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Abstract

Domain adaptation of Pretrained Language
Models (PTLMs) is typically achieved by un-
supervised pretraining on target-domain text.
While successful, this approach is expensive
in terms of hardware, runtime and CO2 emis-
sions. Here, we propose a cheaper alternative:
We train Word2Vec on target-domain text and
align the resulting word vectors with the word-
piece vectors of a general-domain PTLM. We
evaluate on eight English biomedical Named
Entity Recognition (NER) tasks and compare
against the recently proposed BioBERT model.
We cover over 60% of the BioBERT – BERT
F1 delta, at 5% of BioBERT’s CO2 footprint
and 2% of its cloud compute cost. We also
show how to quickly adapt an existing general-
domain Question Answering (QA) model to an
emerging domain: the Covid-19 pandemic.1

1 Introduction

Pretrained Language Models (PTLMs) such as
BERT (Devlin et al., 2019) have spearheaded ad-
vances on many NLP tasks. Usually, PTLMs
are pretrained on unlabeled general-domain and/or
mixed-domain text, such as Wikipedia, digital
books or the Common Crawl corpus.

When applying PTLMs to specific domains, it
can be useful to domain-adapt them. Domain adap-
tation of PTLMs has typically been achieved by pre-
training on target-domain text. One such model is
BioBERT (Lee et al., 2020), which was initialized
from general-domain BERT and then pretrained
on biomedical scientific publications. The domain
adaptation is shown to be helpful for target-domain
tasks such as biomedical Named Entity Recogni-
tion (NER) or Question Answering (QA). On the
downside, the computational cost of pretraining can
be considerable: BioBERTv1.0 was adapted for ten

1www.github.com/npoe/covid-qa

days on eight large GPUs (see Table 1), which is
expensive, environmentally unfriendly, prohibitive
for small research labs and students, and may delay
prototyping on emerging domains.

We therefore propose a fast, CPU-only domain-
adaptation method for PTLMs: We train
Word2Vec (Mikolov et al., 2013a) on target-domain
text and align the resulting word vectors with the
wordpiece vectors of an existing general-domain
PTLM. The PTLM thus gains domain-specific lexi-
cal knowledge in the form of additional word vec-
tors, but its deeper layers remain unchanged. Since
Word2Vec and the vector space alignment are effi-
cient models, the process requires a fraction of the
resources associated with pretraining the PTLM
itself, and it can be done on CPU.

In Section 4, we use the proposed method to
domain-adapt BERT on PubMed+PMC (the data
used for BioBERTv1.0) and/or CORD-19 (Covid-
19 Open Research Dataset). We improve over
general-domain BERT on eight out of eight biomed-
ical NER tasks, using a fraction of the compute cost
associated with BioBERT. In Section 5, we show
how to quickly adapt an existing Question Answer-
ing model to text about the Covid-19 pandemic,
without any target-domain Language Model pre-
training or finetuning.

2 Related work

2.1 The BERT PTLM

For our purpose, a PTLM consists of three parts:
A tokenizer TLM : L+ → L+

LM, a wordpiece em-
bedding lookup function ELM : LLM → RdLM

and an encoder function FLM. LLM is a lim-
ited vocabulary of wordpieces. All words from
the natural language L+ that are not in LLM

are tokenized into sequences of shorter word-
pieces, e.g., dementia becomes dem ##ent ##ia.
Given a sentence S = [w1, . . . , wT ], tokenized

www.github.com/npoe/covid-qa


1483

size Domain adaptation hardware Power(W) Time(h) CO2(lbs) Google Cloud $

BioBERTv1.0 base 8 NVIDIA v100 GPUs (32GB) 1505 240 544 1421 – 4762
BioBERTv1.1 base 8 NVIDIA v100 GPUs (32GB) 1505 552 1252 3268 – 10952
GreenBioBERT (Section 4) base 12 Intel Xeon E7-8857 CPUs, 30GB RAM 1560 12 28 16 – 76
GreenCovidSQuADBERT (Section 5) large 12 Intel Xeon E7-8857 CPUs, 40GB RAM 1560 24 56 32 – 152

Table 1: Domain adaptation cost. CO2 emissions are calculated according to Strubell et al. (2019). Since our
hardware configuration is not available on Google Cloud, we take an m1-ultramem-40 instance (40 vCPUs, 961GB
RAM) to estimate an upper bound on our Google Cloud cost.

as TLM(S) = [TLM(w1); . . . ; TLM(wT )], ELM em-
beds every wordpiece in TLM(S) into a real-valued,
trainable wordpiece vector. The wordpiece vec-
tors of the entire sequence are stacked and fed into
FLM. Note that we consider position and segment
embeddings to be a part of FLM rather than ELM.

In the case of BERT, FLM is a Transformer
(Vaswani et al., 2017), followed by a final Feed-
Forward Net. During pretraining, the Feed-
Forward Net predicts the identity of masked word-
pieces. When finetuning on a supervised task, it is
usually replaced with a randomly initialized layer.

2.2 Domain-adapted PTLMs

Domain adaptation of PTLMs is typically achieved
by pretraining on unlabeled target-domain text.
Some examples of such models are BioBERT
(Lee et al., 2020), which was pretrained on the
PubMed and/or PubMed Central (PMC) corpora,
SciBERT (Beltagy et al., 2019), which was pre-
trained on papers from SemanticScholar, Clinical-
BERT (Alsentzer et al., 2019; Huang et al., 2019a)
and ClinicalXLNet (Huang et al., 2019b), which
were pretrained on clinical patient notes, and Adapt-
aBERT (Han and Eisenstein, 2019), which was
pretrained on Early Modern English text. In most
cases, a domain-adapted PTLM is initialized from
a general-domain PTLM (e.g., standard BERT),
though Beltagy et al. (2019) report better results
with a model that was pretrained from scratch with
a custom wordpiece vocabulary. In this paper, we
focus on BioBERT, as its domain adaptation cor-
pora are publicly available.

Acc@1 Acc@5 Acc@10

train (19.8K words) 53.6 63.5 65.7
heldout (2.2K words) 39.4 51.6 54.3

Table 2: LW2V → LLM alignment accuracy (%), i.e.,
how often the identical string is in the top-K nearest
neighbors.

2.3 Word vectors
Word vectors are distributed representations of
words that are trained on unlabeled text. Con-
trary to PTLMs, word vectors are non-contextual,
i.e., a word type is always assigned the same vec-
tor, regardless of context. In this paper, we use
Word2Vec (Mikolov et al., 2013a) to train word
vectors. We will denote the Word2Vec lookup func-
tion as EW2V : LW2V → RdW2V .

2.4 Word vector space alignment
Word vector space alignment has most frequently
been explored in the context of cross-lingual word
embeddings. For instance, Mikolov et al. (2013b)
align English and Spanish Word2Vec spaces by a
simple linear transformation. Wang et al. (2019)
use a related method to align cross-lingual word
vectors and multilingual BERT wordpiece vectors.
In this paper, we apply the method to the problem
of domain adaptation within the same language.

3 Method

In the following, we assume access to a general-
domain PTLM, as described in Section 2.1, and a
corpus of unlabeled target-domain text.

3.1 Creating new input vectors
In a first step, we train Word2Vec on the target-
domain corpus. In a second step, we take the in-
tersection of LLM and LW2V. In practice, the in-
tersection mostly contains wordpieces from LLM

that correspond to standalone words. It also con-
tains single characters and other noise, however, we
found that filtering them does not improve align-
ment quality. In a third step, we use the intersec-
tion to fit an unconstrained linear transformation
W ∈ RdLM×dW2V via least squares:

argmin
W

∑
x∈LLM∩LW2V

||WEW2V(x)− ELM(x)||22

Intuitively, W makes Word2Vec vectors “look
like” the PTLM’s native wordpiece vectors, just
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Query NNs of query in ELM[LLM] NNs of query in WEW2V[LW2V]

query ∈ LW2V ∩ LLM

Boldface: Training vector pairs

surgeon physician, psychiatrist, surgery surgeon, urologist, neurosurgeon
surgeon surgeon, physician, researcher neurosurgeon, urologist, radiologist
depression Depression, recession, depressed depression, Depression, hopelessness
depression depression, anxiety, anxiousness depressive, insomnia, Depression
fatal lethal, deadly, disastrous fatal, lethal, deadly
fatal fatal, catastrophic, disastrous lethal, devastating, disastrous

query ∈ LW2V − LLM

ventricular cardiac, pulmonary, mitochondrial atrial, ventricle, RV
dementia diabetes, Alzheimer, autism VaD, MCI, AD
suppressants medications, medicines, medication suppressant, prokinetics, painkillers
anesthesiologist surgeon, technician, psychiatrist anesthetist, anaesthesiologist, anaesthetist
nephrotoxicity toxicity, inflammation, contamination hepatotoxicity, ototoxicity, cardiotoxicity
impairment inability, disruption, disorders impairments, deficits, deterioration

Table 3: Examples of within-space and cross-space nearest neighbors (NNs) by cosine similarity in Green-
BioBERT’s wordpiece embedding layer. Blue: Original wordpiece space. Green: Aligned Word2Vec space.

like cross-lingual alignment makes word vectors
from one language “look like” word vectors from
another language. In Table 2, we report word align-
ment accuracy when we split LLM ∩ LW2V into a
training and development set.2 In Table 3, we show
examples of within-space and cross-space nearest
neighbors after alignment.

3.2 Updating the wordpiece embedding layer

Next, we redefine the wordpiece embedding layer
of the PTLM. The most radical strategy would be to
replace the entire layer with the aligned Word2Vec
vectors:

ÊLM : LW2V → RdLM ; ÊLM(x) = WEW2V(x)

In initial experiments, this strategy led to a
drop in performance, presumably because func-
tion words are not well represented by Word2Vec,
and replacing them disrupts BERT’s syntactic abil-
ities. To prevent this problem, we leave existing
wordpiece vectors intact and only add new ones:

ÊLM : LLM ∪ LW2V → RdLM ;

ÊLM(x) =

{
ELM(x) if x ∈ LLM

WEW2V(x) otherwise
(1)

3.3 Updating the tokenizer

In a final step, we update the tokenizer to account
for the added words. Let TLM be the standard
BERT tokenizer, and let T̂LM be the tokenizer that
treats all words in LLM ∪ LW2V as one-wordpiece
tokens, while tokenizing any other words as usual.

In practice, a given word may or may not benefit
from being tokenized by T̂LM instead of TLM. To

2Since we are not primarily interested in word alignment
accuracy, we use the entire intersection as a training set in all
other experiments.

give a concrete example, 82% of the words in the
BC5CDR NER dataset that end in the suffix -ia are
part of a disease entity (e.g., dementia). TLM tok-
enizes this word as dem ##ent ##ia, thereby expos-
ing this strong orthographic cue to the model. As
a result, TLM improves recall on -ia diseases. But
there are many cases where wordpiece tokeniza-
tion is meaningless or misleading. For instance
euthymia (not a disease) is tokenized by TLM as e
##uth ##ym ##ia, making it likely to be classified
as a disease. By contrast, T̂LM gives euthymia a
one-wordpiece representation that depends only on
distributional semantics. We find that using T̂LM
improves precision on -ia diseases.

To combine these complementary strengths, we
use a 50/50 mixture of TLM-tokenization and T̂LM-
tokenization when finetuning the PTLM on a task.
At test time, we use both tokenizers and mean-pool
the outputs. Let o(S; T ) be some output of interest
(e.g., a logit), given sentence S tokenized by T .
We predict:

ô(S) =
o(S; TLM) + o(S; T̂LM)

2

4 Experiment 1: Biomedical NER

In this section, we use the proposed method to
create GreenBioBERT, an inexpensive and envi-
ronmentally friendly alternative to BioBERT. Re-
call that BioBERTv1.0 (biobert v1.0 pubmed pmc)
was initialized from general-domain BERT (bert-
base-cased) and then pretrained on PubMed+PMC.

4.1 Domain adaptation
We train Word2Vec with vector size dW2V =
dLM = 768 on PubMed+PMC (see Appendix for
details). Then, we update the wordpiece embed-
ding layer and tokenizer of general-domain BERT
(bert-base-cased) as described in Section 3.
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BERT (ref) BioBERTv1.0 (ref) BioBERTv1.1 (ref) GreenBioBERT
Biomedical NER task (NER task ID) (Lee et al., 2020) (Lee et al., 2020) (Lee et al., 2020) (with standard error of the mean)

BC5CDR-disease (Li et al., 2016) (1) 81.97 / 82.48 / 82.41 85.86 / 87.27 / 86.56 86.47 / 87.84 / 87.15 84.88 (.07) / 85.29 (.12) / 85.08 (.08)
NCBI-disease (Doğan et al., 2014) (2) 84.12 / 87.19 / 85.63 89.04 / 89.69 / 89.36 88.22 / 91.25 / 89.71 85.49 (.23) / 86.41 (.15) / 85.94 (.16)
BC5CDR-chem (Li et al., 2016) (3) 90.94 / 91.38 / 91.16 93.27 / 93.61 / 93.44 93.68 / 93.26 / 93.47 93.82 (.11) / 92.35 (.17) / 93.08 (.07)
BC4CHEMD (Krallinger et al., 2015) (4) 91.19 / 88.92 / 90.04 92.23 / 90.61 / 91.41 92.80 / 91.92 / 92.36 92.80 (.04) / 89.78 (.07) / 91.26 (.04)
BC2GM (Smith et al., 2008) (5) 81.17 / 82.42 / 81.79 85.16 / 83.65 / 84.40 84.32 / 85.12 / 84.72 83.34 (.15) / 83.58 (.09) / 83.45 (.10)
JNLPBA (Kim et al., 2004) (6) 69.57 / 81.20 / 74.94 72.68 / 83.21 / 77.59 72.24 / 83.56 / 77.49 71.93 (.12) / 82.58 (.12) / 76.89 (.10)
LINNAEUS (Gerner et al., 2010) (7) 91.17 / 84.30 / 87.60 93.84 / 86.11 / 89.81 90.77 / 85.83 / 88.24 92.50 (.17) / 84.54 (.26) / 88.34 (.18)
Species-800 (Pafilis et al., 2013) (8) 69.35 / 74.05 / 71.63 72.84 / 77.97 / 75.31 72.80 / 75.36 / 74.06 73.19 (.26) / 75.47 (.33) / 74.31 (.24)

Table 4: Biomedical NER test set precision / recall / F1 (%). “(ref)”: Reference scores from Lee et al. (2020).
Boldface: Best model in row. Underlined: Best model without target-domain LM pretraining.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Test set F1 shifted and scaled
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BioBERTv1.1 (ref)
GreenBioBERT

Figure 1: NER test set F1, transformed as (x −
BERT(ref))/(BioBERTv1.0(ref) − BERT(ref)). This
plot shows what portion of the reported BioBERT –
BERT F1 delta is covered. “(ref)”: Reference scores
from Lee et al. (2020). “(repro)”: Results of our repro-
duction experiments. Error bars: Standard error of the
mean.

NER task ID (1) (2) (3) (4) (5) (6) (7) (8)

non-aligned -4.88 -3.50 -4.13 -3.34 -2.34 -0.56 -0.84 -4.63
random init -4.33 -3.60 -3.19 -3.19 -1.92 -0.50 -0.84 -3.58

Table 5: Absolute drop in dev set F1 when using non-
aligned word vectors or randomly initialized word vec-
tors, instead of aligned word vectors.

4.2 Finetuning

We finetune GreenBioBERT on the eight publicly
available NER tasks used in Lee et al. (2020). We
also do reproduction experiments with general-
domain BERT and BioBERTv1.0, using the same
setup as our model. See Appendix for details on
preprocessing and hyperparameters. Since some of
the datasets are sensitive to the random seed, we
report mean and standard error over eight runs.

4.3 Results and discussion

Table 4 shows entity-level precision, recall and F1,
as measured by the CoNLL NER scorer. For ease
of visualization, Figure 1 shows test set F1 shifted
and scaled as

f(x) =
x− BERT(ref)

BioBERTv1.0(ref) − BERT(ref)

where BERT(ref) and BioBERTv1.0(ref) are re-
ported scores from Lee et al. (2020). In other
words, the figure shows what portion of the re-
ported BioBERT – BERT F1 delta is covered by
our less expensive GreenBioBERT model. On av-
erage, we cover between 61% and 70% of the delta
(61% for BioBERTv1.0, 70% for BioBERTv1.1,
and 61% if we take our reproduction experiments
as reference points).

4.3.1 Ablation study
To test whether the improvements over general-
domain BERT are due to the aligned Word2Vec
vectors, or just to the availability of additional word
vectors in general, we perform an ablation study
where we replace the aligned vectors with their
non-aligned counterparts (by setting W = 1 in Eq.
1) or with randomly initialized vectors. Table 5
shows that dev set F1 drops on all datasets under
these circumstances, i.e., vector space alignment
seems to be important.

5 Experiment 2: Covid-19 QA

In this section, we use the proposed method to
quickly adapt an existing general-domain QA
model to an emerging target domain: the Covid-19
pandemic. Our baseline model is SQuADBERT,3

an existing BERT model that was finetuned on the
general-domain SQuAD dataset (Rajpurkar et al.,
2016). We evaluate on Deepset-AI Covid-QA
(Möller et al., 2020), a SQuAD-style dataset with
2019 annotated span-selection questions about 147
papers from CORD-19 (Covid-19 Open Research
Dataset).4 We assume that there is no labeled target-
domain data for finetuning on the task, and instead
use the entire Covid-QA dataset as a test set. This
is a realistic setup for an emerging domain without
annotated training data.

3www.huggingface.co/bert-large-uncased-
whole-word-masking-finetuned-squad

4https://pages.semanticscholar.org/
coronavirus-research

www.huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad
www.huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad
https://pages.semanticscholar.org/coronavirus-research
https://pages.semanticscholar.org/coronavirus-research
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domain adaptation corpus size EM F1 substr

SQuADBERT ——– 33.04 58.24 65.87

GreenCovid- CORD-19 only 2GB 34.62 60.09 68.20
SQuADBERT CORD-19+PubMed+PMC 94GB 34.32 60.23 68.00

Table 6: Results (%) on Deepset-AI Covid-QA. EM
(exact answer match) and F1 (token-level F1 score) are
evaluated with the SQuAD scorer. “substr”: Predic-
tions that are a substring of the gold answer. Much
higher than EM, because many gold answers are not
minimal answer spans (see Appendix, “Notes on Covid-
QA”, for an example).

5.1 Domain adaptation

We train Word2Vec with vector size dW2V =
dLM = 1024 on CORD-19 and/or PubMed+PMC.
The process takes less than an hour on CORD-
19 and about one day on the combined corpus,
again without the need for a GPU. Then, we update
SQuADBERT’s wordpiece embedding layer and
tokenizer, as described in Section 3. We refer to
the resulting model as GreenCovidSQuADBERT.

5.2 Results and discussion

Table 6 shows that GreenCovidSQuADBERT out-
performs general-domain SQuADBERT on all mea-
sures. Interestingly, the small CORD-19 corpus is
enough to achieve this result (compare “CORD-19
only” and “CORD-19+PubMed+PMC”), presum-
ably because it is specific to the target domain and
contains the Covid-QA context papers.

6 Conclusion

As a reaction to the trend towards high-resource
models, we have proposed an inexpensive, CPU-
only method for domain-adapting Pretrained Lan-
guage Models: We train Word2Vec vectors on
target-domain data and align them with the word-
piece vector space of a general-domain PTLM.

On eight biomedical NER tasks, we cover over
60% of the BioBERT – BERT F1 delta, at 5%
of BioBERT’s domain adaptation CO2 footprint
and 2% of its cloud compute cost. We have also
shown how to rapidly adapt an existing BERT QA
model to an emerging domain – the Covid-19 pan-
demic – without the need for target-domain Lan-
guage Model pretraining or finetuning.

We hope that our approach will benefit practi-
tioners with limited time or resources, and that it
will encourage environmentally friendlier NLP.
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Inexpensive Domain Adaptation of
Pretrained Language Models (Appendix)

Word2Vec training

We downloaded the PubMed, PMC and CORD-19
corpora from:

• https://ftp.ncbi.nlm.nih.gov/pub/
pmc/oa_bulk/ [20 January 2020, 68GB raw text]

• https://ftp.ncbi.nlm.nih.gov/pubmed/
baseline/ [20 January 2020, 24GB raw text]

• https://pages.semanticscholar.org/
coronavirus-research [17 April 2020, 2GB
raw text]

We extract all abstracts and text bodies and apply
the BERT basic tokenizer (a rule-based word tok-
enizer that standard BERT uses before wordpiece
tokenization). Then, we train CBOW Word2Vec5

with negative sampling. We use default parame-
ters except for the vector size (which we set to
dW2V = dLM).

Experiment 1: Biomedical NER

Pretrained models
General-domain BERT and BioBERTv1.0 were
downloaded from:

• www.storage.googleapis.com/bert_
models/2018_10_18/cased_L-12_H-
768_A-12.zip

• www.github.com/naver/biobert-
pretrained

Data
We downloaded the NER datasets by follow-
ing instructions on www.github.com/dmis-lab/

biobert#Datasets. For detailed dataset statistics,
see Lee et al. (2020).

Preprocessing
We use Lee et al. (2020)’s preprocessing strategy:
We cut all sentences into chunks of 30 or fewer
whitespace-tokenized words (without splitting in-
side labeled spans). Then, we tokenize every chunk
S with T = TLM or T = T̂LM and add special
tokens:

X = [CLS] T (S) [SEP]

Word-initial wordpieces in T (S) are labeled as
B(egin), I(nside) or O(utside), while non-word-
initial wordpieces are labeled as X(ignore).

5www.github.com/tmikolov/word2vec

Modeling, training and inference
We follow Lee et al. (2020)’s implementation
(www.github.com/dmis-lab/biobert): We add
a randomly initialized softmax classifier on top
of the last BERT layer to predict the labels. We
finetune the entire model to minimize negative log
likelihood, with the AdamW optimizer (Loshchilov
and Hutter, 2018) and a linear learning rate sched-
uler (10% warmup). All finetuning runs were done
on a GeForce Titan X GPU (12GB).

At inference time, we gather the output logits
of word-initial wordpieces only. Since the number
of word-initial wordpieces is the same for TLM(S)
and T̂LM(S), this makes mean-pooling the logits
straightforward.

Hyperparameters
We tune the batch size and peak learning rate on
the development set (metric: F1), using the same
hyperparameter space as Lee et al. (2020):

Batch size: [10, 16, 32, 64]6

Learning rate: [1 · 10−5, 3 · 10−5, 5 · 10−5]

We train for 100 epochs, which is the upper end
of the 50–100 range recommended by the original
authors. After selecting the best configuration for
every task and model (see Table 7), we train the
final model on the concatenation of training and
development set, as was done by Lee et al. (2020).
See Figure 2 for expected maximum development
set F1 as a function of the number of evaluated hy-
perparameter configurations (Dodge et al., 2019).

Experiment 2: Covid-19 QA

Pretrained model
We downloaded the SQuADBERT baseline from:

• www.huggingface.co/bert-large-
uncased-whole-word-masking-
finetuned-squad

Data
We downloaded the Deepset-AI Covid-QA dataset
from:

• www.github.com/deepset-ai/COVID-
QA/blob/master/data/question-
answering/COVID-QA.json [24 June 2020]

6Since LINNAEUS and BC4CHEM have longer maximum
tokenized chunk lengths than the other datasets, our hardware
was insufficient to evaluate batch size 64 on them.
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At the time of writing, the dataset contains 2019
questions and gold answer spans. Every question
is associated with one of 147 research papers (con-
texts) from CORD-19.7 Since we do not do target-
domain finetuning, we treat the entire dataset as a
test set.

Preprocessing

We tokenize every question-context pair (Q,C)
with T = TLM or T = T̂LM, which yields
(T (Q), T (C)). Since T (C) is usually too long
to be digested in a single forward pass, we de-
fine a sliding window with width and stride N =

floor(509−|T (Q)|
2 ). At step n, the “active” win-

dow is between a
(l)
n = (n − 1)N + 1 and a

(r)
n =

min(|C|, nN). The input is defined as:

X(n) = [CLS] T (Q) [SEP]

T (C)
a
(l)
n −p

(l)
n :a

(r)
n +p

(r)
n

[SEP]

p
(l)
n and p

(r)
n are chosen such that |X(n)| = 512,

and such that the active window is in the center of
the input (if possible).

Modeling and inference

Feeding X(n) into the QA model yields start log-
its h′(start,n) ∈ R|X(n)| and end logits h′(end,n) ∈
R|X(n)|. We extract and concatenate the slices that
correspond to the active windows of all steps:

h(∗) ∈ R|T (C)|

h(∗) = [h
′(∗,1)
a
(l)
1 :a

(r)
1

; . . . ;h
′(∗,n)
a
(l)
n :a

(r)
n

; . . .]

Next, we map the logits from the wordpiece level
to the word level. This allows us to mean-pool the
outputs of TLM and T̂LM even when |TLM(C)| 6=
|T̂LM(C)|.

Let ci be a word in C and let T (C)j:j+|T (ci)| be
the corresponding wordpieces. The start and end
logits of ci are:

o
(∗)
i = maxj≤j′≤j+|T (ci)|[h

(∗)
j′ ]

Finally, we return the answer span Ck:k′ that
maximizes o

(start)
k + o

(end)
k′ , subject to the con-

straints that k′ does not precede k and the answer
contains no more than 500 characters.

7www.github.com/deepset-ai/COVID-
QA/issues/103

Notes on Covid-QA
There are some important differences between
Covid-QA and SQuAD, which make the task chal-
lenging:

• The Covid-QA contexts are full documents
rather than single paragraphs. Thus, the cor-
rect answer may appear several times, often
with slightly different wordings. But only a
single occurrence is annotated as correct, e.g.:

Question: What was the prevalence of Coro-
navirus OC43 in community samples in
Ilorin, Nigeria?

Correct: 13.3% (95% CI 6.9-23.6%) # from
main text

Predicted: 13.3%, 10/75 # from abstract

• SQuAD gold answers are defined as the
“shortest span in the paragraph that answered
the question” (Rajpurkar et al., 2016, p. 4),
but many Covid-QA gold answers are longer
and contain non-essential context, e.g.:

Question: When was the Middle East Res-
piratory Syndrome Coronavirus isolated
first?

Correct: (MERS-CoV) was first isolated in
2012, in a 60-year-old man who died in
Jeddah, KSA due to severe acute pneu-
monia and multiple organ failure

Predicted: 2012

These differences are part of the reason why the
exact match score is lower than the word-level F1
score and the substring score (see Table 6, bottom,
main paper).

www.github.com/deepset-ai/COVID-QA/issues/103
www.github.com/deepset-ai/COVID-QA/issues/103
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BERT (repro) BioBERTv1.0 (repro) GreenBioBERT
Biomedical NER task (ID) hyperparams dev set F1 hyperparams dev set F1 hyperparams dev set F1

BC5CDR-disease (1) 32, 3 · 10−5 82.12 10, 1 · 10−5 85.15 32, 1 · 10−5 83.90
NCBI-disease (2) 32, 3 · 10−5 87.52 32, 1 · 10−5 87.99 10, 3 · 10−5 88.43
BC5CDR-chem (3) 64, 3 · 10−5 91.00 32, 1 · 10−5 93.36 10, 1 · 10−5 92.59
BC4CHEMD (4) 16, 1 · 10−5 88.02 32, 1 · 10−5 89.35 16, 1 · 10−5 88.53
BC2GM (5) 32, 1 · 10−5 83.91 64, 3 · 10−5 85.54 64, 3 · 10−5 84.25
JNLPBA (6) 32, 5 · 10−5 85.18 32, 5 · 10−5 85.30 10, 3 · 10−5 85.10
LINNAEUS (7) 16, 1 · 10−5 96.67 32, 1 · 10−5 97.22 10, 1 · 10−5 96.49
Species-800 (8) 32, 1 · 10−5 72.70 32, 1 · 10−5 77.34 16, 1 · 10−5 75.93

Table 7: Best hyperparameters (batch size, peak learning rate) and best dev set F1 per NER task and model. BERT
(repro) and BioBERTv1.0 (repro) refer to our reproduction experiments.
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Figure 2: Expected maximum F1 on NER development sets as a function of the number of evaluated hyperparam-
eter configurations. Numbers in brackets are NER task IDs (see Table 7).


