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Abstract
In traditional NLP, we tokenize a given sen-
tence as a preprocessing, and thus the tok-
enization is unrelated to a target downstream
task. To address this issue, we propose a novel
method to explore a tokenization which is ap-
propriate for the downstream task. Our pro-
posed method, optimizing tokenization (Op-
Tok), is trained to assign a high probability
to such appropriate tokenization based on the
downstream task loss. OpTok can be used for
any downstream task which uses a vector rep-
resentation of a sentence such as text classifi-
cation. Experimental results demonstrate that
OpTok improves the performance of sentiment
analysis and textual entailment. In addition,
we introduce OpTok into BERT, the state-of-
the-art contextualized embeddings and report
a positive effect.

1 Introduction

Tokenization is a fundamental problem in natural
language processing (NLP). We must split a given
sequence into a sequence of words for languages
that do not contain obvious boundaries, such as
Chinese and Japanese. In addition, it is also better
to explore appropriate segmentations for languages
containing obvious boundaries indicated by whites-
paces, such as English (Peng and Dredze, 2015,
2016; Sennrich et al., 2016; He and Sun, 2017; A
and Augenstein, 2020; Bollegala et al., 2020).

In traditional NLP, we tokenize a given sentence
as a preprocessing. Thus, as shown in Figure 1(a),
we apply an existing tokenizer to the given sen-
tence, and then input the tokenized sentence into
a model for a target downstream task. In the con-
ventional approach, we obtain the most plausible
tokenized sentence based on the tokenizer; how-
ever, some studies have varied the tokenization
using a sampling during the training to enable the
downstream model to adapt to various tokeniza-
tions (Kudo, 2018; Hiraoka et al., 2019; Provilkov
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Figure 1: Overview of (a) conventional tokenization
and (b) optimizing tokenization proposed herein. We
directly optimize the tokenizer to improve the perfor-
mance of the model for a downstream task using the
loss of the target task.

et al., 2019). Although such a strategy makes the
downstream model robust, little attention has been
paid to optimizing the tokenizers for a downstream
task. Thus, if we acquire an appropriate tokeniza-
tion to a downstream task, we might improve the
task performance.

By contrast, some studies have used multiple to-
kenized sentences to prevent the damage depending
on the tokenization (Chen et al., 2017; Zhang and
Yang, 2018; Yang et al., 2018). Their methods com-
pute various tokenizations for a given sentence, and
then encode the tokenizations using an architecture
based on the LSTM (Hochreiter and Schmidhuber,
1997). Although their methods prevent the error
propagation from the tokenizer, they are intractable
when handling all possible tokenizations owing to
the computational costs required.

This paper describes an exploration into an ap-
propriate tokenization to the downstream tasks. We
propose a novel method to optimize a tokenizer
based on the downstream task, as shown in Figure
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Figure 2: Outline of the proposed method for calculating a sentence vector hs with the 3-best tokenizations dur-
ing the training phase. At the inference, we use the 1-best tokenization as well as general neural architectures.
The arrows along the continuous line indicate the differentiable paths for backpropagation. We can use various
architectures as the Encoder, which converts a sequence of tokens into a single vector. Downstream Model is the
architecture for the downstream tasks, i.e., MLP for text classification.

1(b)1. The proposed method generates multiple
tokenized sentences as candidates and inputs them
into the downstream model. We then update the
parameters of the tokenizer to decrease the training
loss, and the tokenizer should therefore output a
better tokenization for the downstream task.

We design the proposed method to be used for
any downstream task that uses a vector represen-
tation of a sentence. We conduct experiments on
text classification in three languages, and show the
effectiveness of the proposed method. Moreover,
we indicate that we can also introduce our proposed
method into the pre-trained architecture. We com-
bine the proposed method with the state-of-the-art
contextualized embeddings, BERT (Devlin et al.,
2018), and improve its performance.

2 Proposed Method: OpTok

2.1 Model Outline
We propose a new architecture for optimizing
tokenization, OpTok. OpTok explores an appro-
priate tokenization for a downstream task. In
other words, OpTok explores a tokenization that
yields a better score for a downstream task. For-
mally, OpTok converts a given sentence s into a
sequence of tokens in vocabulary w ∈ V , i.e.,
s′ = w1...wi...wI , where I is the number of to-
kens included in the sentence. In addition, the
downstream model achieves the best score with
s′ among all possible tokenized sentences. Thus,
let q(·) be an evaluation function, z be a ground
truth of the downstream task, and f(·) be the down-
stream model, i.e., any neural architecture, and we
search the tokenization s′ that maximizes the score
of the downstream task: argmaxs′(q(z, f(s

′))).
1Code: https://github.com/tatHi/optok

To search s′ satisfying argmaxs′(q(z, f(s
′))),

we train OpTok based on the score of the down-
stream task (q(z, f(s′))). Thus, we optimize both
OpTok and the downstream model simultaneously
in contrast to a traditional pipeline approach, which
tokenizes a given sentence as a preprocessing. Op-
Tok generates multiple tokenized sentences as can-
didates, and we train OpTok to assign a high prob-
ability to a better tokenization based on the score
of the downstream task. During the inference step,
we make OpTok output only the most plausible tok-
enized sentence to reduce the computational costs.

Figure 2 shows an overview of OpTok with the
downstream model during training. OpTok con-
structs N tokenized sentences and converts them
into vector representations with a neural encoder.
Then, OpTok combines the probabilities of each to-
kenization with the vector representations. We com-
pute the sum of the vector representations weighted
by the probabilities, and then input it into the down-
stream model. Thus, OpTok becomes to assign a
high probability to the tokenization which improves
the performance of the downstream task. We there-
fore can obtain s′ satisfying argmaxs′(q(z, f(s

′)))
through the training. We describe the details of
each module in this section.

2.2 Neural Unigram Language Model
OpTok calculates the probability of a token p(w)
with a neural unigram language model as follows:

dw = MLP(vw), (1)

p(w) =
exp(dw)∑

ŵ∈V exp(dŵ)
, (2)

where MLP is a multilayer perceptron containing
trainable parameters, and vw is an embedding of

https://github.com/tatHi/optok
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the word w.
To stabilize the learning, as explained in Sec-

tion 2.5, we employ the smoothed distribution of
unigram probability (Kudo, 2018) with a hyperpa-
rameter α. Concretely, we obtain the smoothed
probability as p∗(w) = p(w)α∑

ŵ∈V p(ŵ)α . We convert a
sentence into a sequence of tokens depending on a
probability of a tokenized sentence:

p(s′) =
∏
w∈s′

p∗(w). (3)

We initialize vocabulary V with a reasonable
number of tokens. To choose the initial vocabulary,
both supervised and unsupervised word segmenta-
tion methods are available, e.g., publicly available
pre-trained tokenizers (Kudo, 2006; Yang et al.,
2017) and vocabulary acquired using unsupervised
word segmentation (Goldwater et al., 2006; Mochi-
hashi et al., 2009; Sennrich et al., 2016). In this
study, we use SentencePiece (Kudo and Richard-
son, 2018) for initialization.

2.3 Module for Selecting Tokenization
OpTok generates multiple tokenized sentences as
candidates and converts them into a single vector
using their probabilities during the training phase.

First, we obtain the N -best tokenization of the
sentence s′1, ..., sn, ..., s

′
N . We obtain the N -best

tokenization using the Forward-DP Backward-A*
algorithm (Nagata, 1994) for the probabilities pro-
duced using the language model mentioned in Sec-
tion 2.2.

Second, we convert the tokenized sequences into
the vectors hs′n severally as follows:

hs′n = g(s′n), (4)

where g(·) is a neural encoder, which encodes the
sequence of tokens, such as those using a CNN and
BiLSTM. We found that the learning is stabilized
by sharing word embeddings between the encoder
and the neural unigram language model.

Finally, we calculate the final vector of the sen-
tence by weighting the vectors of the candidates
using their probabilities calculated through Eq. (3)
as follows:

an =
p(s′n)∑N

m=1 p(s
′
m)
, (5)

hs =

N∑
n=1

anhs′n . (6)

Similarly to the attention mechanism, we normalize
the probability to meet a restriction

∑N
n=1 an = 12.

We can use such a vector hs in the same way as
the general encoded vectors. For example, we can
construct a neural text classifier by converting hs

into a label-sized vector with an MLP. Updating the
entire model with the training loss such as the cross-
entropy loss against the gold label, the language
model becomes to assign the higher probability to
the useful tokenization for the downstream task. At
the inference, we obtain the optimal tokenization
using the Viterbi algorithm (Viterbi, 1967).

2.4 Restricting Vocabulary

To mitigate the local optima which uses longer and
more unique tokens for each sentence, we intro-
duce a restriction for the size of the vocabulary
during training. Concretely, OpTok constructs the
restricted vocabulary V ′ sampled from the original
vocabulary V , where |V ′| ≤ |V |, at the beginning
of each mini-batch and uses V ′ as the vocabulary
in the mini-batch. The sampling is processed based
on the smoothed probability of tokens p∗(w), men-
tioned in Section 2.2. Then, we calculate the new
probability distribution of tokens in V ′ by normal-
izing probabilities of them. Moreover, OpTok pre-
pares the embeddings for entire tokens in V but we
treat a token outside V ′ as an unknown token. At
the inference, we construct vocabulary by taking
the top-|V ′| tokens from V based on the updated
token probabilities obtained by Eq. (2).

Such sampling of the vocabulary results in the
diversity of tokenization in the N -best candidates
during training. Setting the lower α mentioned in
Section 2.2, the distribution of the tokens becomes
flatter, and the model can sample various tokens
for V ′. In addition, through the sampling process,
we can reduce the importance of words that are
unuseful in V for the downstream task. This pro-
cedure is related to a vocabulary restriction with
a continuous cache technique (Grave et al., 2016;
Kawakami et al., 2017).

2.5 Maintaining Nature of Language Model

Since the optimization of OpTok only depends on
the loss function for the downstream task, the lan-
guage model of OpTok might be much different
from the unigram language model (i.e., frequency

2We tried an alternative approach to sampling a plausible
tokenization using Gumbel softmax (Jang et al., 2016), but
found that it causes instability in the learning.
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Positive Negative Neutral Total
Weibo(Zh) 407,057 263,995 - 671,052
Twitter(Ja) 10,319 16,035 135,830 162,184
Twitter(En) 56,462 43,538 - 100,000

Table 1: Dataset components on sentiment analysis.

of words) obtained from the training corpus. Mean-
while, we have to keep the corpus-based language
model in some cases. To address such cases, we
can use the following loss for the sentence s to
update the language model using neural EM algo-
rithm (Deligne and Bimbot, 1995; Liang and Klein,
2009; Tran et al., 2016):

Llms = −
N∑

n=1

an
∑
w∈s′n

logp∗(w). (7)

We then optimize the weighted sum of the down-
stream task loss and Llms . Consider text classifica-
tion as an example. We use cross-entropy loss for
the ground-truth label of the sentence Lcls . Thus,
we optimize the following equation:

Ls = Lcls + µLlms , (8)

where µ is the hyperparameter. Note that we set
µ = 0 to confirm the effect of the proposed method
in this study.

3 Experiments

The goal of this study is to improve the perfor-
mance of downstream tasks by optimizing the tok-
enization. Therefore, we evaluate OpTok on vari-
ous text classification tasks to validate its effect.

3.1 Dataset
We evaluate OpTok on text classification, in which
a model predicts the label from a text as its input.
To confirm the effectiveness of our method on var-
ious languages, we utilize datasets in a sentiment
analysis for Chinese, Japanese, and English. We
employed the corpora on the SNS domain because
they have many informal expressions, and thus the
difference in tokenization has numerous effects on
the performance of the text classification. In addi-
tion, we also conducted experiments on the dataset
whose sentence contains two kinds of labels to
investigate whether OpTok finds different tokeniza-
tion for each label. Furthermore, we used a textual
entailment dataset to indicate that our OpTok can
be applied to the task providing two sentences as

input. We describe the details of these datasets in
the following.
Weibo(Zh)3 is the dataset including short Chinese
texts on an SNS with two sentiment labels: positive
or negative. Because the available data are already
tokenized with a preprocesser, we detokenize them
by removing the whitespaces.
Twitter(Ja)4 is a dataset of short Japanese texts
from an SNS about products such as electric appli-
ances. The samples of this dataset initially have five
sentiment labels for the target topic: positive, nega-
tive, neutral, both positive and negative, and unre-
lated. As of the summer of 2018, 352,554 tweets
were available, and we extracted only tweets with
a single sentiment label of positive, negative, or
neutral. In other words, we removed both positive
and negative and unrelated to prevent confusion.
Twitter(En)5 is a dataset of short English texts
from an SNS with two sentiment labels: positive
or negative. We exploited this corpus without any
preprocessing.
SNLI (Bowman et al., 2015) is a widely used
dataset for recognizing a textual entailment, which
is a text classification requiring two input sentences
in English. We employed this dataset to validate
the performance of OpTok when using multiple
sentences. We used the default split of this corpus
and only applied the labeled samples following the
existing studies.
Genre&Rating are datasets in English that we cre-
ated from Amazon product data6, which has re-
views from 24 product genres, in which each re-
view has an attached rating from a user of 1 to 5.
We sampled 5K reviews from each product genre.
In this process, we counted the number of tokens
in each review based on whitespaces and removed
the review which contains more than 200 tokens.
We used sampled reviews for rating prediction and
genre prediction tasks from the same review texts.

For the sentiment analysis, we randomly split
each dataset into a ratio of 8:1:1 for training, vali-
dation, and testing. We also split the dataset of the
genre and rating prediction into a ratio of 8:1:1 for
a well-balanced genre, in which both tasks share
the same split. Table 1 shows an overview of each
dataset of the sentiment analysis.

3https://github.com/wansho/senti-weibo
4http://www.db.info.gifu-u.ac.jp/data/

Data_5d832973308d57446583ed9f
5https://www.kaggle.com/c/

twitter-sentiment-analysis2
6http://jmcauley.ucsd.edu/data/amazon/

https://github.com/wansho/senti-weibo
http://www.db.info.gifu-u.ac.jp/data/Data_5d832973308d57446583ed9f
http://www.db.info.gifu-u.ac.jp/data/Data_5d832973308d57446583ed9f
https://www.kaggle.com/c/twitter-sentiment-analysis2
https://www.kaggle.com/c/twitter-sentiment-analysis2
http://jmcauley.ucsd.edu/data/amazon/
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Weibo(Zh) Twitter(Ja) Twitter(En) SNLI Genre Rating
|vocab| 16K / 32K 8K / 16K 8K / 16K 16K / 32K 16K / 32K 16K / 32K
SentencePiece 92.79 86.51 77.26 76.66 71.28 67.29
SentencePiece x2 92.78 85.89 77.31 76.75 71.68 67.53
OpTok 92.82 86.97 78.52 77.04 71.88 67.68

Table 2: The results of text classification. We report the averaged F1 scores (%) over five trials. The highest
scores are highlighted in bold. |vocab| indicates the sizes of vocabularies of SencencePiece/SentencePiece x2 and
restricted/initial sizes for OpTok. The number of vocabularies of SentencePiece and SentencePiece x2 are the same
as the restricted and initial sizes of OpTok respectively.

3.2 Experimental Settings
For the unigram language model in OpTok, we
used two-layered perceptron as MLP in Eq. (1).
We used BiLSTM and a linear layer as an encoder
to compute hs′ in Eq. (4). We applied BiLSTM
to the tokenized sentence based on the unigram
language model, and then fed max-pooled outputs
to the linear layer. In this procedure, we applied
activation function tanh before and after the lin-
ear layer. Then, we applied a dropout to the sen-
tence representations with a rate of 0.5. For SNLI,
we shared parameters between encoders for the
premise and hypothesis and concatenated both en-
coded representations. As the downstream model,
we used three-layered perceptron which outputs a
label-sized vector.

We compared our OpTok with Sentence-
Piece (Kudo and Richardson, 2018), which is a
widely used tokenizer. Concretely, we obtained a
tokenized sentence based on SentencePiece, and
then treated the tokenized sentence as an input to
the encoder. In other words, we replaced the uni-
gram language model in OpTok with the Sentence-
Piece tokenizer and used one tokenized sentence as
an input to the same architecture. Moreover, many
studies have reported that training models with a
stochastic tokenization lead to a better performance
of the downstream tasks than training a model us-
ing deterministic tokenization (Kudo, 2018; Hi-
raoka et al., 2019; Provilkov et al., 2019). Thus, we
trained the encoder and downstream model using
subword regularization provided by SentencePiece.

We trained the tokenizer model of SentencePiece
on the training split of each dataset. We searched
the size of the vocabulary among 8K, 16K, 24K,
and 32K, and we selected 16K for Twitter(Ja) and
Twitter(En), and 32K for Weibo(Zh), SNLI, and
Genre&Rating. We also use a vocabulary obtained
by SentencePiece as the initial vocabulary of Op-
Tok for each task, and we initialized the neural
unigram language model of OpTok by training the
probabilities of its tokens to minimize KL diver-

gence loss against the probabilities obtained using
SentencePiece.

We then pre-trained the word embeddings with
a bidirectional language model task on the train-
ing split of each dataset, and fixed them during
the training of the text classification. Because the
optimal tokenization is unclear during pre-training,
we trained the bidirectional language model with
sampling tokenization on each training epoch us-
ing SentencePiece. For Genre&Rating, we used
the same word embeddings pre-trained on the train-
ing split. We did not use any outside resources for
pre-training other than the training split.

We trained OpTok and the downstream model
using a cross-entropy loss for the gold labels. We
employed Adam (Kingma and Ba, 2014) to update
the parameters with the default settings of PyTorch.

We set the smoothing hyperparameter α as 0.2
for both SentencePiece and OpTok as encouraged
in Kudo (2018). For the training of our method,
the size of the N -best tokenization of our method
is N = 3, and the size of the restricted vocabu-
lary |V ′| is half of the initial vocabulary size. At
the inference, we used the 1-best tokenization and
top-|V ′| of the vocabulary based on the language
model. We conducted the experiments five times
from a random initialization, except for the pre-
trained parameters, and reported the averaged F1
score in the result. The maximum training epoch
was 20, and we selected a model with the highest
performance on the validation split and evaluated
it on the test split for each trial.

3.3 Results
Table 2 shows the performance of the downstream
models using OpTok and SentencePiece. For Sen-
tencePiece, we report the results when we set the
vocabulary size identical to the restricted and ini-
tial vocabulary size of OpTok (SentencePiece and
SentnecePiece x2 respectively).

The experimental results demonstrate that the
proposed method contributes to improving the per-
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Figure 3: Averaged improvement (difference from the
values at the beginning of the training) of validation F1
score and training loss on Twitter(Ja) over five trials
only by updating tokenization with OpTok.

formance of the text classification for each lan-
guage and each task. The performance of OpTok
was higher than the method trained using Senten-
cePiece on both sized vocabularies. These results
show that OpTok is superior to SentencePiece on
the downstream tasks in our experiments.

The results of SNLI show that we can apply Op-
Tok to the task whose input is multiple sentences.
Moreover, OpTok has a positive effect on not only
informal (sentiment analysis and Genre&Rating in
our experiments) but also formal (SNLI) texts.

The proposed method only uses half of the initial
vocabulary size at the inference. This fact validates
the idea that OpTok contributes to a vocabulary
reduction by selecting useful tokens.

4 Discussion

4.1 Improvement Only by Tokenization
It is still unclear whether the optimized tokeniza-
tion leads to the improvement described in Section
3.3 because we trained all components simultane-
ously. Thus, we investigate whether the optimized
tokenization contributes to the improvement of the
performance on the downstream task. To validate
the effect of only tokenization, we trained only the
neural unigram language model in OpTok. In other
words, we fixed the neural encoder in OpTok and
the downstream model with random initialization.
We then checked the improvement of the training
loss and the F1 score on the validation split by up-
dating only the parameters of the neural unigram
language model for tokenization.

We conducted experiments on Twitter(Ja) under
the same setting as described in Section 3 and re-
ported the results in Figure 3. Figure 3 shows the
difference in the training loss and the validation F1

Genre Rating
Token Diff Token Diff
gun 0.0347 However 0.1410
grip 0.0261 BUT 0.1169
zombie 0.0226 bad 0.0532
professional 0.0190 paced 0.0366
treat 0.0169 Funk 0.0299
gray 0.0148 awesome 0.0284
soap 0.0148 Ok 0.0260
dry 0.0133 watch 0.0208
collection 0.0097 game 0.0205
sleeper 0.0094 Build 0.0189
instant 0.0077 daughter 0.0185
phone 0.0073 great 0.0167
tea 0.0068 There 0.0159
scary 0.0065 brand 0.0138
riddled 0.0063 what 0.0122

Table 3: Token ranking based on the positive differ-
ence in probabilities between the initial and learned lan-
guage model of OpTok on genre and rating prediction.

score from the values at the beginning of the train-
ing. This figure indicates the training loss decreases
corresponding to the number of epochs, whereas
the validation F1 score increases. The results indi-
cate that OpTok explored the tokenization which
improved the task performance, and imply that the
optimized tokenization contributed to improving
the total performance in Section 3.3.

4.2 Task Oriented Tokenization
We are also interested in whether the optimized
tokenization is different from each other when we
address the different downstream tasks. To confirm
this, we analyzed the results of the Genre&Rating
prediction, mentioned in Section 3. The dataset
contains two different tasks tied to the same review
corpus.

Table 3 shows the ranking of tokens whose prob-
ability significantly rise from the initial value on the
genre and rating prediction tasks. The optimized
neural unigram language model assigned higher
scores to tokens that are useful for each task, e.g.,
zombie for Genre and bad for Rating. This result
demonstrates that OpTok optimizes the tokeniza-
tion to use helpful tokens frequently. Note that the
difference in the probability is vast for the reason
mentioned in Section 2.5.

We extracted an example of optimized tokeniza-
tion from the validation split, which includes the
difference in tokenization caused by tasks shown in
Table 4. In the tokenization optimized for the genre
prediction task, the model cut off an inflection of
book-s to generalize the token book for predict-
ing the proper genre, whereas the model optimized
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Method(true label) Tokenization
SentencePiece The characters were interesting in this book . [...] I will look for additional books by Ms . T ate .
OpTok (Genre: Book) The characters were interesting in this book . [...] I will look for additional book s by Ms . Ta te .
OpTok (Rating: 4) The characters were interest ing in this book . [...] I will look for additional books by Ms . T ate .

Table 4: Tokenization acquired by OpTok for different tasks: genre detection and rating detection of the same text.
The gold genre label is Book, and the rating is 4. Tokens highlighted in bold shows a remarkable difference among
the three methods.
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Figure 4: The difference from the score reported in Ta-
ble 2 against the different |V ′| on a sentiment analysis.
The full sizes of the vocabulary are 16K for Twitter(Ja)
and Twitter(En), and 32K for Weibo(Zh). The size of
N -best is N = 3.

for rating prediction separated the derivation of
interest-ing to recognize similar tokens such as
interested and interests in the same manner as a
useful token for rating detection. In addition, the
model for genre prediction does not split interest-
ing, and the model for rating detection does not
split books. This example shows that OpTok can
optimize the tokenization for the downstream task.

4.3 Effect of Hyperparameter
In this paper, we introduce two hyperparameters
to control OpTok: the size of restricted vocabulary
and N for N -best tokenization. We report the ef-
fect of the hyperparameters on the performance of
sentiment analysis.

Figure 4 reports the effect caused by the size
of the restricted vocabulary in each language. We
checked the performance achieved by our method,
for which we decreased the size of the vocabulary
to 25%, 50% (the default settings used in other ex-
periments), 75%, and 100% of the initial size. In
the figure, we show a difference in the averaged F1
scores over five trials from scores reported in Table
2. As shown in the figure, restricting the vocabu-
lary size to 50% contributes to an improved per-
formance of Japanese and English datasets. These
results validate that the restriction of the vocabulary
works well for the proposed method. Meanwhile,
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Figure 5: The difference from the score reported in Ta-
ble 2 against different values of N for a sentiment anal-
ysis. The ratio of the restricted vocabulary to the initial
vocabulary is 50%.

decreasing the size of the vocabulary negatively im-
pacts the performance proportionately to the Chi-
nese dataset. In fact, the average best performance
achieved by the full size of the vocabulary, 100%
for 32K, was 93.14, which is higher than the score
of OpTok shown in Table 2 by 0.32%. This result
suggests that decreasing the size of the vocabulary
is unnecessary for languages holding vast types of
characters because such a restriction leads to a leak-
ing of useful tokens and the production of many
unknown tokens in both the training and evaluation,
as reported by Hiraoka et al. (2019).

Figure 5 shows the effect of N on the perfor-
mance of a sentiment analysis. For all languages,
N = 3 achieves the best performance, whereas
increasing N decreases the performance. We con-
sider the reason for the decline to be the gap in the
encoding strategies between the training and evalu-
ation. By using a larger N , a task-specific module,
such as MLP for text classification, is trained us-
ing the weighted-sum of the various tokenizations,
whereas the module takes a sentence representation
encoded with the best tokenization in the inference.

4.4 Application for BERT
Numerous studies have recently been focused on
exploiting pre-trained language models to enhance
the NLP tasks such as BERT (Devlin et al., 2018).
In this subsection, we demonstrate that OpTok is
applicable to recent NLP modules based on BERT
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Method F1%
Best w/o BERTbase (from Table 2) 78.52
BERTbase 81.68
+ Sampling tokenization 81.51
+ OpTok 82.03

Table 5: F1 scores on sentiment analysis of Twitter(En)
with BERTbase. The values highlighted in bold are the
highest scores.

by an experiment on Twitter(En).
We replaced the BiLSTM encoder with BERT

and conducted the same experiments as mentioned
in Section 3. We employed BERTbase from Hug-
gingFace7 and fine-tuned its parameters except
those of the word embeddings as well as the above
experiments. Because the distributed tokenizer for
BERTbase is based on WordPiece, which does not
include the probabilities for each piece, we esti-
mate the probabilities on the training split using the
EM algorithm (Deligne and Bimbot, 1995; Liang
and Klein, 2009; Kudo and Richardson, 2018) and
initialized the language model of our method with
these probabilities. We did not use a restricted vo-
cabulary because the vocabulary of BERT contains
many tokens unrelated to our experiment. Com-
pared to the vocabulary initialized using Sentence-
Piece on only the training split, restricting the vo-
cabulary results in too little diversity of the N -best
tokenization to cause overfitting of tokenization.
We therefore found that it is not necessary to re-
strict the vocabulary, similar to the Chinese dataset
mentioned in Section 4.3. We fine-tuned the param-
eters of BERTbase using AdamW (Loshchilov and
Hutter, 2017) while updating the neural unigram
language model in OpTok with Adam.

Table 5 shows the results of this experiment. We
tokenized the corpus using the longest-first match-
ing of WordPiece of BERTbase. We trained the
model of +Sampling tokenization with a stochastic
tokenization like SentencePiece based on the lan-
guage model initialized using the EM algorithm.

The results show that the pre-trained BERT im-
proved the performance when comparing the scores
to those in Table 2. In addition, incorporating Op-
Tok with the BERT beat the original BERT system
as well as the method using sampling tokenization.
This result indicates that OpTok contributes to an
improvement in the popular NLP architecture in
terms of optimizing the tokenization.

7https://github.com/huggingface/
transformers

5 Related Work

Numerous studies have aimed to improve the NLP
tasks from the perspective of tokenization. Some
studies have proposed an approach to prevent seg-
mentation errors by encoding multiple tokeniza-
tions jointly. Recent studies investigated Lattice
LSTM, which expands LSTM to allow multiple
segmentations to be taken as a lattice (Chen et al.,
2017; Zhang and Yang, 2018; Yang et al., 2018). Li
et al. (2020) followed them to utilize a transformer.

Subword regularization is a famous solution to
this problem (Kudo, 2018; Kudo and Richardson,
2018). The authors demonstrated that training
models with various tokenizations contribute to
an improved performance for machine translations.
Provilkov et al. (2019) followed this approach by
dropping tokens during the BPE process to vary
tokenization, and Hiraoka et al. (2019) by updating
the language model during training.

Optimization of the tokenization has attracted
attention mainly in the field of machine translation.
Some studies have attempted to optimize the tok-
enization using simple criteria for a machine trans-
lation (Xu et al., 2008; Chung and Gildea, 2009;
Nguyen et al., 2010; Mermer et al., 2013). Recent
studies also tackled this issue for generation tasks.
Salesky et al. (2020) developed Incremental BPE,
which automatically defines the number of BPE’s
merge operation for neural machine translation. He
et al. (2020) proposed a neural architecture to find
a better subword sequence from both the source
and target corpora by enhancing the study in Chan
et al. (2016). Our work differs from the existing
research in that the proposed method is appliable
to various neural encoders, and we can optimize
the tokenization directly using only backpropaga-
tion from the training loss of the downstream tasks
without any hand-crafted criteria.

6 Conclusion

In this paper, we propose OpTok which explores an
appropriate tokenization to the target downstream
task. We combine OpTok with the downstream
model and train them simultaneously. The exper-
imental results indicate that OpTok improves the
performance of several downstream tasks through
better tokenization. Moreover, OpTok also has a
positive effect on pre-trained contextualized word
embeddings such as BERT.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Rating
Genre 1 2 3 4 5 Total
Musical Instruments 109 122 352 991 3,426 5,000
Pet Supplies 254 280 502 848 3,116 5,000
Video Games 359 234 526 1,044 2,837 5,000
CDs and Vinyl 241 221 411 1,011 3,116 5,000
Toys and Games 166 156 474 1,063 3,141 5,000
Sports and Outdoors 159 181 347 1,053 3,260 5,000
Health and Personal Care 241 233 479 956 3,091 5,000
Office Products 97 151 456 1,353 2,943 5,000
Books 191 238 519 1,159 2,893 5,000
Beauty 272 289 523 996 2,920 5,000
Baby 238 296 513 995 2,958 5,000
Electronics 333 216 411 943 3,097 5,000
Patio Lawn and Garden 198 234 588 1,190 2,790 5,000
Automotive 124 146 354 943 3,433 5,000
Cell Phones and Accessories 331 286 564 1,000 2,819 5,000
Grocery and Gourmet Food 195 252 567 1,000 2,986 5,000
Clothing Shoes and Jewelry 206 296 483 1,068 2,947 5,000
Tools and Home Improvement 194 151 387 986 3,282 5,000
Kindle Store 133 143 427 1,241 3,056 5,000
Apps for Android 548 277 582 1,033 2,560 5,000
Home and Kitchen 224 218 338 936 3,284 5,000
Digital Music 251 266 498 1,181 2,804 5,000
Amazon Instant Video 239 232 530 1,121 2,878 5,000
Movies and TV 299 280 526 998 2,897 5,000
Total 5,602 5,398 11,357 25,109 72,534 120,000

Table 6: Dataset components of Genre&Rating created from Amazon product data.

A Detailed Experimental Settings

We describe the detailed settings for OpTok used
in this study. The size of the word embedding was
64 and the hidden size of BiLSTM was 256. We
set the hidden sizes of MLP for the unigram lan-
guage model and for the downstream tasks as 96
and 256, respectively. The batch size was 256 and
the maximum training epoch was 20. We did not
search hyperparameters of neural architectures be-
cause both OpTok and the baseline system used the
same configuration. We described the tuning of the
model-specific hyperparameters in Section 4.3. For
the experiments using BERT, we set the batch size
as 8 due to a memory restriction. For estimating
the probabilities of words for the experiments with
BERT, the number of iteration of the EM algorithm
was 10.

We implemented OpTok with PyTorch. To cal-
culate F1 score, we employed the scikit-learn pack-
age. We ran all experiments on a single GPU of
NVIDIA Tesla V100 (16GiB).

In Section 3, we created datasets from Amazon
product data for a text classification. Table 6 shows
the detailed components of the corpus sampled in
the way mentioned in Section 3.1. We created
both the genre and rating prediction tasks from this
corpus.


