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Abstract

Machine metaphor understanding is one of
the major topics in NLP. Most of the recent
attempts consider it as classification or se-
quence tagging task. However, few types of
research introduce the rich linguistic informa-
tion into the field of computational metaphor
by leveraging powerful pre-training language
models. We focus a novel reading compre-
hension paradigm for solving the token-level
metaphor detection task which provides an in-
novative type of solution for this task. We
propose an end-to-end deep metaphor detec-
tion model named DeepMet based on this
paradigm. The proposed approach encodes
the global text context (whole sentence), local
text context (sentence fragments), and ques-
tion (query word) information as well as in-
corporating two types of part-of-speech (POS)
features by making use of the advanced pre-
training language model. The experimental re-
sults by using several metaphor datasets show
that our model achieves competitive results in
the second shared task on metaphor detection.

1 Introduction

Metaphor is one of the figurative languages and
often used to express our thoughts in daily con-
versations. It is deeply related to human cognitive
processes (Lakoff and Johnson, 2003). Metaphor is
used to implicitly refer one concept to another con-
cept, usually triggered by a verb (Steen et al., 2010).
For example, the verb “drink” in “car drinks gaso-
line” is a metaphorical usage. Other parts of speech
can also be used metaphorically (Tsvetkov et al.,
2014). For example, the noun “angel” in “she is an
angel” and the adjective “bright” in “your idea is
very bright” are also metaphorical uses. Metaphor
computation technologies are helpful for most NLP
tasks such as machine translation, dialogue sys-
tems, content analysis, and machine reading com-
prehension. Of these, token-level metaphor detec-

tion is the basic technology for metaphor under-
standing. Its task is to give a text sequence and de-
termine whether a token in the given text sequence
is a metaphor or literal. The second shared task on
metaphor detection1 aims to promote the develop-
ment of metaphor detection technology. This task
provides two data sets, VU Amsterdam Metaphor
Corpus (VUA) (Steen, 2010) and TOEFI (a sub-
set of ETS corpus of non-native written English)
(Klebanov et al., 2018), each with two tasks. Each
dataset has two tasks, i.e., verb metaphor detection
and all POS metaphor detection. Previous research
(Wu et al., 2018; Gao et al., 2018; Mao et al., 2019)
has been limited to treat them as the text classifica-
tion task or sequence tagging task without deeply
investigating and leveraging the linguistic informa-
tion that may be proper for the specific metaphor
understanding task.

Motivated by the previous work mentioned in
the above, we propose an end-to-end neural based
method named DeepMet for detecting metaphor
by transforming the token-level metaphor detec-
tion task into the reading comprehension task. Our
approach encodes the global text, local text and
question information as well as incorporating the
POS features on two granularity. To improve the
performance further, we also leverage the powerful
pre-training language models. The F1 score of our
best model reaches 80.4% and 76.9% in the verbal
track and the all POS track of the VUA data set,
and 74.9% and 71.5% in the verbal track and the
all POS track of the TOEFL data set, respectively.
Our source codes are available online2.

The main contributions of our work can be sum-
marized: (1) We propose a novel reading com-
prehension paradigm for token-level metaphor de-
tection task. (2) We design a metaphor detec-

1https://competitions.codalab.org/competitions/22188
2https://github.com/YU-NLPLab/DeepMet
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tion model based on the reading comprehension
paradigm which makes use of the advanced pre-
training language model to encode global, local,
and question information of the text as well as
two types of POS auxiliary features. We also in-
troduced a metaphor preference parameter in the
cross-validation phase to improve the model per-
formance. (3) The experimental results on several
metaphor datasets show that our model is compara-
ble to the state-of-the-art metaphor detection, espe-
cially we verified that fine-grained POS (FGPOS)
features contribute to performance improvement in
our model.

2 Related Work

2.1 Metaphor Detection

As a common language phenomenon, the metaphor
was first studied by linguists and psycho-linguists
(Wilks, 1975; Glucksberg, 2003; Group, 2007).
Metaphor is related to the human cognitive process,
and the essential mechanism of metaphor is the con-
ceptual mapping from the source domain to the tar-
get domain (Lakoff and Johnson, 2003). Metaphor
understanding involves high-level semantic anal-
ysis and thus requires special domain knowledge
(Tsvetkov et al., 2014).

There are three types of metaphor detection
methods. One is a lexicon and rule-based meth-
ods (Dodge et al., 2015; Mohler et al., 2013), while
these methods need manual creation of rules which
is extremely costly. The second is a corpus-based
statistical algorithm. It has been studied to con-
struct manual features such as unigrams (Klebanov
et al., 2014), bag-of-words features (Köper and
im Walde, 2016), concreteness, abstractness (Tur-
ney et al., 2011; Tsvetkov et al., 2014), and sensory
features (Shutova et al., 2016). The disadvantage
of this method is that it cannot detect rare usages
of metaphors as we can hardly deal with all these
unexpected linguistic phenomena. The third is a
metaphor detection algorithm based on deep learn-
ing. With a recent surge of interest in neural net-
works, metaphor detection based on deep learning
techniques has been intensively studied. Wu et
al. (2018) proposed a metaphor detection model
based on Convolutional Neural Network (CNN)
and Bidirectional Long Short-Term Memory (BiL-
STM) (Graves and Schmidhuber, 2005). They uti-
lized Word2Vec (Mikolov et al., 2013) as text repre-
sentation, and POS and word clusters information
for additional features. Their method performed

the best in the NAACL-2018 metaphor shared task
(Leong et al., 2018) with an ensemble learning
strategy. Gao et al. (2018) proposed a metaphor
detection model using global vectors for word rep-
resentation (GloVe) (Pennington et al., 2014) and
deep contextualized word representations (ELMo)
(Peters et al., 2018) as text representations. They
applied BiLSTM as an encoder. The accuracy of
their method surpasses Wu et al.’s method. Mao et
al. (2019) presented two metaphor detection mod-
els inspired by the theory of metaphor linguistics
(Metaphor Identification Procedure (MLP) (Steen
et al., 2010) and Selectional Preference Violation
(SPV) (Wilks, 1975)), with BiLSTM as the encoder
and Glove and ELMo as the word embeddings.
The method is currently SOTA on metaphor de-
tection tasks. Despite some successes, approaches
explored so far use classification or sequence la-
beling and the encoder is based on shallow neural
networks such as CNN or BiLSTM, ignoring to
make use of different aspects of contexts simulta-
neously.

Several efforts have been made to cope with shal-
low neural network architectures. One attempt is
Transformer based methods (Vaswani et al., 2017)
such as GPT (Radford et al., 2018), BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019),and XL-
Net (Yang et al., 2019). Our backbone network
be based on RoBERTa, which uses robustly opti-
mized BERT pretraining approach to improve the
performance on many NLP tasks.

2.2 Reading Comprehension

The reading comprehension in NLP assesses a
machine’s understanding of NL by measuring
its ability to answer questions based on a given
text/document. The answer to this question may be
either explicit or implicit in the text and needs to be
inferred based on knowledge and logic (Seo et al.,
2016; Wang and Jiang, 2016; Shen et al., 2017).
It is a crucial task in NLP and a lot of approaches
are presented. McCann et al. showed that many
NLP tasks can be translated into reading compre-
hension tasks, e.g., the sentiment analysis task can
be regarded as the reading comprehension task that
answers the polarity of a sentence based on a given
text (McCann et al., 2018). Levy et al. (2017)
translated the information extraction task into the
reading comprehension task with good results. Li
et al. (2019) attempted to use reading comprehen-
sion to solve the NER task and also achieved good
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performance on multiple NER datasets.
Inspired by the previous work mentioned in the

above, we utilize a paradigm based on reading com-
prehension and propose a Transformer-based en-
coder for metaphor detection.

3 Methodology

3.1 A Reading Comprehension Paradigm for
Token-level Metaphor Detection

Let S (|S| = n) be a sentence and wi ∈ V be the
i-th word within the sentence, where V is the data
set vocabulary and the total number of words of
sentence is n. Similarly, let Q ( |Q| = m) be a
query word sequence within the sentence S and qj
∈ V ′ be the j-th query word with in Q, where V ′ is
the query word vocabulary and the total number of
query words is m. As shown in Figure 1, the task
of the token-level metaphor detection is to predict
a label sequence Y (|Y | = m), where each yj ∈ Y
refers to the predicted label of qj and yj ∈ {1,0} (1
denotes metaphor and 0 indicates literal). The goal
of the task is to estimate the conditional probability
P (Y | S,Q).

We note that the length of the sequence Q is
smaller than that of S. This is because metaphors
are generally triggered by some POS such as verbs,
nouns, adjectives, and adverbs (Steen et al., 2010;
Wilks, 1975). Other POS such as punctuation,
prepositions, and conjunctions are unlikely to trig-
ger metaphors. Therefore, we set the POS of a
query sequence word to a verb, nouns, adjectives,
and adverbs. We consider the token-level metaphor
detection task to be a reading comprehension task
based on a given context and query words, while
previous research has regarded it as a classification
or sequence tagging task.

The form of converted reading comprehen-
sion paradigm can be defined as triple (S, qj , yj)
(S, qj ∈ Q, yj ∈ Y ). The goal of the task is to esti-
mate the conditional probability P (yj |S, qj). For
example, when the context is “car drinks gasoline”
and the question is the query word “car”, the cor-
rect label is 0 (literal). If the query word is changed
to “drink”, the correct label is 1 (metaphor).

Metaphor detection is a metaphor comprehen-
sion problem, and the reading comprehension task
is more in line with the definition of natural lan-
guage comprehension problems. In addition, read-
ing comprehension paradigms can avoid unneces-
sary training. When constructing a training set
triples, we can filter query words that can not be a

Figure 1: Schematic diagram of metaphor detection
task translated into reading comprehension task.

metaphor.

3.2 DeepMet: An End-to-End Neural
Metaphor Detector

We build an end-to-end neural metaphor detec-
tion model based on the reading comprehension
paradigm, and the architecture is shown in Figure
2. We use the improved BERT embedding layer
(Devlin et al., 2018) to represent the input informa-
tion, use the byte pair encoding (BPE) algorithm
(Shibata et al., 1999) to obtain the token, and use
the position code represented by the yellow dots
and the segment code represented by the blue dots
to represent the position information of the token
and distinguish the different token segments. A
special classification token [CLS] will be added
before the first token, and special segment separa-
tion tokens [SEP ] will be added between different
sentences. The final input is the addition of token,
position encoding, and segment encoding. The im-
provement of our embedding layer is to use five
features as input. The red dots represent the global
text context, that is, the original text data. Green
dots represent the local text context obtained by cut-
ting the original text data with a comma. Orange
dots indicate the features of the question, which
is the query word. The purple dots indicate the
general POS features, that is, the POS of the query
word is represented by the POS of the verb, adjec-
tive, noun, etc. Light blue dots represent FGPOS
features, using Penn Treebank POS Tags (Santorini,
1990) to represent POS, and FGPOS has a wider
variety of POS features than general POS features.
Different features are separated by a special seg-
ment separation token [SEP ].

The backbone network of our model (DeepMet)
uses the Transformer encoder layer (Vaswani et al.,
2017) of the siamese architecture, which uses two
Transformer encoder layers to process different fea-
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Figure 2: The overall architecture of our model (DeepMet).

ture combinations. The Transformer encoder layer
A processes global text features, and the Trans-
former encoder layer B processes local text features.
The query word and two POS features are shared
by the two Transformer encoder layers. Specifi-
cally, the feature input order of Transformer coding
layer A is global text context, query word, POS,
FGPOS, and the feature input order of Transformer
coding layer B is local text context, query word,
POS, FGPOS, and the features are separated by
special segment separation token [SEP ]. The two
Transformer encoder layers share weight parame-
ters, which not only learns global and local infor-
mation from different perspectives but also avoids
double storage of weight parameters. The Trans-
former encoder layer is composed of stacked multi-
headed self-attention encoders and its formula is
shown in Formula (1)–(5).

Qi,Ki, V i =Wqh
i−1,Wkh

i−1,Wvh
i−1 (1)

Si = softmax(
QiKi

√
dk

) (2)

Attention(Q,K, V ) = hi = SiV i (3)

headj = Attention(QW j
q ,KW

j
k , V W

j
v ) (4)

MultiHead(Q,K, V ) = Concatnj=1(headj)Wo (5)

Among them, i is the i-th self-attention block, Q,
K, and V are query matrix, key matrix, and value

matrix, h is the hidden state, Wq, Wk, Wv, Wo are
all self-attention mechanism weight matrices, dk
is a scaling factor to counteract the effect of exces-
sive dot product growth, j is the j-th self-attention
head and function Concat is the tensor concatena-
tion. The Transformer encoder also includes resid-
ual connections, feedforward networks (FFN), and
batch normalization (BN) (Vaswani et al., 2017).

The output of these two Transformer encoder
layers is a metaphor information matrix with di-
mensions of maximum sequence length and hidden
state size, respectively. Then these two matrices
are reduced by average pooling to obtain high-level
metaphor feature vector with length of hidden state
size, including global semantic features and local
semantic features, respectively, and then stitching
these two vectors into the metaphor discrimination
layer. The metaphor discriminating layer first per-
forms a dropout operation to alleviate overfitting
then uses an FFN containing two neurons to obtain
a metaphor discriminant vector with length equal to
2, and finally performs a softmax function to ob-
tain the metaphor and literal probability. As shown
in formula (6).

yτ = softmax(V Tx+ b) (6)

yτ is a real value vector representing metaphor and
literal probability, V and b are the FFN parameter
matrix. In the process of training the model, we
use the parameter weight of pre-training language
models published by Facebook (RoBERTa) (Liu
et al., 2019) to fine-tune the Transformer encoder
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layers. The metaphor discrimination layer will use
the training method to train the model through the
Adam optimizer with the adaptive learning rate.
The final training goal is the cross-entropy loss
function L, which contains the loss functions L0
and L1 of the two subtasks (verb task and all POS
task of metaphor detection), as shown in Formulas
(7)–(9).

L0 = L1 = −
M∑
i=1

(ŷ log yτ0 + (1− ŷ) log yτ1) (7)

L = L0T (t) + L1(1− T (t)) (8)

T (t) =

{
1 if t is V ERB
0 if t is ALLPOS

(9)

where T (t) (t ∈ {V ERB,ALLPOS}) is the task
selection function,M is the number of training data
samples, ŷ is the real label of the data, yτ0 and yτ1
represent the prediction probability of whether the
data belongs to metaphor and literal respectively,
and yτ0, yτ1 ∈ [0, 1], yτ0 + yτ1 = 1. During the
training process, we use the multi-task mode to
train the metaphor detector to improve the training
efficiency. Therefore, the final parameters in the
task-specific metaphor feature extractor for the two
subtasks is the same.

We use cross-validation to train the model to
improve the training set utilization efficiency. We
introduce a metaphor preference parameter α in
this process to improve the metaphor recognition
effect, as shown in formula (10).

Pi =

{
M 1

N

∑N
i=j DeepMetj(di) ≥ α

L 1
N

∑N
i=j DeepMetj(di)<α

(10)

where N is the number of cross-validation folds,
the function DeepMetj (0 ≤ j ≤ N) is the
metaphor recognizer we designed, di (i is the index
of the validation data) is the validation data and
Pi is the final prediction result and the results are
M (metaphor) and L (literal meaning) respectively.
Since the metaphor data sets are imbalanced, the
model recall rate can be effectively improved by ad-
justing the metaphor preference parameter α. For
details, refer to the section 4.

4 Experiments and Analysis

4.1 Data Sets and Exploratory Data Analysis
We used four benchmark datasets: (1) VUA3

(Steen, 2010) is currently the largest publicly avail-
able metaphor detection data set. Both of the

3http://ota.ahds.ac.uk/headers/2541.xml

NAACL-2018 metaphor shared task and second
shared task on metaphor detection use VUA as
the evaluation data set. There are two tracks, i.e.,
verbs and all POS metaphor detection. (2) TOEFI4

(Klebanov et al., 2018) is a subset of ETS corpus
of non-native written English. It is also used as
the evaluation data set in the second shared task
on metaphor detection with two tracks, verbs and
all POS metaphor detection. (3) MOH-X5 (Mo-
hammad et al., 2016) is a verb metaphor detec-
tion database with the data from WordNet (Miller,
1998) example sentences. The average sentence
length of MOH-X is the shortest among the four
data sets. (4) The TroFi6 (Birke and Sarkar, 2006)
is a verb metaphor detection dataset consisting of
sentences from the 1987-89 Wall Street Journal
Corpus Release 1 (Charniak et al., 2000). The aver-
age sentence length of TroFi is the longest among
the four data sets.

We first sampled the four data sets into four
new (S, qi, yj) triple data sets following the require-
ments of the reading comprehension paradigm. In
this paper, we focus on the VUA and TOEFI as the
evaluation data set. MOH-X and TOEFI are used
as auxiliary data sets to verify the performance
of our designed metaphor detector. We made ex-
ploratory data analysis on the data sets of VUA and
TOEFI. The label distribution of data sets is shown
in Figure 3.

Figure 3: Distribution of label categories.

There are more literal data in VUA and TOEFI
than metaphor data, indicating that both data sets
are unbalanced. Unbalanced data sets may affect
the performance of metaphor detectors. The dis-
tribution of the sentence length in the data set is
shown in Figure 4.

As we can see from Figure 4 that the distribution
of the sentence length distribution by both training

4https://catalog.ldc.upenn.edu/LDC2014T06
5http://saifmohammad.com/WebPages/metaphor.html
6http://natlang.cs.sfu.ca/software/trofi.html
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Figure 4: Sentence length distribution of different data
sets.

and test set are similar. Similarly, the distribution
of query word’s POS and its label in the data sets
are shown in Figure 5 and Figure 6. The most likely
POS of query words triggering metaphor in the two
data sets are verbs, nouns, and adjectives. We can
delete the triplet data of query words whose POS
are other than those POS as these query words are
few possibilities as a trigger metaphor.

Figure 5: The relationship between POS and label of
query words in VUA dataset.

Figure 6: The relationship between POS and label of
query words in TOEFI dataset.

4.2 Baselines
We use four baselines to compare the per-
formance of different metaphor detectors: (1)
Word2Vec+CNN+BiLSTM+Ensemble (Wu et al.,
2018) is the best model in the NAACL-2018
Metaphor Shared Task. The model is based on
a sequence tagging paradigm by using CNN and

Table 1: The value of the hyperparameters.

Hyperparameters Vaule
Sequencey length 128
Batches 16
Initial learning rate 1e-5
Dropout rate 0.2
Epochs 3
Cross-validation folds 10

BiLSTM as encoders, Word2Vec, POS tags and
word clusters as features, and it is further im-
proved performance through ensemble learning. (2)
ELMo+BiLSTM (Gao et al., 2018) is a metaphor
detection model based on classification and se-
quence labeling paradigm by using ELMo as fea-
ture representations, and BiLSTM as an encoder.
(3) Glove+ELMo+BiLSTM+Attention (Mao et al.,
2019) is a metaphor detection model based on
sequence tagging paradigm by using GloVe and
ELMo as feature representations, BiLSTM and at-
tention mechanism as encoders. To the best of our
knowledge, this model is the best among others in
the benchmark data sets. (4) BERT+BiLSTM (Mao
et al., 2019) is a metaphor detection model based on
the sequence labeling paradigm with BERT output
vector as the feature and BiLSTM as the encoder.

4.3 Data Preprocessing and
Hyperparameters Setting

Our evaluation metrics for metaphor detection tasks
are accuracy (A), precision (P), recall (R) and F1
measure (F1), which are the most commonly used
evaluation metrics for metaphor detection tasks.
We used the default hyperparameters of RoBERTa
(Liu et al., 2019) and estimated them by using a
grid search within a reasonable range. Each value
of the hyperparameters is shown in Table 1.

First, we preprocess the data into the triple for-
mat (S, qi, yj) required by the reading comprehen-
sion paradigm. We remove triples whose query
words are punctuation marks, and it was included
about 10% among the data. We use the Spacy7

framework to obtain the query word POS and FG-
POS features needed by the experiments. The pre-
training language model directly encodes the data
into dynamic word embeddings. The best model
parameter weight in the validation set is the final
model parameter weight. We divided the data into
two folds, training and verification sets consisting
of 90%and 10% of the data, respectively. We used
ten folds cross-validation throughout the experi-

7https://spacy.io
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ments.

4.4 Experimental results and Analysis

The results are shown in Table 2. Overall, we
can see that our metaphor detector (DeepMet) at-
tained at the best performance in each of the four
metaphor detection data sets. To verify the factors
that affect the performance of DeepMet, we con-
ducted ablation experiments on the model. The
results are shown in Table 3.

The experimental results show that FGPOS fea-
tures have a greater impact on the model than POS
features, which shows that the fine-grained POS
information provided by FGPOS features is better
than ordinary POS information. At the level of
the model structure, we also designed correspond-
ing ablation experiments. The experimental results
show that the influence of Transformer encoder
layer A on the model is greater than that of Trans-
former encoder layer B, which indicates that the
global text information extracted by Transformer
encoder layer A is better than local text information
extracted by Transformer encoder layer B. More-
over, the ensemble learning of DeepMet with dif-
ferent hyperparameters can also improve about a
3% in the F1 score.

From the experimental results of metaphor detec-
tion on four datasets, we can see that the metaphor
detection model based on the reading compre-
hension paradigm can achieve competitive results.
Global and local information and two POS features
are also helpful to improve the performance of the
model. Global and local information contains two
kinds of granularity context, which is helpful for
the model to extract different granularity text fea-
tures. FGPOS and POS contain two kinds of granu-
larity POS information, which give the model more
abundant query word features. POS features are
related to the POS of query words, which can cap-
ture implicit knowledge of the model. One reason
why DeepMet is better than the previous baseline
is that the reading comprehension paradigm can
model the nature of the metaphor comprehension
problem better, and the Transformer encoder works
well than that of general deep learning models such
as CNN and BiLSTM.

Moreover, metaphors are used less frequently
than ordinary words, and all of the experimental
data are unbalanced data sets, i.e., the number of
literal sentences are larger than those of metaphor
sentences. We thus introduced the metaphor pref-

erence parameter α to help the recall value of the
model. The results are shown in Figure 7.

Figure 7: Influence of metaphor preference parameter
α on model performance in VUA verb task test set.

As can be seen clearly from Figure 7, the recall
score can be improved by using lower α, while the
accuracy will be reduced if α is too small. Our
experiments show that the best F1 score can be
obtained by controlling the metaphor preference
parameter α to 0.2 or 0.3.

Through the experiments, we can conclude: (1)
Metaphor detection based on the reading compre-
hension paradigm is feasible, and we obtained com-
petitive results. (2) Ablation experiments indicate
that global information, local information, and POS
are helpful for metaphor detection. (3) In the cross-
validation stage, the introduction of metaphor pref-
erence parameter and model ensemble learning can
further improve the performance of the metaphor
detector.

4.5 Error Analysis
We analyzed the data which could not predict
correctly. The ambiguous annotation will make
our model incorrectly predict. For example, “The
Health Secretary accused the unions of ‘posturing
and pretending’ to run a 999 service yesterday”
(VUA ID: a7w-fragment01 29), in which the un-
derlined words are labeled as metaphors. Although
our model detects “accused” as the literal mean-
ing, it is difficult for even human to judge whether
“accused” is a metaphor or literal meaning. It is
also challenging to detect metaphors triggered by
multiple words. For example, “I stared at Jack-
son Chatterton , and at last sensed the drama that
lay behind his big calm presence.” (VUA ID: ccw-
fragment04 2095). In our model, the detection re-
sult of “big” is a false negative, and “drama that lay
behind his big calm presence” triggers metaphor
together. However, our model only questions one
word at a time, so it causes misjudgment that “big”
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Table 2: Performance of different models on different datasets. * indicates p<0.01 in two-tailed t-test, bold
indicates best result.

Model Dataset A P R F1
Word2Vec+CNN+BiLSTM+Ensemble VUA-verb - 60.0 76.3 67.2
ELMo+BiLSTM VUA-verb 81.4 68.2 71.3 69.7
Glove+ELMo+BiLSTM+Attention VUA-verb 82.1 69.3 72.3 70.8
BERT+BiLSTM VUA-verb 80.7 66.7 71.5 69.0
DeepMet VUA-verb 88.0 78.9 81.9 80.4*
Word2Vec+CNN+BiLSTM+Ensemble VUA-allpos - 60.8 70.0 65.1
ELMo+BiLSTM VUA-allpos 93.1 71.6 73.6 72.6
Glove+ELMo+BiLSTM+Attention VUA-allpos 93.8 73.0 75.7 74.3
BERT+BiLSTM VUA-allpos 92.9 71.5 71.9 71.7
DeepMet VUA-allpos 91.6 75.6 78.3 76.9*
DeepMet TOEFI-verb - 73.3 76.6 74.9
DeepMet TOEFI-allpos - 69.5 73.5 71.5
ELMo+BiLSTM MOH-X 77.2 79.1 73.5 75.6
Glove+ELMo+BiLSTM+Attention MOH-X 79.8 77.5 83.1 80.0
BERT+BiLSTM MOH-X 78.1 75.1 81.8 78.2
DeepMet MOH-X 92.3 93.3 90.3 91.8*
ELMo+BiLSTM TroFi 74.6 70.7 71.6 71.1
Glove+ELMo+BiLSTM+Attention TroFi 75.2 68.6 76.8 72.4
BERT+BiLSTM TroFi 73.4 70.3 67.1 68.7
DeepMet TroFi 77.0 72.1 80.6 76.1*

Table 3: Experimental results of ablation experiments. w/o indicates ablation of features or network structures.

Model Dataset A P R F1
DeepMet VUA-verb 88.0 78.9 81.9 80.4
w/o POS VUA-verb 86.0 76.7 76.8 76.7
w/o FGPOS VUA-verb 85.1 72.7 80.5 76.4
w/o Transformer Encoder Layer A VUA-verb 85.7 75.4 77.3 76.4
w/o Transformer Encoder Layer B VUA-verb 85.6 73.9 80.2 76.9
w/o ensemble learning VUA-verb 86.2 76.2 78.3 77.2
DeepMet VUA-allpos 91.6 75.6 78.3 76.9
w/o POS VUA-allpos 90.5 74.7 71.2 72.9
w/o FGPOS VUA-allpos 89.8 70.5 74.2 72.3
w/o Transformer Encoder Layer A VUA-allpos 90.2 73.2 71.2 72.2
w/o Transformer Encoder Layer B VUA-allpos 90.6 74.0 73.2 73.6
w/o ensemble learning VUA-allpos 90.5 73.8 73.2 73.5

is not a metaphor.

5 Conclusion and Future Work

This paper proposed a reading comprehension
paradigm for metaphor detection. According to this
reading comprehension paradigm, we designed an
end-to-end neural metaphor detector, which pro-
cesses global and local information of the text
through the transformer encoder, and introduces
two POS with different granularity as additional
features. Throughout the experiments on four
metaphor detection data sets, we found that the
model works well, and a competitive result is
achieved good performance in the second metaphor
detection sharing task. We also designed ablation
experiments to verify the influence factors of the
model and found that fine-grained POS and global
text information is more helpful to the metaphor

detection ability of the model.
There are a number of interesting directions for

future work: (1) Metaphor is a special figurative
language and we will extend our research methods
to other figurative languages such as metonymy,
simile, satire, and pun. (2) We will introduce lin-
guistic theory into our framework to make a deep
learning model more explanatory. (3) Through
error analysis, we find that the multiple words trig-
ger metaphor will affect the performance of the
metaphor detection model. We will consider the
multi-word question metaphor detection based on
the reading comprehension paradigm.
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