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Abstract

Unsupervised speech representation learning
has shown remarkable success at finding rep-
resentations that correlate with phonetic struc-
tures and improve downstream speech recog-
nition performance. However, most research
has been focused on evaluating the representa-
tions in terms of their ability to improve the
performance of speech recognition systems on
read English (e.g. Wall Street Journal and Lib-
riSpeech). This evaluation methodology over-
looks two important desiderata that speech rep-
resentations should have: robustness to do-
main shifts and transferability to other lan-
guages. In this paper we learn representa-
tions from up to 8000 hours of diverse and
noisy speech data and evaluate the represen-
tations by looking at their robustness to do-
main shifts and their ability to improve recog-
nition performance in many languages. We
find that our representations confer significant
robustness advantages to the resulting recogni-
tion systems: we see significant improvements
in out-of-domain transfer relative to baseline
feature sets and the features likewise provide
improvements in 25 phonetically diverse lan-
guages.

1 Introduction

The input representation of machine learning model
strongly determines the difficulty faced by the
learning algorithm, how much data the learner will
require to find a good solution, and whether the
learner generalizes out of sample and out of the
domain of the training data. Representations (or
features) that encode relevant information about
data enable models to achieve good performance
on downstream tasks, while representations that are
invariant to factors that are not relevant to down-
stream tasks can further improve generalization.
Traditionally, many invariances were hard-coded in
feature extraction methods. For example, in image

representations, geometric and photometric invari-
ance has been investigated (Mundy et al., 1992;
Van De Weijer et al., 2005). For acoustic represen-
tations, standard MFCC features are sensitive to
additive noise and many modifications have been
proposed to overcome those limitations (Dev and
Bansal, 2010; Kumar et al., 2011).

Recently, unsupervised representation learning
algorithms have shown significant improvements
at learning representations that correlate well with
phonetic structure (van den Oord et al., 2018; Kahn
et al., 2019b) and improving downstream speech
recognition performance (Schneider et al., 2019;
Baevski et al., 2019). Most of this work focused on
learning representations from read English speech
(from the LibriSpeech and LibriVox datasets) and
evaluating the features when used to recognize
speech in a rather similar domain (read English
text). However, this approach to evaluation fails
to test for the invariances that we would like good
speech representations to have: robustness to do-
main shifts and transferability to other languages.

In our experiments we learn representations from
8000 hours of diverse and noisy speech, using an
extended version of contrastive predictive coding
model: bidirectional predictive models with dense
residual connections (§2–§4), and evaluate the ro-
bustness and transferability of our representations
by estimating how invariant they are to domain and
language shifts. To do so, an ASR model is trained
using our representations on one dataset but evalu-
ated on the test sets of other datasets. In this experi-
ment, we find that the representations derived from
the large pretraining dataset lead the ASR model to
be much more robust to domain shifts, compared to
both log filterbank features as well as to pretraining
just on LibriSpeech. We also train ASR models
on 25 languages, including low-resource languages
(e.g. Amharic, Fongbe, Swahili, Wolof), and show
that our representations significantly outperform
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both standard features and those pretrained only on
clean English data in the language transfer setup.

In summary, we confirm several increasingly
common patterns that may be discerned in the lit-
erature on unsupervised representation learning,
across a variety of modalities. First, scale mat-
ters: good representation learning requires a large
amount of data. Second, unsupervised represen-
tations consistently improve robustness on down-
stream tasks. And finally, representations learned
from multilingual data can transfer across many
languages.

2 Contrastive Predictive Coding: CPC

Unsupervised representation learning methods rely
on differentiable objectives which quantify the de-
gree to which representations have succeeded at
capturing the relevant characteristics in data. Mu-
tual information measures relationships between
random variables (Fano and Hawkins, 1961). Mu-
tual information maximization techniques, that
learn representations that describe data by maximiz-
ing mutual information between data and represen-
tation variables, have been explored for a long time
in unsupervised representation learning (Linsker,
1988; Bell and Sejnowski, 1995). However, since
the exact computation of mutual information is not
tractable for continuous variables, recently many
estimators have been proposed for enabling unsu-
pervised representation learning with neural net-
works (Belghazi et al., 2018; van den Oord et al.,
2018; Poole et al., 2019).

Contrastive predictive coding (van den Oord
et al., 2018, CPC) is a mutual information max-
imization method that has been successfully ap-
plied to many modalities such as images and
speech (Hénaff et al., 2019; Schneider et al., 2019).
The objective is designed to extract features that al-
low the model to make long-term predictions about
future observations. This is done by maximizing
the mutual information of these features with those
extracted from future timesteps. The intuition is
that the representations capture different levels of
structure dependent on how far ahead the model
predicts. For example, if the model only predicts a
few steps ahead, the resulting representations can
capture local structures. On the other hand, if the
model predicts further in the future, the represen-
tations will need to infer “slow features” (Wiskott
and Sejnowski, 2002); more global structures such
as phonemes, words and utterances in speech.

The overall unsupervised learning process is vi-
sualized in Figure 1. Given a raw audio signal
of length L (x = x1, x2, . . . , xL, xi ∈ R where
xi represents the acoustic amplitude at time i), a
function genc encodes the audio signals into vector
representations (z = z1, z2 . . . , zM , z ∈ Rdz ).
Next, an autoregressive function gar, such as a re-
current neural network, summarizes the past rep-
resentations and produces context vectors (c =
c1, c2 . . . , cM , c ∈ Rdc). The representations are
learned to maximize mutual information between
context vectors (ct) and future latent representa-
tions (z + k) as follows:

I(ct, zt+k) =
∑

ct,zt+k

p(ct, zt+k | k) log
p(zt+k | ct, k)

p(zt+k)
.

Since the mutual information is not tractable
for high dimensional data, it is common to use a
lower-bound on the mutual information such as
InfoNCE (van den Oord et al., 2018) which is a
loss function based on noise contrastive estima-
tion (Gutmann and Hyvärinen, 2010). Given a
set Z = {z1, . . . zN} which contains one posi-
tive sample from p(zt+k|ct) and N − 1 negative
samples from a “noise” distribution p(z), the ap-
proximated lower-bound is written as:

I(ct, zt+k) ≥ EZ

[
log

fk(ct, zt+k)
1
N

∑
z̃∈Z fk(ct, z̃)

]
= LNCE

tk ,

where fk(ct, zt+k) is a scoring function. We
used the standard log-bilinear model as follows:

fk(ct, zt+k) = exp(cTt W kzt+k).

The loss function we maximize is a sum of the
InfoNCE loss for each step, LNCE =

∑
t

∑
k LNCE

tk

and the negatives are uniformly sampled from rep-
resentations in the same audio signal (z).

3 Methods

In this section, we describe our models and objec-
tives for unsupervised representation learning and
downstream speech recognition. First, an acoustic
feature extractor is trained with a bidirectional vari-
ant of contrastive predictive coding on an unlabeled
audio dataset. Next, the parameters of this model
are frozen and its output representations are used
as input to train various speech recognition models,
potentially on a different or smaller labeled dataset
(Figure 1).
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Figure 1: Left, unsupervised representation learning with forward contrastive predictive coding. The learned
representations are fixed and used as inputs to a speech recognition model (Right).

3.1 Unsupervised learning with bi-directional
CPC

Following the success of bidirectional models in
representation learning (Peters et al., 2018; De-
vlin et al., 2019), we extend the original CPC
method explained above with bidirectional con-
text networks. The encoder function genc is shared
for both directions, but there are two autoregres-
sive models (gfwd

ar and gbwd
ar ) which read encoded

observations (z) from the forward and backward
contexts, respectively. The forward and backward
context representations cfwd

t , cbwd
t are learned with

separate InfoNCE losses. When they are used for
downstream tasks, a concatenation of two repre-
sentations ct = [cfwd

t ; cbwd
t ] is used. A similar

technique has been used in image representation
learning where representations are learned along
different spatial dimensions (Hénaff et al., 2019).

All audio signals have a sampling rate of 16kHz
and we normalize the mean and variance of the
input signals over each utterance in order to mit-
igate volume differences between samples. For
architectures, we use encoder and autoregressive
models similar to (Schneider et al., 2019). The
encoder function genc, is a stack of causal convo-
lutions with kernel sizes (10, 8, 4, 4, 4, 1, 1) and
stride sizes (5, 4, 2, 2, 2, 1, 1), corresponding to a
receptive field of 10 ms of audio. For autoregres-
sive functions, we use a 13 layer causal convolution
architecture with kernel sizes (1, 2, . . . , 12, 13) and
stride size 1, for both forward and backward func-
tions. Layer-normalization across the temporal and
feature dimensions is applied to every layer. Also,
each layer has dense skip connections with layers

below as in DenseNet (Huang et al., 2017). The
objective function we optimize is the sum of the
forward and backward InfoNCE losses (eq.2).

3.2 Semi-supervised speech recognition
Once the acoustic representations are trained, the
resulting context vectors (c) are used as inputs to
character-level speech recognition models which
predict transcriptions of audio-signals character
by character. The model first predicts frame-level
character probabilities with a series of convolution
layers while the CTC forward algorithm (Graves
et al., 2006) calculates conditional probabilities of
a transcription given an audio signal. The model
parameters are trained to maximize the log like-
lihood of the data. The training terminates when
the word error rate on the development set stops
improving or the model has trained for more than
a certain number of epochs. The models are evalu-
ated on the standard word error rate (WER) metric
on held-out test data. During training, the param-
eters in the speech recognition models are trained
with supervision but the parameters of the represen-
tation models remain fixed. For decoding, we use
greedy CTC decoding. In most experiments, we do
not use a language model (LM) in order to isolate
the effects of the acoustic representations, but we
do include results with a 4-gram LM to facilitate
comparisons with published results.

Common practice in unsupervised representation
learning is to evaluate learned representations using
a linear classifier rather than a more complex non-
linear model. However, we find that a simple linear
layer followed by a CTC decoder does not have
enough capacity to recognize speech. Thus, for our
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first set of experiments we use a smaller version of
DeepSpeech2 (Amodei et al., 2016) to predict the
frame-level character probabilities. The model has
two 2d-convolutions with kernel sizes (11, 41) and
(11, 21) and stride sizes (2, 2) and (1, 2) and one
unidirectional recurrent neural network (GRU) on
top of the output from the convolution layers. A
linear transformation and a softmax function are
applied to predict frame-level character probabili-
ties. We refer to DeepSpeech2 small for the model
specifics (Amodei et al., 2016). In order to further
investigate how the representations interact with
larger speech recognition models, we use the time-
delay neural networks (TDNN) that are commonly
used in speech recognition (Collobert et al., 2016;
Kuchaiev et al., 2018). These consist of 17 layers
of 1d-convolutions followed by 2 fully connected
layers. Refer to OpenSeq2Seq for a detailed de-
scription.1 These large models have been designed
to perform well with log-filterbank features and
purely supervised learning on large datasets, so
they represent a challenging and informative test
case for the value of learned representations.

4 Experiments and Results

4.1 Datasets

We collected publicly available speech datasets
which cover a variety of types of speech (e.g. read
and spoken), noise conditions and languages. For
unsupervised pretraining we use a combination of
datasets, using the audio but not any transcriptions,
even when they are available. For semi-supervised
learning (i.e., evaluation) on top of the represen-
tations we use the transcribed datasets following
their standard train-test splits. Table 1 summarizes
the datasets used for unsupervised learning and
English speech recognition tasks.

Unlabeled speech pretraining corpus For pre-
training, we collected a diverse and noisy speech
corpus from several existing datasets: the sub-
set of Audio Set (Gemmeke et al., 2017) con-
taining speech examples, the audio part of
AVSpeech (Ephrat et al., 2018), and the Common
Voice (CV)2 dataset in all 29 available languages.
In addition we used the audio from TIMIT (Garo-
folo, 1993) and the Speech Accent Archive (Wein-
berger and Kunath, 2009), ignoring the transcrip-

1https://nvidia.github.io/OpenSeq2Seq/
html/speech-recognition/wave2letter.html

2https://voice.mozilla.org

Name Language Type Hours

Audio Set Multilingual - 2500
AVSpeech Multilingual - 3100
Common Voice Multilingual read 430

LibriSpeech English read 960
WSJ English read 80
TIMIT English read 5
SSA English read <1

Tedlium English spoken 440
Switchboard English spoken 310

Table 1: Summary of English Datasets.

tions. Finally, we include the audio (again ignor-
ing transcriptions) from the standard training splits
of the evaluation datasets below. This collection
spans a range of recording conditions, noise lev-
els, speaking styles, and languages and amounts to
about 8000 hours of audio.

Transcribed read English For evaluation, we
look at the performance of our representations on
a variety of standard English recognition tasks,
as well as their ability to be trained on one and
tested on another. For read English, we use Lib-
riSpeech (Panayotov et al., 2015) and the Wall
Street Journal (Paul and Baker, 1992).

Transcribed spoken English To explore more
extreme domain shifts, we additionally used con-
versational speech and public speaking datasets.
We used Switchboard (Godfrey et al., 1992), a
standard conversational speech recognition dataset
consisting of two-sided telephone conversations
(test only). Since the data was recorded more than
10 years ago and at a lower sampling rate than
the other corpora, it presents a noisy and challeng-
ing recognition problem. Finally, we also use the
Tedlium-3 (Hernandez et al., 2018) corpus, a large
spoken English dataset containing 450 hours of
speech extracted from TED conference talks. The
recordings are clear, but there is some reverbera-
tion.

Transcription normalization Since we are com-
paring ASR systems trained on one dataset but
evaluated on the test set of another, we normalize
transcriptions to reduce systematic biases in the
transfer condition. To do so, we use the format of
the LibriSpeech dataset, which also ensures that our
results are comparable with standard speech recog-
nition systems on that task (Kuchaiev et al., 2018).
For the other datasets, transcriptions are lowercased

https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/wave2letter.html
https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/wave2letter.html
https://voice.mozilla.org
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and unpronounced symbols (e.g., punctuation, si-
lence markers) are removed. We also remove utter-
ances containing numbers as they are transcribed
inconsistently across and within datasets.

Transcribed multilingual speech In order to
evaluate the transferability of the representations,
we use speech recognition datasets in 4 African
languages collected by the ALFFA project,3

Amharic (Tachbelie et al., 2014), Fongbe (A. A Lal-
eye et al., 2016), Swahili (Gelas et al., 2012),
Wolof (Gauthier et al., 2016), for evaluation. These
languages have unique phonological properties
(e.g. height harmony) and phonetic inventories,
making them a good contrast to English. These
African languages are low-resource, each with 20
hours or less of transcribed speech. We also use 21
phonetically diverse languages from OpenSLR.4

See Appendix A for more detail.

4.2 Unsupervised Representation Learning

We train the model described above (§3.1) using
the datasets described in the previous section (§4.1).
Similarly to Schneider et al. (2019)), audio signals
are randomly cropped with a window size 149,600
observations (9.35 seconds) and encoded with the
model. The bidirectional contrastive predictive cod-
ing objective (Eq. 2) with prediction steps (k) 12
and negatives (N ) 10 is optimized with the Adam
optimizer with learning rate 0.0001. A batch size
of 128 is used as well as a polynomial learning
rate scheduler with power 2 and gradient clipping
with maximum norm 5.0. Training was terminated
at 4.2 million steps based on speech recognition
performance on the dev (= validation) set of the
LibriSpeech corpus.

4.3 Robustness

Robustness to shifts in domain, recording condi-
tions, and noise levels is an important desidera-
tum for a good ASR system, and we hypothesized
that the diversity of our largest pretraining regime
would improve robustness along these dimensions.
In contrast, standard MFCC features have been
tested in terms of noise robustness and it is known
that such representations are sensitive to additive
noise (Zhao and Wang, 2013). Moreover, speech
recognition systems developed on top of such fea-
tures are not robust when they are evaluated on
out-of-domain datasets (Amodei et al., 2016).

3http://alffa.imag.fr
4https://openslr.org

To test whether our pretraining approach im-
proves robustness, we evaluate speech recognition
models trained on the learned representations on
many different datasets so as to investigate benefit
of using the representations learned from large-
scale data. We compare ASR systems on all of the
Wall Street Journal and LibriSpeech corpora with
the same optimization as explained above and eval-
uate word error rate on different evaluation sets,
such as phone call conversations (Switchboard).

Table 2 summarizes the results on models trained
on Wall Street Journal, LibriSpeech or the Tedlium
corpora and evaluated on different evaluation sets.
CPC-LibriSpeech and CPC-8k indicate represen-
tations are learned from LibriSpeech and 8000h
of speech datasets listed above respectively. The
features trained on large-scale data consistently out-
perform other representations across different eval-
uation sets. The speech recognition models trained
on the Wall Street Journal perform badly on phone
call data in general. However, CPC representations
learned on large datasets are more robust than those
trained only on read English data (LibriSpeech).

4.4 Low-resource Languages

Thus far, all our experiments have compared our
representations in terms of their impacts on En-
glish recognition tasks (although we know that the
pretraining dataset contains samples from many
languages). We now turn to the question of
whether these representations are suitable for driv-
ing recognition different languages with substan-
tially different phonetic properties than English
has. Specifically, we look at the performance
on four languages—Amharic, Fongbe, Swahili,
and Wolof—which manifest a variety of interest-
ing phonological properties that are quite different
from English. Evaluating on such languages will
provide insights into the phonetic space learned in
the representations. Moreover, our non-English lan-
guages are low-resource in terms of speech recog-
nition data, but have 2–20 million native speakers
each. It is therefore valuable if the representations
learned from large-scale unlabelled data can im-
prove low-resource speech recognition. Although
there is a chance that the large-scale pretraining
dataset may contain some examples from those lan-
guages, we did not add any extra data specifically
from those languages.

To test the cross-linguistic value of these fea-
tures, we trained speech recognition models on

http://alffa.imag.fr
https://openslr.org
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WSJ LibriSpeech Tedlium Switchboard
test92 test93 test-clean test-other dev test eval2000

WSJ
LogFilterbank 16.78 23.26 46.27 73.27 58.61 62.55 96.44
CPC-LibriSpeech 11.89 15.66 31.05 56.31 45.42 47.79 83.08
CPC-8k 10.77 14.99 29.18 51.29 38.46 39.54 69.13

LibriSpeech
LogFilterbank 14.42 21.08 6.43 20.16 26.9 25.94 61.56
CPC-LibriSpeech 14.28 20.74 6.91 21.6 26.53 27.14 63.69
CPC-8k 13.31 18.88 6.25 19.10 21.56 21.77 53.02

Tedlium
LogFilterbank 20.35 27.23 24.05 47.27 18.75 19.31 74.55
CPC-LibriSpeech 15.01 19.52 17.77 36.7 15.28 15.87 61.94
CPC-8k 13.17 17.75 16.03 32.35 13.67 13.88 47.69

Table 2: Domain transfer experiments to test the robustness of the representations to domain shifts. The models
are trained on the Wall Street Journal, LibriSpeech or Tedlium and evaluated on different evaluation sets. The
results on in-domain evaluation sets are in gray color. All the results are without a language model.

low-resource languages (§4.1) and compare the rel-
ative reduction in WER by switching from standard
spectrogram features and the learned representa-
tions. As these are very small datasets, we trained
the same DeepSpeech2 small architecture with the
Adam optimizer with a fixed learning rate of 0.0002
and gradient clipping with maximum norm 25.0 for
all languages.

Figure 2 summarizes results. Again, we find that
the CPC-8k representations outperform other fea-
tures by a large margin and that the models trained
on the representations trained on using the audio of
(English-only) LibriSpeech do not perform even as
well as basic spectrogram features. This suggests
that the representations learned on large-scale data
capture a phonetic space that generalizes across
different languages, but that diversity of linguistic
inputs is crucial for developing this universality.

4.5 Multilingual Transfer
As a final exploration of the transferability of the
representations, we evaluate the representations on
a diverse language set of languages with varying
amounts of training data and compare the relative
reductions in word error rate we obtain when us-
ing standard features and switching to the CPC-8k
representations. As most of the dataset are small,
we trained DeepSpeech2 small models with the
Adam optimizer with a fixed learning rate of 0.0002
and applied gradient clipping with maximum norm
25.0, using the same configuration for all languages.

W
ER

0

25

50

75

100

Amharic Fongbe Swahili Wolof

LogFilterbank CPC-Librispeech CPC-8k

Figure 2: Speech recognition performance on low-
resource African languages (in word error rate). CPC
features trained on diverse datasets features signif-
icantly outperform baseline log-filterbank features
whereas the features trained only on English underper-
form the baseline.

Figure 3 summarizes results. Since the experiments
above showed that CPC-LibriSpeech features per-
formed badly, we only compare the relative error
rediction with CPC-8k features over spectrogram
features. In all cases, we find that the CPC-8k repre-
sentations improve performance relative to spector-
gram feature baselines. The largest improvement
was obtained on Sundanese where the WER with
spectrogram was 27.85 but dropped to 11.49 using
CPC-8k features.
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Discussion As our pre-training data did not have
any language labels, it is unclear how many sam-
ples were seen for each language during pre-
training. However, it is important to know that
the uncurated multilingual pre-training can im-
prove speech recognition performance on many
languages. These results suggests, in practice, that
one could use a universal speech feature extractor
for many languages instead of training one for each
language individually (Kannan et al., 2019).

4.6 Control: English Speech Recognition

Thus far, we have focused on robustness and trans-
ferability and seen that CPC-8k features offer con-
siderable benefits in these dimensions compared to
traditional features. It remains to demonstrate how
well they work in powerful architectures where
large amounts of labeled training data is available.
To test this, we used 10% and 100% portions of Lib-
riSpeech dataset to train speech recognition models,
again comparing different features. Our architec-
ture is a standard TDNN. The speech recognition
models are trained in the similar way as standard
models (Collobert et al., 2016; Kuchaiev et al.,
2018). The models are trained with Adam opti-
mizer with learning rate 0.0002 and gradient clip-
ping with a maximum norm 5.0 together with the
polynomial learning rate decay method with power
2.0 is used over 200 epochs.5

Table 3 summarizes the results with TDNN mod-
els trained on different sizes of LibriSpeech dataset.
We see that even if the speech recognition models
have a large number of parameters and are trained
on plenty of supervised data, the learned represen-
tations still provide significant improvements. The
pattern continues to hold if we use beam search
decoding with a language model.6 Our + LM de-
coding results are comparable to the OpenSeq2Seq
benchmark, since we used the exact same LM and
decoding algorithm as they used (Kuchaiev et al.,
2018).

Although better results contain be obtained using
newer architectures than TDNN (Park et al., 2019;
Synnaeve et al., 2019), it still represents a standard
and important recognition architecture and the re-
sults prove that the representations learned from
diverse and noisy data can improve large speech

5These hyperparameters were chosen to give optimal per-
formance with baseline log filterbank features, and used, un-
changed for our learned features.

6http://www.openslr.org/resources/11/
4-gram.arpa.gz

recognition model on English in both low-data and
high-data regimes.

5 Related Work

Unsupervised learning played an import role in
the reintroduction of deep networks to speech pro-
cessing (Hinton et al., 2012), as well as other ap-
plication areas (Hinton et al., 2006; Bengio et al.,
2007; Vincent et al., 2010). After a period of focus-
ing on supervised techniques, unsupervised repre-
sentation learning has recently seen a resurgence
in a variety of modalities (Doersch and Zisser-
man, 2017; van den Oord et al., 2018; Donahue
and Simonyan, 2019; Bachman et al., 2019) and
has led to improved results, especially in low-data
regimes (Hénaff et al., 2019; Schneider et al., 2019).
In natural language processing, pretrained repre-
sentations can outperform state-of-the-art system
even in high data regimes (Mikolov et al., 2013;
Devlin et al., 2019).

The last two years have produced a large amount
of work on unsupervised speech representation
learning. Some of this work has been evaluated
in terms of its ability to perform phone recogni-
tion and similar audio classification tasks (van den
Oord et al., 2018). Like us, Schneider et al. (2019);
Baevski et al. (2019) applied learned representa-
tions to speech recognition tasks and evaluated on
how well in-domain WER was improved. How-
ever, as we argued in the paper, such an evaluation
misses the opportunity to assess whether these sys-
tems become more robust to domain shift and to
what extent the learned representations appropriate
for different languages.

Finally, the ZeroSpeech challenges have explic-
itly looked at correlations between learned repre-
sentations and phonetic structures that generalize
across many languages and adapt to new speak-
ers (Dunbar et al., 2017, 2019). Kahn et al. (2019b);
Rivière et al. (2020) learned representations with
contrastive predictive coding on 60,000 hours of
English speech and could show that their represen-
tations are correlated well with phonetic structure
of English and other languages; however, they did
not evaluate these representations in a supervised
speech recognizer.

Recently, there have been considerable improve-
ments in purely supervised speech recognition sys-
tems. Data augmentation (Park et al., 2019), self-
training (Synnaeve et al., 2019; Kahn et al., 2019a)
have advanced the state-of-the-art performance on

http://www.openslr.org/resources/11/4-gram.arpa.gz
http://www.openslr.org/resources/11/4-gram.arpa.gz
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Figure 3: Relative improvements (in percentage) on speech recognition on many languages with CPC-8k features
over Spectrogram features. Each column correspond to language code explained in Table 4. Note that en is
Nigerian English and fr is African French.

LibriSpeech
dev-clean dev-other test-clean test-other

10% 100% 10% 100% 10% 100% 10% 100%

LibriSpeech
LogFilterbank (OpenSeq2Seq) - 6.67 - 18.67 - 6.58 - 19.61
LogFilterbank (ours) 19.83 6.63 38.97 18.77 19.65 6.43 41.26 20.16
CPC-LibriSpeech 15.07 6.70 33.55 19.77 14.96 6.91 36.05 21.60
CPC-8k 13.92 6.20 30.85 17.93 13.69 6.25 32.81 19.10

+ LM decoding
LogFilterbank (OpenSeq2Seq) - 4.75 - 13.87 - 4.94 - 15.06
LogFilterbank (ours) 12.49 4.87 28.71 14.14 12.29 5.04 31.03 15.25
CPC-LibriSpeech 9.66 4.87 24.72 14.34 9.41 5.05 26.77 16.06
CPC-8k 8.86 4.35 22.10 12.96 8.70 4.72 24.15 14.47

Table 3: Sample efficiency experiments with the TDNN trained and evaluated on LibriSpeech. The results are
word error rate on the LibriSpeech development and evaluation sets. 10% vs. 100% indicates the amount of training
data used. The section in + LM decoding contain results with beamsearch decoding with a 4-gram language model.
The underlined (OpenSeq2Seq) scores are taken from public benchmarks.7

English speech recognition. It is likely that aug-
mentation methods are orthogonal to the proposed
improvements on universal speech representation
learning, and that one could combine both to im-
prove results even further. Additionally, the impact
of data augmentation and self-training can be fur-
ther assessed in terms of its impact on robustness
using the methods proposed in this paper.

6 Conclusion

We have introduced an unsupervised speech rep-
resentation learning method that discovers acous-
tic representations from up to 8000 hours of di-
verse and noisy speech data. We have shown, for
the first time, that such pretrained representations
lead speech recognition systems to be robust to
domain shifts compared to standard acoustic repre-
sentations, and compared to representations trained

on smaller and more domain-narrow pretraining
datasets. These representations were evaluated on
a standard speech recognition setup where the mod-
els are trained and evaluated on in-domain data
and also on transfer tasks where the models are
evaluated on out-of-domain data. We obtained con-
sistent improvements on 25 phonetically diverse
languages including tonal and low-resource lan-
guages. This suggests we are making progress
toward models that implicitly discover phonetic
structure from large-scale unlabelled audio signals.
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A Multilingual evaluation datasets

For the multilingual evaluation, we only include
(labeled) datasets from OpenSLR that containing
more than 1GB of audio. When there is more than
one dataset available for one language, we used the
largest dataset. Table 4 summarizes the multilin-
gual dataset statistics used in our evaluation.

Language name Code Dataset Hours

Amharic am ALFFA 18.3
Fongbe fon ALFFA 5.2
Swahilli sw ALFFA 8.9
Wolof wo ALFFA 16.8

Czech cs OpenSLR-6 15.0
Uyghur ug OpenSLR-22 20.2
Javanese jv OpenSLR-35 236.8
Sundanese su OpenSLR-36 265.9
Tunisian Arabic ar OpenSLR-46 4.5
Sinhala si OpenSLR-52 179.6
Bengali bn OpenSLR-53 172.3
Nepali ne OpenSLR-54 123.6
African French fr OpenSLR-57 13.7
Catalan ca OpenSLR-59 71.9
Malayalam ml OpenSLR-63 4.4
Tamil ta OpenSLR-65 5.7
Spanish es OpenSLR-67 19.6
Nigerian English en OpenSLR-70 39.5
Chilean Spanish es OpenSLR-71 5.7
Columbian Spanish es OpenSLR-72 6.1
Peruvian Spanish es OpenSLR-73 7.3
Basque eu OpenSLR-76 11.0
Galician gl OpenSLR-77 8.2
Gujarati gu OpenSLR-78 6.3
Kannada kn OpenSLR-79 6.7

Table 4: Summary of Multilingual Datasets.


