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Abstract

State-of-the-art neural machine translation
methods employ massive amounts of param-
eters. Drastically reducing computational
costs of such methods without affecting per-
formance has been up to this point unsuccess-
ful. To this end, we propose FullyQT: an all-
inclusive quantization strategy for the Trans-
former. To the best of our knowledge, we are
the first to show that it is possible to avoid any
loss in translation quality with a fully quan-
tized Transformer. Indeed, compared to full-
precision, our 8-bit models score greater or
equal BLEU on most tasks. Comparing our-
selves to all previously proposed methods, we
achieve state-of-the-art quantization results.

1 Introduction

The idea of using neural networks for machine
translation was only recently proposed (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014; Cho
et al., 2014). Nonetheless, the approach became the
state-of-the-art in the field (Ahmed et al., 2017; Ott
et al., 2018; Edunov et al., 2018). A key element of
this success was to allow the decoder to attend to all
hidden states of the encoder (Bahdanau et al., 2014).
A few variations to this additive attention mecha-
nism have been proposed, such as multiplicative
and self-attention (Luong et al., 2015; Cheng et al.,
2016; Lin et al., 2017). The latter formed the basis
of the Transformer network (Vaswani et al., 2017),
which achieved state-of-the-art results in machine
translation. Inspiring a new wave of work, numer-
ous natural language processing tasks reached new
heights (Devlin et al., 2018; Liu et al., 2019). Un-
fortunately, these models use an enormous amount
of parameters. Inference on resource-limited hard-
ware such as edge-devices is thus impractical.

A solution to reduce the computational burden
of these networks is to lower numerical precision.
Consequently, numerical values can be represented

using fewer bits (Tang and Kwan, 1993; March-
esi et al., 1993). This method called quantization
has the advantage of providing good compression
rates with minimal loss in accuracy. It is also con-
veniently supported by most hardware. Properly
quantizing the Transformer would allow computa-
tional speed gains at inference, as well as deploy-
ment on more constrained devices.

In this work, we propose a quantization-aware
training strategy for the entire Transformer architec-
ture. Our method is easy to implement and results
are consistent with the full-precision Transformer.
We test our approach on multiple translation tasks
such as WMT14 EN-FR and WMT14 EN-DE and
obtain state-of-the-art quantization results. In com-
parison with full-precision, our quantized models
score equal or higher BLEU on most tasks. We are,
to the best of our knowledge, the first to show that
the Transformer architecture can be fully quantized
without impairing translation quality. We also per-
form an ablation study and show that quantizing
specific components of the Transformer improves
BLEU score.

2 Background

In this section, we review a broad spectrum of quan-
tization and pruning methods for neural network
compression.

2.1 Quantization
Over the years, a large range of methods have been
proposed to quantize neural networks. These in-
clude, among many others, binary (Courbariaux
et al., 2016), ternary (Lin et al., 2015; Li et al.,
2016), uniform (Jacob et al., 2017) and learned
(Zhang et al., 2018) quantization. These methods
can be universally applied to any type of neural
network. To maintain performance though, spe-
cific architectures usually require custom tailored
quantization schemes.
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Several recent work explore recurrent neural net-
work (Jordan, 1990) quantization. Ott et al. (2016)
propose an exponential quantization method for
RNN weights. They find ternary and exponen-
tial quantization to work well on language mod-
eling and speech recognition, while binary weights
seemed ineffective. Hubara et al. (2016) quantize
weights and activations of both RNNs and LSTMs
(Hochreiter and Schmidhuber, 1997) to 2, 4 and 6-
bit. Meanwhile, He et al. (2016) propose modifica-
tions to the gates and interlinks of quantized LSTM
and GRU (Cho et al., 2014) cells, as well as a bal-
anced quantization method for weights. Wu et al.
(2016) successfully quantize a stacked sequence-to-
sequence LSTM to 8-bit without any loss in trans-
lation quality. Most recently, Wang et al. (2018)
propose applying different quantization methods
for different RNN components.

With regards to CNNs (LeCun et al., 1989), var-
ious works have also explored quantizing these
models. Gong et al. (2014) compare matrix factor-
ization, binarization, k-means clustering, product
quantization and residual quantization of CNNs.
Wu et al. (2015) apply quantization to both kernels
and fully connected layers of convolutional neural
networks. Rastegari et al. (2016) propose using bi-
nary weighted filters on AlexNet (Krizhevsky et al.,
2012). Testing their method on ImageNet, they
show classification accuracy to be on par with full-
precision. For faster inference and training, Zhou
et al. (2016) use low bitwidth weights, activations
and gradients on CNNs.

Quantization has been applied in tandem with
other compression methods. Han et al. (2015)
combine pruning, quantization, weight sharing and
Huffman coding. In another line of work, Polino
et al. (2018) employ quantization with knowledge
distillation (Hinton et al., 2015) for higher com-
pression rates. Moreover, Chen et al. (2018) blend
quantization with block based low-rank matrix ap-
proximation of embeddings.

2.2 Pruning

The pruning of neural networks for model com-
pression has also been largely explored. LeCun
et al. (1990) were the first to propose a Hessian
based method to prune neural net weights. Hassibi
et al. (1994) later improved the method. More
recently, See et al. (2016) show that pruning a
fully trained model and then retraining it can in-
crease performance over the original non-pruned

model. Gradually pruning in tandem with train-
ing has also been shown to increase performance
(Zhu and Gupta, 2017). To avoid sparse matrices,
Liu et al. (2017) prune nodes instead of weights.
They apply a penalty in the loss on the γ parame-
ters of batch normalization layers. With a similar
objective, Narang et al. (2017b) make better use of
hardware by applying pruning and weight decay in
blocks to minimize the number of loaded weight
matrix chunks.

Similarly to quantization, pruning methods have
also been adapted to specific architectures. Liu et al.
(2015) propose an efficient sparse matrix multipli-
cation algorithm for CNNs. As for RNNs, Narang
et al. (2017a) show sparse pruning to work well on
the architecture. In order to maintain dimension
consistency, Wen et al. (2017) propose to prune
all basic LSTM structures concurrently. Lastly,
Park et al. (2018) introduce simple recurrent units
(SRUs) for easy pruning of RNNs.

3 FullyQT

3.1 Quantization Methodology

Our quantization scheme was chosen to be uniform,
meaning that the step size between two quantized
values is constant. This choice, which is an addi-
tional constraint, was made for practical reasons. It
indeed simplifies all computations required during
inference, enabling the exploitation of hardware
resources more efficiently. If the performance with
uniform quantization is already on par with full-
precision, then more weighty methods are unneces-
sary. A brief overview of uniform quantization is
given in this section. For more details, we refer the
reader to Jacob et al. (2017).

Given an element x of a tensor X, we apply the
quantization function Q:

Q(x) =
⌊
clamp(x;xmin, xmax)− xmin

s

⌉
∗ s+ xmin (1)

s =
xmax − xmin

2k − 1
(2)

where xmin and xmax defines the endpoints of
the quantization interval. When quantization is
applied to weights, these values are respectively
min(X) and max(X). However, when quantiza-
tion is applied to activations, those values are run-
ning estimates. The latter are computed during
training, where for every forward pass, the xmin

and xmax variables are updated via an exponential
moving average with a momentum of 0.9. The
clamp function associates all values outside of the
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[xmin, xmax] range to the closest endpoint and b·e
represents rounding to the nearest integer. The
value k is simply the bit precision. For example, in
the context of 8-bit quantization, k = 8.

During backpropagation, we use the straight-
through estimator (Hinton, 2012) and set the gra-
dients of clamped values to zero. Once training
is finished, s and xmin are frozen along with the
weights.

3.2 What to Quantize

We choose to quantize all operations which can
provide a computational speed gain at inference. In
this regard, we quantize all matrix multiplications,
meaning that the inputs and weights of MatMuls
will both be k-bit quantized. The other operations
we quantize are divisions, but only if both the nu-
merator and denominator are second or higher rank
tensors. For all other operations, such as sums,
the computational cost added by the quantization
operation outweighs the benefit of performing the
operation with reduced precision. Hence, we do
not quantize such operations.

More precisely, we quantize all weights of the
Transformer, excluding biases. The latter are
summed with the INT32 output of matrix multi-
plications and thus provide no additional compu-
tational efficiency from being quantized. Further-
more, the memory space of biases is insignificant
in comparison to the weight matrices, representing
less than 0.1% of total weights. For positional em-
beddings, these are fixed and can thus be quantized
once prior to training. The γ weights of Layer-
Norms are also quantized. As for activations, we
quantize the sum of the input embeddings with the
positional encodings in both the encoder and de-
coder. In the Multi-Head Attention, we quantize
the (Q,K, V ) input, the softmax’s numerator, the
softmax’s denominator, the softmax’s output and
the Scaled Dot-Product Attention’s output. At infer-
ence, the softmax does not need to be computed in
full-precision. Indeed, the exponential function can
instead be replaced with a step function. For the
position-wise feed-forward networks, we quantize
the output of the ReLUs and of the feed-forwards
themselves. Finally, for all LayerNorms, we quan-
tize the numerator x−µ, the denominator

√
σ2 + ε,

their quotient and the output of the LayerNorm. A
visual guide is provided in appendix A.

3.3 Bucketing

Instead of using a single set of (s, xmin) per quan-
tized tensor, we can quantize subsets of the latter
with each its own set of (s, xmin) (Alistarh et al.,
2016). Even though this adds more scalars, the
memory cost is insignificant overall. Furthermore,
the added flexibility can greatly alleviate the preci-
sion loss resulting from all values being mapped to
a single low numerical precision domain.

We use this bucketing method for all weight ma-
trices, with a number of subset equal to the output
dimension. For activations, we use bucketing when
quantizing: the sum of input embeddings with the
positional encoding, theQ,K, V inputs, the Scaled
Dot-Product Attention’s output, the feed-forward’s
output, the LayerNorm’s numerator, quotient and
output.

3.4 Dealing with Zeros

Unlike Jacob et al. (2017), we do not nudge the do-
main so that the zero value gets perfectly mapped.
The only zero values which we have to deal with
are the padding, the Softmax numerator and output,
the output of ReLU layers and dropouts. Since
padding has no effect on the final output, we com-
pletely ignore these values when quantizing. For
ReLUs and the Softmax’s numerator and output,
we fix their xmin to 0, which guarantees the per-
fect mapping of the value. Finally, quantization
is applied before any dropout operation. Indeed,
even though the zeros added to the output of the
quantization layer might not be part of the domain,
this only happens during training.

4 Related Work

Recently, simple quantization solutions have been
applied to the Transformer. Cheong and Daniel
(2019) apply k-means quantization and binariza-
tion with two centroids over the weights of the
network. For both methods, a look up table asso-
ciated with each quantized layer is used to map
indices to their corresponding centroids. Similarly,
Fan (2019) compares binary, 4 and 8-bit uniform
quantization of the Transformer weights. A big dis-
advantage with quantizing only the weights of a net-
work is that operations must still be performed in
full-precision. Even though the parameters’ mem-
ory usage is reduced, these constantly have to be
converted back to full-precision. Achieving quanti-
zation of both weights and activations is much more
beneficial. The first attempt at doing so for the



4

Transformer applies 8-bit quantization on weights
and inputs of feed forward layers and binarizes the
(Q,K) input of the Multi-Head Attention (Tierno,
2019). The scaling factor

√
dk is approximated by

a constant which can be computed as a right bitshift.
The method resulted in a huge drop in translation
accuracy. Achieving better performance, Bhan-
dare et al. (2019) quantize certain MatMul oper-
ations and use the KL divergence to estimate the
most suited parameters for each quantization range.
They restrain from quantizing all MatMuls, report-
ing poorer results in accuracy. Aside from trans-
lation, the concurrent work by Zafrir et al. (2019)
quantizes the embedding and fully connected layers
of BERT (Devlin et al., 2018). The Softmax and
LayerNorm operations are kept in full-precision.
On the GLUE benchmark, their loss in accuracy is
minimal compared to the original model.

All of these methods omit quantizing the whole
Transformer architecture, resulting in suboptimal
computational efficiency. Furthermore, these solu-
tions all fail to avoid impairing translation quality.
Our method achieves both.

5 Experiments

In this section, we present the results of our full
quantization scheme on various tasks. We first
compare our method on a machine translation setup.
Then we present the results of numerous ablation
studies. We also compare the impact of delaying
quantization on translation quality. Finally, we
evaluate our method on two language model tasks
and experiment with node pruning.

5.1 Full Quantization

We apply our quantization strategy on both the
base and big Transformer (Vaswani et al., 2017).
The training setup of all presented models is the
same as in the original paper, with the excep-
tion that the dropout ratio is set to 0.1 in all
cases. We refer readers to the original paper
for experimental details. Our models were first
evaluated on the WMT 2014 / 2017 English-to-
German and WMT 2014 English-to-French trans-
lation tasks. Reported perplexity is per token and
BLEU was measured with multi-bleu.pl1 on
the newstest20142 test set. We used beam

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

2https://www.statmt.org/wmt14/
translation-task.html

search with a beam size of 4 and a length penalty
of 0.6. Unlike Vaswani et al. (2017), no checkpoint
averaging was performed.

We compare our results with the original Trans-
former and other 8-bit quantization methods in Ta-
ble 1. All models are base Transformers. Original
uncompressed size is the same in all cases. Most
work do not report their compressed model size.
For those, we give lower bounds based on their
reports. Our BLEU score was computed on the test
set using the checkpoint with the highest validation
accuracy over 2 million training steps. Validation
was computed every training epoch. Models were
trained once. Our objective was to train quantized
models up to convergence. Very similar BLEU
scores can be obtained with much fewer training
(see below). As for other methods, Cheong and
Daniel (2019) retrain for 10k steps a 200k steps
pretrained Transformer. Fan (2019) also does the
same but does not mention the number of retrain-
ing steps. Bhandare et al. (2019) and the original
Transformer paper both do not mention the number
of training steps. Out of all methods, we are the
only one quantizing every component of the model
(see section 4 for details).

In Table 2, we show performance of our method
on the WMT14 EN-DE and WMT14 EN-FR for
a fixed amount of training steps. We compare our
results with two full-precision Transformers: base
and big variants. We also evaluate two other quan-
tization approaches. The first one is the ”default”
approach, which is to naively quantize every pos-
sible operation. The second approach applies our
quantization strategy post-training (see section 5.3).
In all cases except for post-quantization, BLEU
was computed on the test set using the checkpoint
which scored the highest accuracy on the valida-
tion set. Towards the end of training, we ran one
validation epoch for every 100 training steps. Base-
lines and FullyQT 8-bit results were averaged over
5 trials. Standard deviation of the BLEU scores
did not seem higher for any method and ranged
between 0.09 and 0.51. Training with quantiza-
tion was about twice as slow as with the baselines.
As for post-training quantization, the BLEU score
was computed on the test set using the best vali-
dation performance out of 20 trials. The default
approach’s nan in the EN-FR task is due to nu-
merical instability. By quantizing every operation,
zeros in the LayerNorm’s denominator are more
frequent.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://www.statmt.org/wmt14/translation-task.html
https://www.statmt.org/wmt14/translation-task.html
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Method
Fully Size (Gb)

Compr.
BLEU

Quantized [EN-DE, EN-FR] EN-DE (2014) EN-FR EN-DE (2017)

Vaswani et al. (2017) [2.02, 1.94] 1x 27.3 38.1 -
Cheong and Daniel (2019) 0.69 2.92x - - 27.38
Bhandare et al. (2019) ≥ 0.96 ≤ 2.1x 27.33 - -
Fan (2019) ≥ 0.51 ≤ 3.99x 26.94 - -
FullyQT X [0.52, 0.50] 3.91x 27.60 39.91 27.60

Table 1: Our quantization strategy achieves better BLEU scores than all other quantization methods for the Trans-
former on the WMT14 EN-DE, WMT14 EN-FR and WMT17 EN-DE test set.

Model Method Precision
EN-DE EN-FR

PPL BLEU Size (Gb) Compr. PPL BLEU Size (Gb) Compr.

Base Baseline 32-bit 4.95 26.46 2.02 1x 3.21 38.34 1.94 1x
Default Approach 8-bit 74.04 0.21 0.52 3.91x nan 0 0.50 3.91x
Post-Quantization 8-bit 4.97 26.44 0.52 3.91x 3.26 38.30 0.50 3.91x
FullyQT 8-bit 4.94 26.38 0.52 3.91x 3.23 38.41 0.50 3.91x
Post-Quantization 6-bit 6.00 24.84 0.39 5.18x 3.98 35.02 0.37 5.17x
FullyQT 6-bit 5.09 26.98 0.39 5.18x 3.38 37.07 0.37 5.17x
FullyQT 4-bit 11.96 18.32 0.26 7.66x 48.21 1.59 0.25 7.64x

Big Baseline 32-bit 4.38 27.13 6.85 1x 2.77 40.54 6.69 1x
Post-Quantization 8-bit 4.27 26.55 1.74 3.95x 2.78 39.78 1.69 3.95x
FullyQT 8-bit 4.57 26.96 1.74 3.95x 2.80 40.25 1.69 3.95x
Post-Quantization 6-bit 5.12 24.86 1.31 5.24x 3.08 37.92 1.28 5.24x
FullyQT 6-bit 4.78 26.76 1.31 5.24x 2.87 39.59 1.28 5.24x
FullyQT 4-bit 33.11 10.22 0.88 7.79x 42.42 2.81 0.86 7.79x

Table 2: Performance of our quantization method on the WMT14 EN-DE and WMT14 EN-FR test set for a fixed
number of training steps.

Model Method Precision
EN-CS RU-EN ES-EN

PPL BLEU PPL BLEU PPL BLEU

Base
Baseline 32-bit 6.90 22.71 3.56 32.62 5.59 29.99
FullyQT 8-bit 6.81 23.06 3.53 33.08 5.60 29.88

Big
Baseline 32-bit 7.41 22.22 3.57 32.22 5.32 30.06
FullyQT 8-bit 7.17 22.49 3.66 31.74 5.35 30.15

Table 3: Evaluation of our quantization method on the WMT14 EN-CS, WMT14 RU-EN and WMT14 ES-EN
translation datasets.

Results on additional translation datasets can be
found in Table 3. All models were trained follow-
ing the same setup as WMT14 EN-FR and WMT14
EN-DE. Vocabulary size is set to 32k for all mod-
els. Since there is no test set for WMT14 ES-EN,
we used the validation set as a test set and omitted
computing any validation epochs during training.

Looking at all conducted experiments, includ-
ing section 5.3, translation quality of the 8-bit Ful-
lyQT models seems to be on par with full-precision.
Most of the time, the highest BLEU was scored by
the quantized model. For example in the case of
WMT14 EN-DE, the maximum BLEU FullyQT
base 8-bit obtained was 26.98, while the baseline’s

highest was 26.64. As for the big models, the max
FullyQT scored was 27.95, whereas the baseline’s
was 27.43. We looked at training and validation
curves to see if quantization had any effect, but saw
no discernible difference.

All models use full-precision biases, s and xmin.
This amounts to 11.61 Mb in the base models and
23.15 Mb in the big models. In the case of 8-bit,
these represent less than 2.35% of the total size.
Without bucketing, this would amount to 2.18 Mb
and 4.35 Mb respectively. We believe the small
increase in model size to be worth it. Indeed, in
section 5.2, we show that training without bucket-
ing leads to poorer translation.
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Although 6-bit quantization seems to perform
well, the compression advantage over 8-bit is usu-
ally lost. Most hardware store INT6 using either 8
or 32 bits. Dedicated hardware is needed to get the
full compression advantage. Unless 6-bit quantiza-
tion results in better models, 8-bit seems like the
best choice for most hardware.

5.2 Ablation Studies
To better understand which operations are more
sensitive to quantization, we evaluate such effect
on single operations of the Transformer. By this,
we mean quantizing the operation of a module for
all Transformer layers. Table 4 shows results on
the WMT14 EN-FR translation task for 8-bit pre-
cision. The effect of bucketing was also evaluated.
BLEU was computed on the test set after 100k steps
of training. In 24 out of 27 experiments, perfor-
mance was better than our full-precision baseline of
38.34 BLEU. Solely quantizing the LayerNorm’s
denominator with no bucketing results in poor per-
formance. The latter also cannot be bucketed since
all dimensions of the variance tensor vary per batch.
To successfully quantize this element without caus-
ing any loss in performance, we suspect quantizing
other elements in the network helps.

To further validate our quantization scheme, we
evaluated four models trained with alterations to
our design choices. Results on the WMT14 EN-FR
task are presented in Table 5. All models are 8-bit
quantized base Transformers. Training procedure
is the same as in section 5.1.

5.3 Delaying Quantization
Our method’s goal is to increase computational ef-
ficiency when inferring with the Transformer. To
this end, our quantization scheme only requires us
to learn s and xmin. Although we do so throughout
the whole training, this is not a necessity. Quanti-
zation could also be applied later during training.
Results for different starting points are compared
in Table 6. The earliest we start quantizing is at
100 steps, since we need at least a few steps to
assess the running estimates. All models were eval-
uated on the WMT14 EN-DE and WMT14 EN-FR
translation tasks. BLEU was measured on the test
set using the checkpoint which scored the high-
est accuracy on the validation set during training.
Validation was computed every 100 training steps
towards the end of training. From our observed
results, quantizing the model early on seems prefer-
able.

Learning quantization parameters adds a signifi-
cant computational cost during training. A major
advantage to delaying quantization is to perform
more training steps in the same given amount of
time. Therefore, when training time is a constraint,
a possible strategy is to train a model without quan-
tization, perform more training steps and finally
post-quantize the model. By the latter, we mean
keeping all weights fixed and compute the s and
xmin over a few hundred steps. This is another
advantage, since many trials can be performed in
search of the best performing candidate. We found
post-quantization BLEU scores to vary by about
0.2 BLEU.

5.4 Language Modeling

To evaluate if our quantization scheme generalizes
well to other tasks, we evaluate it on two language
modeling datasets: WikiText-2 and WikiText-103.
As the setup, we use PyTorch’s language model-
ing toy example3. The task consists of predicting
the sequence {xt+1, · · · , xt+n+1} from the input
sequence {xt, · · · , xt+n}. We trained four Trans-
former models, each with different precision. All
models consist of two Transformer encoder lay-
ers, with the embedding and hidden size set to 200.
Multi-Head Attention has two heads with key and
value size 64. The final word projection layer’s
weights are shared with the embedding layer. Mod-
els were trained for 10 epochs with a batch size
of 20 and sequence length of 35. Learning rate is
set to 5, dropout to 0.2 and gradient clipping to
0.25. Loss is computed on every element of the
output sequence. Results are presented in Table 7.
Validation was computed every epoch to determine
the best candidate. Loss and perplexity are com-
puted on the test set and averaged over 10 trials
for WikiText-2 and 3 trials for WikiText-3. See
footnote 3 for any extra details.

6 Pruning Useless Nodes

We experiment with node pruning our Transformer
models. Once the model is fully trained and quan-
tized, we can further compress it by removing use-
less nodes. By useless, we mean nodes which do
not cause any loss in translation quality when re-
moved. We choose to prune nodes instead of in-
dependently pruning weights. The latter method
usually requires special hardware or software to

3https://github.com/pytorch/examples/
tree/master/word_language_model

https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model
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Module Quantized Activation
No Bucketing Bucketing
PPL BLEU PPL BLEU

Encoder (Input Embedding + Positional Encoding) 3.20 38.61 3.20 39.08

Decoder (Input Embedding + Positional Encoding) 3.20 39.35 3.20 39.36

Multi-Head
Attention

Input (Q,K, V ) 3.21 39.06 3.21 39.29
LayerNorm Output 3.21 39.09 3.20 38.78

Scaled
Dot-Product

Attention

Softmax Numerator 3.20 39.32 3.21 39.01
Softmax Denominator 3.21 39.35 3.21 39.11
Softmax Output 3.22 39.41 3.22 38.87
Output 3.21 38.73 3.21 39.02

Feed-forward
ReLU Output 3.21 39.43 3.22 38.93
Feed-forward Output 3.54 38.03 3.20 39.27
LayerNorm Output 3.21 38.67 3.21 39.04

LayerNorm
Numerator 3.53 37.75 3.21 38.86
Denominator 1748 0 - -
Quotient 3.22 38.97 3.21 39.02

Table 4: Effect of quantizing single activations of the Transformer. Results are on the WMT14 EN-FR test set.

Method PPL BLEU

No Bucketing 3.49 37.14
No Gradient Clipping 2549.30 0
No LayerNorm Denominator Quantization 3.22 38.29
8-bit Quantized Weights, Full-precision Activations 3.20 38.36

Table 5: Variations to our quantization scheme evaluated on the WMT14 EN-FR translation task.

Quantization Start EN-DE EN-FR
(training step) PPL BLEU PPL BLEU

Never quantized 4.95 26.46 3.21 38.34
100 4.67 26.98 3.23 38.55
10000 4.99 26.63 3.21 38.62
50000 4.98 26.84 3.21 38.50
80000 5.03 26.41 3.21 38.43
Post-Quantization 4.45 25.50 3.22 37.96

Table 6: Impact of delaying quantization. Results are
on the WMT14 EN-DE and WMT14 EN-FR test set.

leverage sparse weight matrices. Pruning nodes
results in concretely shrunken models. When get-
ting rid of a node, we remove its corresponding
set of weights from the layer outputting it and the
following layer receiving the node as input.

The only nodes of the Transformer which can
be removed without causing alterations to other
components of the network are the nodes in be-
tween the two layers of each feed-forward network.
Fortunately, these consist of a substantial portion
of the model’s weights. In the case of the base
Transformer, for a respective vocabulary of size
37000 and 32000, 39.96% and 41.65% of the total
weights are owned by the feed-foward networks.

This number grows to 47.03% and 48.18% in the
big Transformer.

To evaluate which nodes can be safely pruned
without affecting translation quality, we estimate
xmax for each node of the ReLU output over a few
hundred steps. This is done on the training set,
using the fully trained model and keeping all other
weights frozen. These xmax are computed before
quantizing the ReLU output and do not replace the
ones used by the quantization process. Figure 3 in
the appendix shows the histogram of these running
estimates for one ReLU layer in the encoder and
one in the decoder. All other ReLU layers share the
same pattern, where in the encoder there are always
multiple xmax close to 0. This does not happen in
the decoder.

Once the running estimates are computed, we
prune its corresponding node if xmax < zσ where
z is a hyperparameter and σ the standard deviation
of the layer’s xmax. We empirically found z =
0.025 to work well, with higher thresholds causing
BLEU to quickly decay. No retraining of the model
is performed after pruning nodes.

Using this method, we can further compress
the Transformer without affecting BLEU scores.
Our approach has the advantage of being adaptive,
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Precision Size (Mb) Compression
WikiText-2 WikiText-103

Loss PPL Loss PPL

32-bit 243.04 1x 5.65 284.15 5.91 369.20
8-bit 61.93 3.92x 5.64 282.67 5.94 377.79
6-bit 46.75 5.20x 5.64 281.48 5.93 376.44
4-bit 31.57 7.70x 5.65 284.26 5.94 378.67

Table 7: Evaluation of our quantization method on the WikiText-2 and WikiText-103 language modeling tasks.

Model Precision Method
EN-DE EN-FR

PPL BLEU
Nodes Pruned Total

PPL BLEU
Nodes Pruned Total

in Encoder FF Compr. in Encoder FF Compr.

Base 8-bit No pruning 4.39 27.60 0% 3.95x 2.90 39.91 0% 3.95x
L1-norm fixed 5.57 23.99 13.57% 4.02x 4.38 29.01 9.47% 3.99x
xmax fixed 4.57 27.33 13.57% 4.02x 3.18 39.40 9.47% 3.99x

xmax adaptive 4.40 27.60 13.57% 4.02x 2.90 39.91 9.47% 3.99x

6-bit No pruning 5.09 26.98 0% 5.25x 3.38 37.07 0% 5.24x
L1-norm fixed 6.97 20.81 12.06% 5.31x 4.19 31.64 9.62% 5.28x
xmax fixed 5.41 26.20 12.06% 5.31x 3.68 36.91 9.62% 5.28x

xmax adaptive 5.09 26.98 12.06% 5.31x 3.38 37.07 9.62% 5.28x

Big 8-bit No pruning 4.24 27.95 0% 3.97x 2.80 40.17 0% 3.97x
L1-norm fixed 5.80 22.65 26.39% 4.21x 4.16 28.85 28.41% 4.24x
xmax fixed 4.47 27.43 26.39% 4.21x 2.91 39.40 28.41% 4.24x

xmax adaptive 4.25 27.95 26.39% 4.21x 2.80 40.17 28.41% 4.24x

6-bit No pruning 4.78 26.76 0% 5.28x 2.87 39.59 0% 5.28x
L1-norm fixed 7.73 17.32 29.96% 5.64x 7.88 15.09 22.66% 5.54x
xmax fixed 4.92 26.86 29.96% 5.64x 2.91 39.25 22.66% 5.54x

xmax adaptive 4.78 26.76 29.96% 5.64x 2.87 39.59 22.66% 5.54x

Table 8: Comparison of our adaptive pruning scheme versus fixed rate pruning methods for equal pruning propor-
tions. Total compression accounts for quantization combined with pruning.

meaning the number of nodes pruned per layer will
differ as opposed to a fixed pruning ratio method.
For example, in the case of the big Transformer
trained on WMT14 EN-FR, 169 nodes were pruned
in the first ReLU of the encoder, while in the sec-
ond, 1226 were pruned. Nodes in the decoder rarely
got pruned, at most 4 in the whole decoder. Results
are presented in Table 8. Reported results are aver-
aged on the test set over a few trials. BLEU varied
by about 0.01−0.02.

Other approaches usually decide the ratio first
and then prune. We compared with two such meth-
ods. For each task, we fix their ratio to the average
percentage of nodes pruned by our method and only
prune nodes in the encoder. The first fixed pruning
method uses L1-norm to sort nodes in ascending
weight order, while the second sorts the xmax, also
in ascending order.

7 Conclusion

We proposed a full quantization strategy for the
Transformer architecture. Our objective was to ex-

ploit hardware resources as efficiently as possible,
quantizing all operations which could provide a
computational speed gain.

With FullyQT, we achieve higher BLEU scores
than all other quantization methods for the Trans-
former on multiple translation tasks and avoid any
loss in BLEU compared to full-precision. Specif-
ically, out of 35 experiments, 8-bit quantization
performed better than full-precision in 21 cases.

If instead of minimizing inference time, one
wants to maximize translation accuracy, then ap-
plying quantization to only certain components of
the Transformer seems to be the best option. In-
deed, our ablation study showed than BLEU score
could increase even more when only specific ele-
ments of the Transformer were quantized. Further
gains might be possible, but supplementary exper-
iments would be necessary to determine the best
combination.

We plan on extending our work to variations of
the Transformer, as well as further exploring the
compression of these networks.
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A FullyQT Visual Guide

Figure 1 and 2.

B Node Pruning Running Estimate

Figure 3.
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Figure 3: xmax histogram of a ReLU layer in the encoder (left) and decoder (right), one xmax per output node.


