fine-tuning this
pre-trained QA model into specialized mod-
els results in a new state of the art on 10 fac-
toid and commonsense QA datasets, establish-
ing UNIFIEDQA as a strong starting point for
building QA systems.1

1 Introduction

Question answering is a common tool for assessing
how well can computers understand language and
reason with it. To this end, the NLP community
has introduced several distinct datasets, with four
popular QA formats illustrated in Fig. 1. For in-
stance, some datasets expect the answer to be “yes”
or “no”, or a unique answer span in the associated
paragraph (as opposed to multiple or no spans).
These differences have motivated their study in
silos, often encoding QA format into the model ar-
chitecture itself. Efforts to exploit multiple datasets
remain largely restricted to a single format. For
example, Clark et al. (2019c) limit consideration to

1 https://github.com/allenai/unifiedqa

Extractive [SQuAD] 

 Question: At what speed did the turbine operate? 
 Context: (Nikola_Tesla) On his 50th birthday in 1906, Tesla demonstrated 
 his 200 horsepower (150 kilowatts) 16,000 rpm bladeless turbine. ...  
 Gold answer: 16,000 rpm

Multiple-Choice [ARC-challenge]

Question: What does photosynthesis produce that helps plants grow?            
Candidate Answers: (A) water (B) oxygen (C) protein (D) sugar 
Gold answer: sugar

Yes/No [BoolQ] 

 Question: Was America the first country to have a president? 
 Context: (President) The first usage of the word president to denote the 
 highest official in a government was during the Commonwealth of England ...  
 Gold answer: no

Abstractive [NarrativeQA]

Question: What does a drink from narcissus's spring cause the drinker to do? 
Context: Mercury has awakened Echo, who weeps for Narcissus, and states 
that a drink from Narcissus's spring causes the drinkers to "Grow dotingly
enamored of themselves." ... 
Gold answer: fall in love with themselves 

Figure 1: Four formats (color-coded throughout the
paper) commonly used for posing questions and an-
swering them: Extractive (EX), Abstractive (AB),
Multiple-Choice (MC), and Yes/No (YN). Sample
dataset names are shown in square brackets. We study
generalization and transfer across these formats.

multiple-choice datasets, while Talmor and Berant
(2019) focus their generalization study on extrac-
tive span prediction models. To the best of our
knowledge, no single QA system targets, not to
mention excels at, all of these formats.

This raises the question: Can QA models learn
linguistic reasoning abilities that generalize across
formats? Our intuition is simple: while question
format and relevant knowledge may vary across
QA datasets, the underlying linguistic understand-
ing and reasoning abilities are largely common. A
multiple-choice model may, therefore, benefit from
training on an extractive answers dataset. Building
upon this intuition, we present a single pre-trained
QA system, named UNIFIEDQA, that exploits in-
formation across 4 different QA formats to achieve
strong performance across 20 different factoid and

https://github.com/allenai/unifiedqa
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Datasets SQuAD11 SQuAD2 NewsQA Quoref ROPES NarQA DROP NatQA RACE MCTest OBQA ARC QASC CQA WG PIQA SIQA BoolQ NP-BoolQ MultiRC

Format Extractive QA (EX) Abstractive QA (AB) Multiple-choice QA (MC) Yes/NO QA (YN)
Has paragraphs? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Has explicit candidate ans? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

# of explicit candidates 4 4 4 4 8 5 2 2 3

Para contains ans as substring? ✓ ✓ ✓ ✓

Has idk questions? ✓

Figure 2: Properties of various QA datasets included in this study: 5 extractive (EX), 3 abstractive (AB), 9 multiple-
choice (MC), and 3 yes/no (YN). ‘idk’ denotes ‘I don’t know’ or unanswerable questions. BoolQ represents both
the original dataset and its contrast-sets extension BoolQ-CS; similarly for ROPES, Quoref, and DROP.

commonsense QA datasets listed in Fig. 2.
In this work, we advocate for a unifying view

of QA formats by building a format-agnostic QA
system. Our work leverages recent progress in
text-to-text pre-trained neural models, specifically
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020), but with a strong focus on differing QA
formats. This paradigm allows unifying many NLP
models, which formerly had task-specific designs,
into a single text-to-text framework. Previous work
uses textual prefixes to explicitly define the task
associated with each input instance (Raffel et al.,
2020; Radford et al., 2019b); often such attempts
to build a single model for multiple NLP tasks
underperform the standard pre-training plus fine-
tuning setup (a model per task) (Raffel et al., 2020).

Our work narrows down the scope to tasks that
stay within the boundaries of QA, demonstrating
that a unified text-to-text paradigm can, in fact, be
successful across different QA tasks and formats.
We develop a single pre-trained QA model by train-
ing text-to-text models on a set of seed QA datasets
of multiple formats, taking natural text as input,
without using format-specific prefixes. Our experi-
ments show that UNIFIEDQA can be applied as-is
to different QA tasks, generalizes well to other
unseen datasets (zero-shot), and with further fine-
tuning achieves state-of-the-art results on many QA
tasks including commonsense and factual datasets.

Contributions. This work advocates for a uni-
fied view of different QA formats, and for build-
ing format-agnostic QA systems. To support this
view, we present UNIFIEDQA, a single pre-trained
QA system that works well on and generalizes to
datasets with different formats (§6.2), while per-
forming on par with state-of-the-art dedicated sys-
tems tailored to each dataset (§6.1). Additionally,
fine-tuning UNIFIEDQA into specialized systems
sets a new state of the art for 10 datasets (§6.3),
establishing it as a powerful starting point for QA
research. Our findings demonstrate that crossing
QA format boundaries is not only qualitatively de-

sirable but also quantitatively beneficial.

2 Related Work

Several QA efforts have studied generalization
across datasets of a single format. For instance,
in MultiQA, Talmor and Berant (2019) study gen-
eralization and transfer, but only across extractive
span selection datasets. Further, while they show
strong leave-one-out style results, they find a sin-
gle system performs substantially worse than one
tuned to each dataset. In ORB, Dua et al. (2019a)
propose a multi-dataset evaluation benchmark span-
ning extractive and abstractive formats. However,
that study is limited to an evaluation of systems,
falling short of addressing how to build such gener-
alized models. The MRQA shared task (Fisch et al.,
2019) focuses on span-prediction datasets. Unlike
all these efforts, our goal is to investigate transfer
and generalization across different QA formats, as
well as to build a single system that does this well.

Exploiting commonality across machine learn-
ing tasks has a rich history studied under transfer
learning (Caruana, 1997; Clark et al., 2019b). Mc-
Cann et al. (2018) and Keskar et al. (2019) study
transfer among various NLP tasks by casting them
into a single QA format—an elegant transfer learn-
ing approach but orthogonal to the goal of this
work. As noted earlier, Raffel et al. (2020) investi-
gate the transfer between several diverse NLP tasks
(machine translation, summarization, etc). Their
key contribution is a text-to-text framework, and
a powerful model called T5, that makes it easier
to mix multiple tasks by encoding both inputs and
outputs as text. They rely on textual prefixes to ex-
plicitly define the task corresponding to each input
instance. While we build upon their framework, we
narrow our focus to variations of QA. This allows
us to achieve strong results while avoiding reliance
on any format-specific prefixes. Our models learn
to infer the format of each input question based on
its content (e.g., whether the phrasing of the ques-
tion demands a yes/no answer). Moreover, we are
able to demonstrate generalization across QA tasks,
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which prior work failed to achieve presumably due
to its focus on too broad a set of NLP tasks.

3 UNIFIEDQA: Multi-format Training

Suppose we would like to train a unified QA model
that can operate over k formats F1, F2, . . . , Fk. For
each format Fi, suppose we have `i datasets sets
Di

1, D
i
2, . . . , D

i
`i

where Di
j = (T i

j , E
i
j) includes

both training and evaluation examples. In some
cases, the training set T i

j may be empty or we may
want to ignore it in order to treat Di

j as an ‘un-
seen’, evaluation-only dataset and assess a model’s
generalization to it.

We use the text-to-text paradigm to convert each
training question q in format Fi into a plain-text
input representation enci(q). This conversion uses
a natural encoding process that will be described
shortly (§3.1) for four common QA formats, and is
easily extensible to other formats as well. We fol-
low a simple approach of creating a mixed training
pool consisting of all available training instances:

T̃ =
k⋃

i=1

`i⋃
j=1

{
enci(q) | q ∈ T i

j

}
Training batches are drawn from this pooled data,
T̃ , by including each q ∈ T i

j with a probability pro-
portional 1/|T i

j |. Each batch thus, on average, con-
tains the same number of instances from each train-
ing set, regardless of its size. Similar treatments of
task mixing have also been adopted by Arivazha-
gan et al. (2019) and Raffel et al. (2020). As our
experiments will show, our multi-format mixing ap-
proach works well. It clearly highlights the value of
training on out-of-format data and confirms our in-
tuition that there are strong ties across QA formats
in terms of the underlying reasoning abilities.2

Our unified question-answering system is based
on the recent text-to-text frameworks, particularly,
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020). We first define a unifying encoding of the
instances across various formats (§3.1). We then
introduce UNIFIEDQA (§3.2) that is a QA system
trained on datasets in multiple formats, indicating
new state-of-the-art results on 10 datasets and gen-
eralization to unseen datasets.

2A more sophisticated teaching curriculum (Sachan and
Xing, 2016) or approaches such as model distillation and
teacher annealing (Clark et al., 2019b) are likely to further
improve the performance of the resulting unified model, bol-
stering the strength of our advocacy for a unified view of all
QA formats. We leave their exploration to future work.

3.1 Text-to-Text Encoding

We convert each of our target datasets into a text-
in/text-out format (Raffel et al., 2020; Lewis et al.,
2020; Radford et al., 2019b). The question always
comes first, followed by some additional informa-
tion (context paragraph or candidate answers, or
both). We use “\n” separators between different
parts of the input. This ensures having a human-
like encoding while not making it overly-specific
to a certain format.

Our unified model incorporates the following
four common question-answering formats. Specific
datasets within them are deferred to Section 4.1.
Extractive (EX) questions Q include a context
paragraph C (typically a paragraph) and require
models to extract the answer as a substring from
the context. In some datasets, ‘unanswerable’ can
sometimes be the correct response.

Abstractive (AB) questions Q require models to
produce answers that are often not mere substrings
of the provided context paragraph C.

Multiple-choice (MC) questions Q come with a
set of candidate answers {Ai}, of which generally
exactly one is correct. In some cases, they also
include a context paragraph C.

Yes/No (YN) questions Q expect a ‘yes’ or ‘no’
answer as the response and may include a context
paragraph C.

Table 1 provides examples of the natural input
and output encoding for each of these formats,
where both input and output representations are
raw text. There is no explicit information regard-
ing a question being an MC question or having
exactly four candidate answers. Specifically, MC
questions without any context paragraph are en-
coded as question \n (A) c1 (B) c2 . . . where
c1, c1, . . . are the set of candidate answers (see the
example from ARC dataset). If the question in-
cludes a context paragraph, it is appended after the
candidate answers: question \n (A) c1 (B) c2

. . . \n paragraph, as shown in the example from
the MCTest dataset. Questions in the other three
formats (EX, AB, and YN) are encoded simply as
question \n paragraph.

To re-emphasize, unlike prior work (Raffel et al.,
2020), we do not specify any task-, dataset-, or
format-specific prefixes in the input representa-
tion. Whether the answer should be extracted or
abstracted, and whether from the provided context
paragraph or candidate answers (or the fact that
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EX

Dataset SQuAD 1.1

Input
At what speed did the turbine operate? \n 
(Nikola_Tesla) On his 50th birthday in 1906, Tesla 
demonstrated his 200 horsepower (150 kilowatts) 
16,000 rpm bladeless turbine. ...

Output 16,000 rpm

AB

Dataset NarrativeQA 

Input

What does a drink from narcissus's spring cause the 
drinker to do?  \n  Mercury has awakened Echo, who 
weeps for Narcissus, and states that a drink from 
Narcissus's spring causes the drinkers to ``Grow 
dotingly enamored of themselves.'' ...

Output fall in love with themselves 

MC

Dataset ARC-challenge 

Input What does photosynthesis produce that helps plants 
grow? \n (A) water (B) oxygen (C) protein (D) sugar 

Output sugar

Dataset MCTest

Input

Who was Billy? \n (A) The skinny kid (B) A teacher 
(C) A little kid (D) The big kid \n Billy was like a 
king on the school yard. A king without a queen. He 
was the biggest kid in our grade, so he made all the 
rules during recess. ...

Output The big kid

YN

Dataset BoolQ 

Input
Was America the first country to have a president?  
\n (President) The first usage of the word president 
to denote the highest official in a government was 
during the Commonwealth of England ...

Output no

Table 1: Example text-to-text encoding of instances.

these even are candidate answers) is expected to be
inferred by the system.

3.2 UNIFIEDQA: The Pre-Trained Model

The specific pre-trained QA model we provide and
use in all our experiments is trained on represen-
tative datasets for each of the 4 formats discussed
earlier. We empirically chose the following 8 seed
datasets for training UNIFIEDQA,3 based on their
effectiveness in our pilot study (details deferred
to Section 5) assessing which datasets are most
valuable for out-of-format training:

• EX: SQuAD 1.1, SQuAD 2.0
• AB: NarrativeQA
• MC: RACE, ARC, OBQA, MCTest
• YN: BoolQ

One can easily use other combinations of for-
mats and datsets to create variants of our UNI-
FIEDQA model, or extend it as future datasets be-
come available or new formats are introduced.

Unless otherwise noted, we use the largest avail-
able T5 model (11B parameters) as the starting
point for training our model and call the system
UNIFIEDQA. We also report results of training
our system with BARTlarge, referred to as UNI-
FIEDQABART (see §6.3). Details on the parameters
of the models used are deferred to Appendix A.2.

3Future references to ‘seed dataset’ point to the QA
datasets used in this section.

Similar to pre-trained language models, the result-
ing pre-trained QA model can be used as a starting
point for fine-tuning on other QA datasets.

4 Formats and Datasets

4.1 Datasets

We evaluate UNIFIEDQA on 20 existing datasets
that target different formats as well as various com-
plex linguistic phenomena. Fig. 2 summarizes
key properties of our datasets (whether it comes
with a paragraph or answer candidates, whether
the paragraph explicitly contains the answer, etc).
Most importantly, they are grouped into several for-
mats/categories as described below. Table 2 gives
certain statistics of these datasets. We next pro-
vide a summary enumerating these datasets, with
additional details deferred to Appendix A.1.

Extractive QA (EX). Among the datasets in this
popular format, we adopt SQuAD 1.1 (Rajpurkar
et al., 2016), SQuAD 2 (Rajpurkar et al., 2018),
NewsQA (Trischler et al., 2017), Quoref (Dasigi
et al., 2019), ROPES (Lin et al., 2019).

Abstractive QA (AB). The datasets used from
this format are: NarrativeQA/NarQA (Kociský
et al., 2018), the open-domain version of Natu-
ralQuestions/NatQA (Kwiatkowski et al., 2019),
and DROP (Dua et al., 2019b).

Multiple-choice QA (MC). We use the
following MC datasets: MCTest (Richard-
son et al., 2013), RACE (Lai et al., 2017),
OpenBookQA/OBQA (Mihaylov et al., 2018),
ARC (Clark et al., 2018, 2016), QASC (Khot et al.,
2019), CommonsenseQA/CQA (Talmor et al.,
2019), PIQA (Bisk et al., 2020), SIQA (Sap et al.,
2019), and Winogrande (Sakaguchi et al., 2020).
Several of the MC datasets do not come with
accompanying paragraphs (such as ARC, QASC,
OBQA). For most of this the work, we keep the
questions as is with no additional retrieval (unless
otherwise mentioned). One other variability among
these datasets is their number of candidate answers.
While many datasets have four candidates (see
Fig. 2), others have more. Later (in §6.2) we
will see that our approach generalizes to datasets
with different numbers of candidates, even if such
questions have not been seen during training.

Yes/No QA (YN). The YN datasets we
use are BoolQ (Clark et al., 2019a) and a
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Dataset Train
set size

Eval.
set size

Best
published

95%
CI (%)

Input
length

Output
length

SQuAD 1.1 87k 10k 95.6 0.4 136.2 3.0
SQuAD 2.0 130k 11k 91.2 0.5 139.9 2.6
NewsQA 76k 4k 66.8 1.4 606.6 4.0
Quoref 22k 2k 86.1 1.5 352.7 1.7
Quoref-CS - 700 55.4 3.6 324.1 2.2
ROPES 10k 1.4k 61.1 2.5 169.1 1.4
ROPES-CS - 974 32.5 3.0 182.7 1.3

NarQA 65k 21k 58.9 0.7 563.6 6.2
NatQA 79k 3.6k 42.2 1.6 607.0 2.2
DROP 77k 9k 89.1 0.6 189.1 1.6
DROP-CS - 947 54.2 3.2 206.0 2.1

RACE 87k 4k 89.5 0.9 317.9 6.9
OBQA 4k 501 80.0 3.3 28.7 3.6
MCTest 1.4k 320 86.5 3.4 245.4 4.0
ARC (easy) 2k 2k 80.0 1.7 39.4 3.7
ARC (chal.) 1k 1k 67.8 2.9 47.4 5.0
CQA 9.7k 1.2k 79.1 2.2 26.8 1.5
WG 40.3k 1.7k 67.5 2.2 25.2 3.0
PIQA 16.1k 3k 79.4 1.4 49.6 20.2
SIQA 33.4k 2.2k 78.0 1.7 37.3 4.7

BoolQ 9k 3k 91.0 1.0 105.1 1.0
BoolQ-CS - 461 71.1 4.0 108.9 1.0
NP-BoolQ 10k 3k 78.4 1.4 106.2 1.0
MultiRC - 312 91.7 2.6 293.3 1.0

Table 2: Dataset Statistics. CQA, OBQA, WG,
and NarQA refer to CommonsenseQA, OpenBookQA,
Winogrande, and NarrativeQA, respectively. The CI
column shows the upper 95% confidence interval for
the evaluation set as a percentage, based on the Wil-
son test around the mean score listed as a percentage in
the best known performance column. Input and output
representation lengths are measured in the number of
tokens and averaged across the dataset.

naturally-perturbed version of this dataset, BoolQ-
NP (Khashabi et al., 2020), and the binary (yes/no)
subset of MultiRC (Khashabi et al., 2018).

Contrast-sets. Additionally, we use contrast-
sets (Gardner et al., 2020) for several of our
datasets (denoted with “CS”): BoolQ-CS, ROPES-
CS, Quoref-CS, DROP-CS. These evaluation sets
are expert-generated perturbations that deviate
from the patterns common in the original dataset.

4.2 Evaluation Metrics for Textual Output
We evaluate each dataset using the metric used
most often for it in prior work. For the EX format,
it’s the F1 score of the extracted span relative to the
gold label. For the AB format, we use ROUGE-L
metric (Lin et al., 2006; Min et al., 2019; Nishida
et al., 2019). For NatQA we use the exact-match
metric, following Min et al. (2020). For the MC
format, we match the generated text with the closest
answer candidate based token overlap and compute
the accuracy. For the YN format, we follow Clark
et al. (2019a) to measure if the generated output
matches the correct ‘yes’ or ‘no’ label. In rare cases
where the output is longer than one word (e.g., ‘yes
it is’), we check if it contains the correct label but

not the incorrect one.4

5 Pilot Study: Can Out-of-Format
Training Help?

We first answer the question: Is the broad idea of
benefiting from out-of-format training even viable?
For instance, is our intuition correct that an MC
dataset can, in practice, benefit from training on
an EX dataset? Before discussing our main exper-
imental results, we briefly report on a pilot study
that assesses the following basic question: Given
a training set T i

1 (the anchor dataset) of QA for-
mat Fi, is there an out-of-format training set T j

1

of format Fj such that training jointly on T i
1 ∪ T j

1

improves performance relative to training only on
T i
1? To this end, we evaluate both on the match-

ing evaluation set Ei
1 as well as on ‘unseen’ data

Ei
2, E

i
3, . . . of the same format.

The results are summarized in Table 3. The two
rows in each individual table correspond to training
on T i

1 (the anchor dataset) and on T i
1 ∪X , where

X is an out-of-format dataset corresponding to T j
1

above. The columns represent various evaluation
sets of format Fi. For each column, ‘X = . . .’ at
the very bottom indicates the out-of-format dataset
X that was the most helpful in improving perfor-
mance on the evaluation set in that column.5

Consider the case of the anchor set T i
1 being

BoolQ and the evaluation set being NP-BoolQ,
both of format YN. Here, including out-of-format
training data X=SQuAD2 boosts performance
from 51% to as much as 59%. The gain may be
less in other cases, but across all anchor and evalu-
ation datasets, we generally observe that there is at
least one out-of-format training set whose inclusion
improves performance.

This pilot study thus provides a proof of concept
that out-of-format training can indeed help a QA
model in nearly every case. Of course, this study
only shows the existence of such an out-of-format
dataset, rather than provide a single unified model.
Nevertheless, it helps identify representative train-
ing sets from each format that were most helpful.
As alluded to earlier, we used this empirical data to
guide which training sets to include when building
UNIFIEDQA in Section 3.2.

The experimental results from this case study
are summarized in the aggregated plot shown in

4The evaluation code is available at the URL in Footnote 1.
5Appendix A.5 reports extended results, including the per-

formance with various choices of X .
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Trained on ↓ - Evaluated on → SQuAD11 SQuAD2 NewsQA Quoref Quoref-CS

SQuAD11 85.9 42.8 51.7 28.2 28.11
SQuAD11 + X 85.8 42.8 52.1 29.4 29.84

Best X BoolQ OBQA OBQA NarQA OBQA

Trained on ↓ - Evaluated on → RACE OBQA ARC-chal MCTest

RACE 55.8 26.6 28.0 62.5
RACE + X 59.1 32.2 28.4 69.4

Best X SQuAD11 NarQA NewsQA SQuAD11

Trained on ↓ - Evaluated on → BoolQ MultiRC NP-BoolQ BoolQ-CS

BoolQ 76.4 64.1 51.3 53.4
BoolQ + X 78.9 66.0 59.4 61.0

Best X SQuAD2 OBQA SQuAD2 NarQA

Trained on ↓ - Evaluated on → NarQA DROP DROP-CS

NarQA 51.5 10.2 11.1
NarQA + X 53.0 14.4 14.6

Best X SQuAD2 SQuAD2 SQuAD2

Table 3: Pilot study showing that out-of-format training can help improve performance. Each table compares
training on just the anchor dataset (e.g., BoolQ in the top-left table) with training also on an out-of-format dataset
denoted ‘X’. Evaluation is on the anchor dataset as well as unseen datasets of that format. The last row identifies
the out-of-format dataset that helped most on each evaluation dataset. All results are based on the “small” size T5
model. Color denotes QA format (see Table 2).
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Figure 3: Bipartite graph showing the value of various
datasets. The datasets on the left were used for training
and on the right for evaluation. The wider the edge
from a dataset ` (on the left) to a dataset r (on the right),
the higher the contribution of adding the out-of-format
dataset ` to the training set of questions in r’s format.

Fig. 3. In this bipartite graph, the datasets used for
training are on the left hand side and the evaluation
datasets are on the right hand side. The weight of
each edge w(`, r) indicates the contribution of a
dataset ` when used for training jointly with an an-
chor dataset d, when evaluated on r (d and r have
the same format.) Specifically,
w(`, r) = avgd

[
S
(
` ∪ d; r

)
− S

(
d; r
)]
,

where S(d, r) is the score achieved on r after train-
ing on d. Since we only focus on gains from out-of-
format training, we drop the edges that are negative
or between two datasets of the same format.

As expected, there are strong connections be-
tween the AB and EX datasets in Fig. 3 since
their definitions are quite similar. Apart from the

edge weight, the overall width of a dataset ` on
the left also depicts how much it contributes to
out-of-format datasets. E.g., NQA (NarrativeQA)
is the most helpful dataset and even helps mul-
tiple formats. Similarly our extractive datasets
(SQuAD11.1, SQuAD 2, and NewsQA) are also
relatively more helpful. While large datasets gen-
erally appear to help, RACE, another large-scale
dataset, doesn’t help that much. The least help-
ful dataset in the mix is BoolQ which focuses on
yes/no questions.

In a similar vein, the wider the dataset on the
right hand side, the more it can be benefit from
out-of-format datasets. Among these beneficiary
datasets, all four formats are equally represented.

6 Experimental Results

We now discuss our main experimental results, eval-
uating UNIFIEDQA on seed datasets (used for train-
ing the system) as well as unseen datasets.

6.1 UNIFIEDQA vs. 8 Dedicated Models

Is UNIFIEDQA, a single pre-trained multi-format
QA system, as good as dedicated systems trained
for individual datasets? We emphasize that the an-
swer to this question is not as simple as it may
seem, since earlier works have observed that a sys-
tem addressing multiple tasks often underperforms
a focused system (Raffel et al., 2020).

Fig. 4 summarizes the results of the relevant ex-
periment. The gray bars belong to UNIFIEDQA
(a single system for multiple datasets of different
formats). The colored bars are different T5-based
systems tailored to individual datasets (a different
system for each dataset). The results show that
UNIFIEDQA performs almost as good as individ-
ual T5 models targeted to each dataset. In some
cases UNIFIEDQA performs even better than the
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Seen dataset? Model ↓ - Evaluated on → NewsQA Quoref Quoref-CS ROPES ROPES-CS DROP DROP-CS QASC Common
senseQA NP-BoolQ BoolQ-CS MultiRC Avg

No

UnifiedQA [EX] 58.7 64.7 53.3 43.4 29.4 24.6 24.2 55.3 62.8 20.6 12.8 7.2 38.1
UnifiedQA [AB] 58.0 68.2 57.6 48.1 41.7 30.7 36.8 54.1 59.0 27.2 39.9 28.4 45.8
UnifiedQA [MC] 48.5 67.9 58.0 61.0 44.4 28.9 37.2 67.9 75.9 2.6 5.7 9.7 42.3
UnifiedQA [YN] 0.6 1.7 1.4 0.0 0.7 0.4 0.1 14.8 20.8 79.1 78.6 91.7 24.2

UnifiedQA 58.9 63.5 55.3 67.0 45.5 32.5 40.1 68.5 76.2 81.3 80.4 59.9 60.7

Yes Previous best
66.8 86.1 55.4 61.1 32.5 89.1 54.2 85.2 79.1 78.4 71.1 --

Retro Reader TASE XLNet ROBERTa RoBERTa ALBERT MTMSN KF+SIR+2StepFreeLB-RoBERTa RoBERTa RoBERTa --

Table 4: Generalization to unseen datasets: Multi-format training (UNIFIEDQA) often outperforms models trained
the same way but solely on other in-format datasets (e.g., UNIFIEDQA [EX], which is trained on all extractive train-
ing sets of UNIFIEDQA. When averaged across all evaluation datasets (last column), UNIFIEDQA shows strong
generalization performance across all formats. Notably, the “Previous best” models (last row) were trained on the
target dataset’s training data, but are even then outperformed by UnifiedQA (which has never seen these datasets
during training) on the YN tasks.
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SQuAD1.1
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OBQA
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Dedicated Models UnifiedQA

Figure 4: UNIFIEDQA is on-par with, and often out-
performs, 9 different equally-sized T5-based systems
tailored to individual datasets. The figure contains sep-
arate models for each of the two subsets of the ARC
and Regents datasets.

single-dataset experts (e.g., on OBQA or NQA).
On average (last column) UNIFIEDQA clearly out-
performs the ensemble of dataset/format-specific
systems. UNIFIEDQA thus offers flexibility across
multiple QA formats while compromising almost
nothing compared to dataset-specific experts.

6.2 Generalization to Unseen Datasets

We now explore whether UNIFIEDQA generalizes
well to other, unseen datasets. Table 4 summarizes
the results of experiments where we evaluate var-
ious models on datasets that are not used to train
them. It compares UNIFIEDQA (training on mul-
tiple formats) with training on various datasets of
a single format (e.g., UNIFIEDQA [EX], built by
training the model on only extractive datasets).

The first few rows of the table show T5 models
trained for individual formats, followed by UNI-
FIEDQA. For completeness, we include the high-
est previous scores for each dataset; one must
be careful when reading these numbers as the
best previous numbers follow the fully super-
vised protocol (for NewsQA (Zhang et al., 2020),

Quoref (Segal et al., 2019), DROP (Lan et al.,
2019), ROPES (Lin et al., 2019), QASC (Khot
et al., 2019), CommonsenseQA (Zhu et al., 2020)
and x-CS datasets (Gardner et al., 2020).)

We make three key observations: (1) On average
(last column), UNIFIEDQA shows much stronger
generalization across a wide range of datasets. (2)
on 9 (out of 12) datasets, UNIFIEDQA shows a
better generalization than any single-format ex-
pert. For example, while the system is trained
on multiple-choice questions with 4 candidate an-
swers, it works quite well on datasets with more
than 4 candidate answers (QASC and Common-
senseQA have has 8 and 5 candidate answers per
question, respectively). (3) Single-format experts
are better at generalization only when the source
and target datasets are very similar (for instance
SQuAD and Quoref).

6.3 State-of-the-Art via Simple Fine-tuning

Fine-tuning of pre-trained language models has
become the standard paradigm for building dataset-
specific stat-of-the-art systems (Devlin et al., 2019;
Liu et al., 2019). The question we address here
is: when it comes to QA, is there a value in using
UNIFIEDQA as a starting point for fine-tuning, as
opposed to a vanilla language model that has not
seen other QA datasets before?

To address this question, we fine-tune each of
UNIFIEDQA, T5, and BART on several datasets by
selecting the best check point on the dev set, and
evaluating on the test set. Table 5 summarizes the
results of the experiments. The table shows two
variants: UNIFIEDQAT5 and UNIFIEDQABART.
All results are based on the 11B version of T5.

The columns indicate the evaluation on the test
set corresponding to the data that was used for
training. For each dataset, the first line of the table
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Model ↓ - Eval. → OBQA * OBQA 
(w/ IR) ARC-easy * ARC-easy 

(w/ IR) ARC-chal * ARC-chal 
(w/ IR) QASC QASC 

(w/ IR)

Previous best published 
RoBERTa

(Clark et al.,2019c)
KF+SIR 

(Mitra et al., 2020)
RoBERTa 

(Clark et al.,2019c) 

FreeLB- 
RoBERTa (Zhu et 

al., 2020) 

RoBERTa 
(Clark et al.,2019c) 

FreeLB- RoBERTa 
(Zhu et al., 2020) --

KF+SIR 
+2Step (Mitra 

et al., 2020)

75.7 80.0 69.9 80.0 55.9 67.8 -- 85.2

BARTlarge - FT 67.8 66.2 64.1 79.6 36.6 40.4 50.0 75.3

UnifiedQABART - FT 63.8 70.0 68.0 82.7 52.1 55.0 53.2 78.2
T5 - FT 84.2 84.2 83.8 90.0 65.4 69.7 77.0 88.5

UnifiedQA - FT 86.0 87.2 86.4 92.0 75.0 78.5 78.5 89.6

Model ↓ - Eval. → RACE * ComQA WG PIQA SIQA ROPES NatQ (w/ IR)

Previous best published 
ALBERT 

(Lan et al.,2019) 
FreeLB- RoBERTa 

(Zhu et al.,2020)
RoBERTa 

(Sakaguchi et al.,2019) 
RoBERTa 

(Bisk et al., 2019)
RoBERTa 

(Mitra et al., 2020)
RoBERTa 

(Lin et al., 2019) 
DPR+BART 

(Min et al.,2020)

89.5 72.2 67.5 79.4 78.0 61.1 42.2
BARTlarge - FT 78.8 62.5 62.4 77.4 74.0 60.5 42.1

UnifiedQABART - FT 79.4 64.0 63.6 77.9 73.2 60.0 44.5
T5 - FT 87.1 78.1 84.9 88.9 81.4 74 49.3

UnifiedQA - FT 89.4 79.1 85.7 89.5 81.4 75.2 49.3

Model ↓ - Eval. → OBQA * OBQA 
(w/ IR) ARC-easy * ARC-easy 

(w/ IR) ARC-chal * ARC-chal 
(w/ IR) QASC QASC 

(w/ IR)

Previous best published 
RoBERTa

(Clark et al.,2019c)
KF+SIR 

(Mitra et al., 2020)
RoBERTa 

(Clark et al.,2019c) 

FreeLB- 
RoBERTa (Zhu et 

al., 2020) 

RoBERTa 
(Clark et al.,2019c) 

FreeLB- RoBERTa 
(Zhu et al., 2020) --

KF+SIR 
+2Step (Mitra 

et al., 2020)

75.7 80.0 69.9 80.0 55.9 67.8 -- 85.2

BARTlarge - FT 67.8 66.2 64.1 79.6 36.6 40.4 50.0 75.3

UnifiedQABART - FT 63.8 70.0 68.0 82.7 52.1 55.0 53.2 78.2
T5 - FT 84.2 84.2 83.8 90.0 65.4 69.7 77.0 88.5

UnifiedQA - FT 86.0 87.2 86.4 92.0 75.0 78.5 78.5 89.6

Model ↓ - Eval. → RACE * ComQA WG PIQA SIQA ROPES NatQ (w/ IR)

Previous best published 
ALBERT 

(Lan et al.,2019) 
FreeLB- RoBERTa 

(Zhu et al.,2020)
RoBERTa 

(Sakaguchi et al.,2019) 
RoBERTa 

(Bisk et al., 2019)
RoBERTa 

(Mitra et al., 2020)
RoBERTa 

(Lin et al., 2019) 
DPR+BART 

(Min et al.,2020)

89.5 72.2 67.5 79.4 78.0 61.1 42.2
BARTlarge - FT 78.8 62.5 62.4 77.4 74.0 60.5 42.1

UnifiedQABART - FT 79.4 64.0 63.6 77.9 73.2 60.0 44.5
T5 - FT 87.1 78.1 84.9 88.9 81.4 74 49.3

UnifiedQA - FT 89.4 79.1 85.7 89.5 81.4 75.2 49.3

Table 5: Fine-tuning UNIFIEDQA (last row) results in new state-of-the-art performance on 11 datasets. Further,
it consistently improves upon fine-tuned T5 (2nd last row) by a margin ranging from 1% for CommonsenseQA
(CQA) to as much as 13% for ARC-challenge. ‘(w/ IR)’ denotes relevant information is retrieved and appended as
context sentences in the input encoding. Datasets marked with * are used in UNIFIEDQA’s original training.

Model ↓ - Evaluated on → SQuAD11 SQuAD2 NarQA RACE OBQA ARC-easy ARC-hard MCTest BoolQ Avg Δ
UnifiedQA 93.4 89.6 65.2 87.3 86.0 85.7 75.6 95.0 90.2 85.4

 excluding BoolQ 93.1 90.1 65.0 87.7 85.0 86.1 75.2 94.7 8.3 77.0 -8.4
 excluding SQuAD 2 95.3 47.3 65.4 87.7 84.8 85.9 75.5 95.3 90.5 81.3 -4.2
 excluding OBQA 93.6 89.3 65.2 87.4 77.8 85.7 74.0 94.7 90.1 84.2 -1.3
 excluding NarQA 93.6 89.8 52.5 87.7 85.6 86.3 75.9 95.6 89.9 84.2 -1.2
 excluding RACE 93.9 89.0 65.0 78.5 85.2 85.6 74.7 95.9 90.1 84.3 -1.2
 excluding ARC-easy 93.4 89.8 65.0 87.0 83.8 84.0 75.9 94.7 89.9 84.9 -0.6
 excluding ARC-hard 93.6 90.1 64.9 87.3 85.2 85.1 73.8 95.6 90.5 85.1 -0.4
 excluding MCTest 92.8 90.6 65.0 87.1 84.6 85.6 75.4 95.6 90.2 85.2 -0.2
 excluding SQuAD 1.1 92.6 90.3 65.3 87.4 85.8 86.5 75.9 95.3 90.7 85.6 0.1

Table 6: The results of a leave-one-out ablation. The first row indicates the performance of UNIFIEDQA on each
dataset it was trained on. The rest of the rows exclude one dataset at a time. The rows are sorted based on the last
column: the dataset with biggest contribution appear first. The red highlights indicate the top 3 performance drops
for each column.

reports the best previously published work. For
several MC datasets that do not come with evi-
dence paragraphs, we include two variants: one
where we use them as-is and another that uses para-
graphs fetched via an Information Retrieval (IR)
system as additional evidence, indicated with “w/
IR” tags. We use the same IR sentences as used by
the baselines: Aristo corpus for ARC and OBQA
datasets (Clark et al., 2019c), and 2-step IR for
QASC (Khot et al., 2019). For NatQA, follow-
ing (Min et al., 2020), we use the DPR retrieval
engine (Karpukhin et al., 2020) to augment each
question with additional paragraphs.

We see that fine-tuning on UNIFIEDQA con-
sistently dominates fine-tuning on T5 and BART,
respectively. It also dominates the best previous
scores on the datasets. Intuitively, since UNI-

FIEDQA has seen different formats, it should be
positioned to achieve higher scores after a little
fine-tuning, compared to fine-tuning on a vanilla
T5 or BART model. This could be especially ef-
fective when a user has limited training data for
a target QA task (also shown in Appendix A.6.)
This also highlights that the effectiveness of cross-
format training is not limited only to T5, but is
rather a general trend for text-to-text architectures.

6.4 Ablation: Training Set Contributions

We now perform a leave-one-out experiment to
better understand the contribution of each seed
dataset to UNIFIEDQA. We take the system from
§3.2 and assess how strong the model is when indi-
vidual seed training datasets are dropped from the
union. The result of this experiment is summarized
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in Table 6. It compares the performance of full
UNIFIEDQA (the first row) with ablated variants
that exclude one seed dataset at a time. The rows
are sorted based on the last column: datasets with
higher contributions appear first.

Looking at first few rows of the table, BoolQ,
SQuAD 2.0, OBQA, NarQA are the top four con-
tributing datasets, each with a different format.
SQuAD 1.1 has the least importance, presumably
because it is mostly covered by SQuAD 2.0.

This study suggests that in order to build an ef-
fective unified QA system, it suffices to have a
relatively small set of datasets as long as the set
includes representatives from each format.

7 Discussion

The key motivation for this work is the observa-
tion that nearly all prior efforts on QA research
were limited to the boundaries defined by narrow
formats. A format-specific design would not gen-
eralize across QA datasets with slightly different
definitions (e.g., a model built for SQuAD would
not work for RACE). Additionally, such a design
would prevent us from benefiting from the labeled
data available in other formats. We challenge this
view by advocating for approaches that combine
seemingly different datasets. We believe that devel-
oping QA systems targeted to a specific format is a
conceptual barrier for progress in the field.

Factors affecting generalization. Format is not
the only factor affecting generalization across
datasets. We additionally studied the value of other
factors including dataset size and domain (vocabu-
lary, topic, and style) in improving generalization.
We observed that larger datasets often help with
generalization, but not always (§5); e.g., RACE or
OBQA show similar benefits (Fig. 3), even though
RACE is much larger than OBQA. We observed a
similar phenomenon with domain: similar domains
help with transfer, but that is not always the case.
For example, while BoolQ questions, similar to
SQuAD, are accompanied with Wiki paragraphs,
they barely benefit each other. Overall, the factors
affecting generalization are not well-understood,
leaving room for future investigations.

Unifying QA formats and text-to-text models.
While UNIFIEDQA is built based using existing
text-to-text models (Radford et al., 2019a; Raf-
fel et al., 2020), we emphasize that the choice of
tasks for multi-task learning plays a crucial role

in achieving successful results. Previous studies
(Raffel et al., 2020) did not observe gains when
mixing tasks that are very different. The key intu-
ition is that a more coherent choice of tasks is more
likely to succeed. Further, focusing on a coherent
space of QA tasks/formats allows us to simplify
the input by not requiring “prefixes” to explicitly
define tasks/formats.

8 Conclusion

The question-answering community has fruitfully
explored the design of strong models, but while
staying within the boundaries of individual QA for-
mats. We argued that such boundaries are artificial
and can even limit the performance of systems, be-
cause the desired reasoning abilities being taught
and probed are not tied to specific formats. Train-
ing data in one format should, in principle, help
QA systems perform better even on questions in
another format.

With this intuition in mind, we presented UNI-
FIEDQA, a single pre-trained QA system based
on the text-to-text paradigm, seeking to bring uni-
fication across four common QA formats. We
showed that even with its simple multi-format train-
ing methodology, UNIFIEDQA achieves perfor-
mance on par with 8 dataset-specific expert models
(§6.1), while also generalizing well to many unseen
datasets of seen formats (§6.2). At the same time,
we demonstrated that UNIFIEDQA is a strong start-
ing point for building QA systems: it can achieve
state-of-the-art performance by simply fine-tuning
on target datasets (6.3).

We hope this effort will inspire a future line of
work in the QA and NLP communities, moving
towards more general and broader system designs.
We leave extensions of UNIFIEDQA to other for-
mats such as to direct-answer questions (Roberts
et al., 2020) as a promising avenue for future work.
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