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Abstract

This work explores the differences and sim-
ilarities between neural image classifiers’
mis-categorisations and visually grounded
metaphors - that we could conceive as inten-
tional mis-categorisations. We discuss the
possibility of using automatic image classi-
fiers to approximate human metaphoric be-
haviours, and the limitations of such frame.
We report two pilot experiments to study
grounded metaphoricity. In the first we rep-
resent metaphors as a form of visual mis-
categorisation. In the second we model
metaphors as a more flexible, compositional
operation in a continuous visual space gener-
ated from automatic classification systems.

1 Introduction

Visually grounded metaphors are metaphors that
function on the visual similarity between two ob-
jects. Humans use visually grounded metaphors to
describe scenes or objects in a vivid way: we could
call a large person an elephant, describe some-
body’s blue eyes as a clear summer sky; and so
forth. The basic idea is that using a metaphoric
element to “overlay” on the described object cre-
ates, in the imagination of the reader or listener
of the metaphor, a stronger and effective mind
picture. At the same time, the mechanisms and
workings underlying metaphors remain unclear.
Grounded metaphors are among several categories
of metaphors that work on the interplay of all five
senses plus the abstract dimension of language.
Some of these metaphors and similes are harder
to model: the precise reason why a cold voice cre-
ates the idea of a specific tone and sound of voice,
or why some other synesthetic expressions like a
blue music work in the human brain is difficult
to define. Visually grounded metaphors, unlike
metaphors that draw from several senses, could be
easier to model: and we could try to study them

by applying the visual models used for image cap-
tioning in NLP. The central question of this paper
is whether, and to to what degree human visual
metaphors can be reproduced using image features
trained in the image captioning scenario. This pilot
study defines some possible lines of exploration
through two small scale experiments that lead to
further research in this area of connecting language
and vision and modelling of metaphorical language.
More data and analyses will be necessary to further
deepen the topic.

2 State of the Art

A large bibliography has discussed the relation be-
tween language and perception and the way lin-
guistic meaning is expressed linguistically and
non-linguistically. This is done by ground-
ing word meaning in visual perception (Siskind,
2001) and testing the compositionality of visually-
enriched language representations (Gorniak and
Roy, 2004), and more recently even using sensory-
motor robotics to model lexico-grammatical pat-
terns (Zhong et al., 2019), often for the construc-
tion of multimodal or dialogue agents (Roy, 2005;
Roy and Reiter, 2005), under the general assump-
tion that many aspects of language cannot be cap-
tured without extra-linguistic information (Barsa-
lou, 2008). Despite this and the existence of con-
solidated linguistic work about the mechanisms
of the underlying metaphor processing (Lakoff
and Johnson, 2008), the research on the topic of
metaphor and grounded language models is quite
scarce and has focused on the use of visual fea-
tures to identify metaphors (Shutova et al., 2016).
The common practice in the domain is currently
to attempt metaphor identification and modelling
through linguistic data only (Zhang and Barnden,
2013; Do Dinh and Gurevych, 2016; Bizzoni and
Lappin, 2018) Neurolinguistic studies such as De-
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sai et al. (2013) show that the literal properties
of terms are still activated if those terms are used
metaphorically, confirming the idea that metaphors
create a compositional feature transfer between
source and target: for example, senso-motory verbs
used in metaphorical ways still activate their “nor-
mal” senso-motory paths in the brain, a behaviour
that distinguishes metaphors from idioms (Lai and
Curran, 2013; Kemmerer, 2015). Other studies,
such as Zanolie et al. (2012), show that some ab-
stract concept, like power, seem linked, in the brain,
to a spatial feature, like the vertical up-down di-
mension, which would, according to the study, ac-
count for the spatial metaphors of power that tend
to visualise hierarchy on a vertical axis. In short,
several studies in neurolinguistics support the idea
that many metaphors do indeed rely on sensory
knowledge (Lacey et al., 2012). Reproducing these
mechanisms in computational models is the main
idea behind our project. The goal of our study is
to examine to what degree these observations are
reflected in the performance of image classification
deep neural models trained on images. The way
image classification models both represent and cat-
egorise pictures can help us understand better to
what extent grounded compositional metaphors are
actually grounded (Section 4) and compositional
(Section 6).

3 Models

For our study we use pre-trained visual object clas-
sification models available in Keras (Chollet et al.,
2015). The two main models used in this work
are ResNet50 (He et al., 2016) and VGG16 (Si-
monyan and Zisserman, 2014). For comparison we
also use VGG19 (Simonyan and Zisserman, 2014)
and InceptionResNetV2 (Szegedy et al., 2016). In
the versions we use for this study, the networks
were pre-trained on 1,000 object categories from
ImageNet. Unlike the systems used for articulated
image description, these models generate single
token captions. (Deng et al., 2009). All mod-
els operate through in three steps: (i) the model
takes an image as input; (ii) using the pre-trained
weights the model transforms the image into a
vector that represents its main features; (iii) the
model’s final layer operates a prediction or classifi-
cation over such a vector. Since the categories are
limited (here to 1,000) and the models imperfect,
mis-categorisations occur.

4 Mis-categorisations

A classifier presented with an image will output a
list of possible captions or descriptions, with con-
fidence scores that indicate the similarity between
the output category and the image. For example, if
presented with a picture of a bird, ResNet50 will
output the following probabilities:

1. brambling 0.473
2. house-finch 0.155
3. water ouzel 0.090
4. junco 0.005
5. robin 0.053

If presented with an airliner, the model will out-
put captions like airliner (0.93), warplane (0.03),
airship (0.001). If we use a good object classi-
fier on a clear instance of an object that is well
presented in its training data, the result is a high-
probability prediction of the object category, fol-
lowed by low-probability categories that share a
decreasing number of features with the target ob-
ject in the image. For example, if presented with
a picture of an Indian elephant, ResNet50 outputs
the following probabilities over categories:

1. Indian elephant 0.95
2. tusker 0.03
3. African elephant 0.01
4. triceratops 2.1814798e-05
5. water buffalo 1.0476451e-05
6. warthog 6.76768e-06
7. hippopotamus 6.4546807e-06
8. ice bear 3.6104445e-06

The gap in probabilities between the first and
the second prediction is large, and the probabilities
after the 4th item are insignificant. It is possible
to notice how in all cases the model’s predictions
are based on the main features of the elephant’s
shape: the output’s classes share some visual sim-
ilarities with the Indian elephant, in a decreasing
order of overlap. The model predicts, in order,
the Indian elephants; other kinds of elephants; and
other animals that in ResNet50’s ontology share
important properties with the Indian elephant. The
reader can observe that the suggested alternative
species have common characteristics of being mas-
sive four-legged animals and in many cases dis-
playing prominent tusks. We can compare the
network’s behaviour with the strategies a human



128

would adopt in the attempt to describe a specific
animal to someone who has never seen it before:
looking for other animals sharing some similarities
with it. This mechanism becomes even more evi-
dent if we present the network with a category that
was absent from its training data, or that was too
rare in the training to allow the model to generalise
on its features. Let’s take for example Figure 1, an
image of a fire on a dark background.

Figure 1: Fire!

The Keras’ pre-trained model of ResNet50 lacks
the category “fire” in its training dataset, and if
presented with this picture, the model returns the
following list of probabilities over categories: stove
(0.85), fire screen (0.14), dutch oven (0.002).

The network identifies categories of objects in
which fire is a likely component. Being unable to
figure out the object’s category with confidence,
the model returns captions drawn from categories
of objects that share some properties with the
presented image. The picture’s background and
style play important roles as well. For example,
ResNet50 categorises the leftmost image in Fig-
ure 2, a drawing representing a dragon, as comic
book (0.28) or laptop (0.08), and the rightmost im-
age Figure 2, a statue of dragon, as pedestal (0.61),
fountain (0.38) or palace (0.0005). In both cases
the classifier focuses on the “style” of the object -
a drawing in the first case, a statue in the second
case - to attempt a low-probability classification.

Figure 2: Two dragons

Mis-categorisations can happen if the object ap-
pears in a new or unusual way that confuses the net-
work. For example, ResNet50 has various bridge
categories in its ontology such as steel arch bridge,

but it tends to classify pictures of small bridges
mirrored in the water as viaduct or lakeside, be-
ing confused by the elements present in the image.
Similarly, it labels an aerial picture of a large mod-
ern bridge crossing the sea as bannister (0.44) or
dam (0.03). As in the previous cases, the model
looks for objects that pertain to the same field or
conceptual area of the difficult image: to categorise
bridges the models look for dams, viaducts and so
on. In the same way, if presented with a picture of a
church, the model suggests church (0.93), bell cote
(0.02), monastery (0.02), and it tries to describe the
Burj Khalifa as a mosque (0.13), a palace (0.08), a
bell cote (0.07) or an airship (0.06). The last asso-
ciation is of particular interest for our study, since
the model moves out of the conceptual domain of
the picture to look for similarities in different areas.
But what happens if the model is presented with
an image belonging to a conceptual domain com-
pletely unknown? For example, “our” ResNet50
lacks in its pre-trained categories every thing per-
taining to the sky: clouds, planets and stars are
absent from its ontology. If presented with a clas-
sical image of Saturn, the model predicts candle
(0.81). We suspect that the reason of this unex-
pected elaboration lies in the colour of Saturn’s
atmosphere, that is similar, in some pictures, to a
candle’s wax colour.

Figure 3: A guy.

In other situations, the network focuses on back-
ground elements that it recognises. For example,
this model is also not trained on people: it cannot la-
bel a person as person. If presented with the image
of a person in a bathtub, the suggested captions are
bathtub (0.08), bath towel (0.07), tub (0.06). For
similar reasons, and showing some politically in-
correct bias, the model labels the person in Figure 3
as prison (0.05), jean (0.02) and barrow (0.06). In
a picture representing a breaking storm over the
sea, ResNet50 - not “knowing” what a storm is -
pics the peripheral elements: breakwater and pier.
The abundant literature on object classification has
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duly noted these systematic mistakes (Wang et al.,
2009; Xu et al., 2015).

This behaviour also applies to different models.
Many of VGG16’s predictions in front of unknown
or puzzling objects mirror those of ResNet50: dam
(0.22) for the modern bridge picture, pedestal
(0.55) for the dragon in Figure 2, viaduct (0.24)
after triumphal arch (0.33) for the bridge mirrored
in the water. For known objects, VGG16’s second
and third best guesses align with the ones produced
by ResNet50: for example, the church prediction
for the church is followed by monastery (0.02) and
bell cote (0.02). In the case of the Burj Khalifa, the
first prediction remains mosque (0.33), but VGG16
seems quicker to move out of the “buildings do-
main” to seek objects having the Burj’s shape:
obelisk (0.10), missile (0.09) and projectile (0.05).
This possible predilection of VGG16 for shapes
of elements, colour or “style” appears in other ex-
amples: Saturn is a spotlight (0.08) and a ping
pong ball (0.07) rather than a candle (0.03), and
the leftmost dragon in Figure 2 is labelled as jer-
sey (0.68). Many of these mis-classifications are
similar, in principle, to the operations underlying
visually rooted metaphors. These metaphors give
the listener or reader a clearer mind picture of a
given element or scene through the parallel with
something having similar visual properties, but per-
taining to a different domain. To stick with the
models’ mistakes, it wouldn’t be hard to imagine
someone describing the Burj Khalifa as a “missile
pointing to the sky” or the gigantic “obelisk of
Dubai”. Others of our models’ mistakes, though,
sound less natural to our sensibility: for example,
describing Saturn as a candle in the sky or a ping
pong ball in the sky is a less effective metaphor.
ResNet50 captions an image of the setting Sun as
a ping pong ball (0.58) and a spotlight (0.05) and
only with lower confidence predicts similes used by
humans to describe the sun in similar scenes, such
as orange (0.017) and balloon (0.014). To give the
reader a first hand idea of the descriptive qualities
of these mis-categorisations, we present in Figure 4
a series of pictures with the first 5 categories as-
signed by the VGG16 model. Table 1 provides
a small comparison of the mis-categorisations by
VGG16 and ResNet50 on the same pictures.

The main intuition of this study is that some
of these mis-categorisations seem to make a
metaphoric sense for a human reader. For example,
ResNet50 classifies a picture of lightnings as spider

web. Although this may seem like an unexpected
comparison, there are several pictures of lightnings
on the Internet that are described by human annota-
tors as spider web lightning due to their thread-like
and branching shape. On the other hand, if a model
labels the picture of a man sitting by a fire as a
volcano, the metaphoric power of the classifica-
tion becomes doubtful (although not necessarily
absent).

To explore the parallels and differences between
human visually rooted metaphors and visual mod-
els’ mis-categorisations, we collected through man-
ual online search a dataset of 100 pictures that
human users had described with a metaphor or sim-
ile as shown in Figure 5. We exclusively selected
metaphors that had only their target in the 1,000 Im-
ageNet categories present in our models’ ontology:
for example, images of lightning (source, absent
from the ontology) described as spider webs (tar-
get, present in the ontology), or fireworks (source,
absent from the ontology) described as sea urchins
(target, present in the ontology). With such a
dataset it is possible to see, to a limited extent,
whether the mis-categorisations performed by the
models confronted with unforeseen elements go in
the direction of the metaphors and similes humans
conceive to provide a vivid description of an object.

If a human captioner described the image of a
sponge (absent from the models’ ontology) as a
harp (present in the models’ ontology), and our
models categorise the same image as a harp, there
is an overlap between the two frames. If, as in
this case, our models categorise the same image as
something else, e.g. a barn spider, there is a dif-
ference between the two frames. Table 2 shows
the performance of four pre-trained models on
metaphorical mis-categorisation. If we consider the
first retrieved category for each picture, most mod-
els achieve an F-score between 0.23 and 0.26, with
the exception of InceptionResNet that achieves an
F-score of 0.0. If we relax the boundaries and take
into consideration the first 5 results for each picture,
most models’ performance ranges between 0.3 and
0.4, and if we include the first 20 results they reach
F-scores higher than 0.5. Considering the complex-
ity of the task, we see F-scores of 0.3 and higher
for the first 5 answers as an interesting result. At
the same time, it is clear that this experimental
frame remains limited: we were only able to use
specific kinds of metaphors to work on the models’
restricted ontology, and the metaphors had to be of
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(a) Bubble, Alp, fireboat, mountain
tent, fountain.

(b) Golf ball, gong, tick, chambered
nautilus, spotlight.

(c) Matchstick, hook, spotlight, safety
pin, flatworm.

(d) Comic book, jigsaw puzzle, book
jacket, theater curtain, shower curtain.

(e) Shower curtain, pajama, ballpoint,
maraca, rubber eraser.

(f) Volcano, fountain, seashore, space
shuttle, lakeside.

Figure 4: The first 5 output categories of VGG16 for various pictures. Most of these pictures represent objects the
network was not trained on. The reader can notice that some of the mis-classifications could work as metaphoric
descriptions (as in b or f) more than others (as in a or e).

Figure 5: Two elements from our dataset. A galaxy
described in the human-generated caption as a jellyfish,
and a building described (and commonly known) as a
cucumber/gherkin.

the single-word-to-single-word kind: the compo-
sitionality and flexibility present in many visually
rooted metaphors, such as “the lawn is a green car-
pet” or “the snowflakes were falling dancers”, are
out of the scope of this kind of test. In the rest of
the paper, we explore a different frame that allows
more flexibility in the study of visually grounded
metaphors.

5 Visual Spaces

The category of cigarette is absent from the ontol-
ogy of the models we use in this study. If presented
with a cigarette, most models see a ruler or a band
aid. The classification step happens in the last layer
of the networks: before that final layer, each model

transforms its input picture in a 1x224x244x3 ten-
sor that encodes the relevant visual features of the
picture as a 4-dimensional set of weights. From
such tensor the model draws a 1x1000 vector that
represents the probability of such tensor to fall in
each one of the 1000 categories.

This characteristic, shared by most neural clas-
sifiers, opens the possibility of exploring visually
rooted metaphors as operations in a continuum, by
using the final tensor extracted by each picture as a
vector in a multi-dimensional space. Returning to
the cigarette example, our VGG16 model cannot
recognise any of the objects or symbols present in
Figure 6.

The last picture confuses our model which mis-
categories it in a different way than the previous
two images: the model fails to pick the similarities
evident to a human eye. But if we flatten the pre-
categorisation final tensors created by the model
to represent these three images and compute their
cosine similarity, we might be able to overcome
the rigidity of the classification step. Here are the
results of such trial: the cosine similarity between
the cigarette (a) and the danger sign (b) is 0.5, as
the two pictures are different. But the similarity
between (b) and the cigarettes are dangerous sign
(c) is 0.68, while the similarity between (a) and
(c) is as high as 0.83. In other words, the visual
similarity that the multi-class classification frame
kept latent clearly emerges.
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Object VGG16 ResNet50
Burj Khalifa Mosque, obelisk, missile Mosque, palace, bell cote
Mountain Alp, valley, mountain tent Alp, valley, mountain tent
Galaxy Jellyfish, fountain, window

screen
Volcano, ski mask, jellyfish

Mushrooms Water tower, lampshade, table
lamp

Mushroom, hen of the woods,
fountain

Blanket clouds Seashore, fountain, sandbar Wing, seashore, sandbar
Sun(drawing) Ping pong ball, envelope, maraca Wall clock, analog clock, web

site
Ballerinas Spiny lobster, hoopskirt, fountain Fountain, king crab, pole
Belt Buckle, muzzle, hair slide Buckle, muzzle, hair slide
Cloud looking like a
bird

Geyser, lakeside, valley Valley, lakeside, worm fence

Table 1: Comparing mis-categorisations between VGG16 and ResNet50. The first column names the object pre-
sented in the picture, the remaining two columns present the first 3 captions offered by the two models.

(a) ruler, band aid (b) hatchet, electric guitar (c) reel, croquet ball

Figure 6: Three pictures representing elements absent from our VGG16 ontology. The last picture shares obvious
similarities with the first two images, but VGG16 classifies each picture in a completely different way.

Model Top 1 Top 5 Top 20
VGG16 0.25 0.39 0.57
VGG19 0.23 0.33 0.54

InceptionResNet 0.00 0.01 0.05
ResNet50 0.26 0.39 0.53

Table 2: F1 scores for human-like metaphorical classi-
fication of 4 models considering the first 1, 5 and 20
results of each.

To strengthen this frame, we create visual vec-
tors that represent several images of the same con-
cept in order to create “conceptual” clusters or,
in other words, new “classes” for our experiment
without the need of a full new training set. For
example, if we sum the flattened output tensors
for two danger signs we obtain a new vector that
“represents” both danger signs’ relevant features.
This approach seems to return better results. If we
compute the cosine similarity between three dif-
ferent danger signs’ tensors, we obtain an average

similarity of 0.64. But if we sum two danger signs’
tensors and compute the cosine similarity of the re-
sulting tensor with the left-out picture’s tensor, the
average similarity rises to 0.73. In other words, by
summing two danger signs’ tensors we created a vi-
sually meaningful centroid in the feature space that
represents better than any single image the essential
appearance of a generic danger sign. It is possible
to imagine that adding more pictures would make a
more consistent representation. However, the most
interesting aspect of this approach for our study is
the possibility of obtaining a reasonable effect with-
out the need of collecting large datasets or training
the model from scratch. The same effect happens
with the cigarette pictures: if the cosine similarity
between two simple pictures of cigarettes as in Fig-
ure 6(a) is 0.95, the cosine similarity of a single
cigarette vector with the summed vector of two
other images of cigarettes rises to 0.99. Now we
can compute the similarity between cigarettes, dan-
ger signs and cigarettes are dangerous disclaimers
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(a) Sky (b) Fire (c) Sunset

Figure 7: Samples from the three compound visual vectors we create to serve as source, target and modifier of the
metaphor Sunset is Sky on Fire.

of the kind presented in Figure 6 as a cosine similar-
ity between vectors. Through this simple operation
the similarity between the danger signs’ vector and
the disclaimers’ vector rises up to 0.81, and the
similarity between the cigarettes’ vector and the
disclaimers’ vector rises to 0.87. If we sum the
cigarettes’ vector and the danger signs’ vector and
compare the result with the anti-smoke disclaimers’
vector, the cosine similarity goes to 0.92. This
high similarity does not seem to be the effect of
noise: the similarity of the anti-smoke disclaimers’
vector and a vector of an unrelated picture, such
as an image of a firework, is -0.8.The essential vi-
sual similarities that make the symbolic disclaimer
in Figure 6(c) understandable for humans are re-
trievable from the visual feature space. To prove
the concept, we computed the cosine similarity be-
tween the danger signs’ vector and the individual
vectors of all the pictures present in the dataset
described in this study. Despite more than 100 con-
founders, the three pictures of danger signs came
with the highest ranking, followed by the two anti-
smoke disclaimers. We then repeated the operation
with the (danger+cigarette) vector, that retrieved all
the cigarettes as most similar pictures. This leads
to our final investigation.

6 Adding Fire to the Sky:
Compositionality in Visually Grounded
Metaphors

A visually grounded metaphor sometimes used to
describe an impressive sunset is the sky is on fire.
This is a simple and effective grounded metaphor:
the reader or listener “adds” the colours and inten-
sity of fire to the sky in order to imagine a vivid
sunset. If this metaphor is indeed rooted in visual
data and visual data only, this is the operation we
should be able to perform in the visual space to
“create” a sunset vector. Through online manual

search we collected 8 pictures of sunsets described
as Sky on fire by their captioners. The individual
vectors of some of these pictures already present
the similarities necessary for the metaphoric shift:
out of 8 pictures described as Sky on fire 2 retrieved
as most similar picture in our dataset a picture of a
fire with an average cosine similarity of 0.6, and an-
other 4 had pictures of fire among the first ten most
similar elements, with an average cosine similarity
of 0.5.

Figure 8: A schematic visualisation of the cosine simi-
larities between the sky, the fire and the sky on fire vec-
tors. The sky vector is relatively similar to the sky on
fire vector and further away from the fire vector.

But is it possible to reproduce the compositional-
ity of this metaphor in the visual space? To answer
this question, we created a sky vector out of 10
pictures of (mainly blue) skies such as the one in
Figure 7(a). The average cosine similarity of these
pictures is around 0 (the lowest possible cosine sim-
ilarity is -1). This relatively low similarity between
sky pictures is probably due to the lack of stable
and recognisable shapes in the “concept of sky”:
most of our sky pictures featured a of varying hue
background sometimes with some clouds, and the
clouds’ shapes varied constantly. We then created
a fire vector out of 13 pictures of fire such as the
one in Figure 7(b) with average cosine similarity
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Figure 9: A visually grounded metaphor in the visual
space. If we sum the sky vector with the fire vector,
we create a “metaphoric” new vector which is closer
to the sky on fire vector than the simple sky vector was:
adding fire to the sky seems an effective way to recreate
a sunset.

of 0.6. Finally, we created a sunset vector out of
7 pictures of sunsets captioned by humans as sky
on fire, as the one in Figure 7(c). The average co-
sine similarity between the pictures of this group is
0.74. As represented in Figure 8, the cosine simi-
larity between the sky vector and the fire vector is
low: -0.5. The objects, sky and fire, have little in
common in terms of visual features. The cosine
similarity between the sky and sky on fire vectors
that represent the same object under different con-
ditions is higher: 0.64. If we sum the vectors of
sky and fire, we create a sky-fire vector as shown in
Figure 9. The cosine similarity of this new vector
with the sky on fire vector rises to 0.82. In other
words, adding the metaphoric fire to the literal sky
made the sky vector closer to the sunset vector. The
compositional sky on fire metaphor seems to work
in our visual space (see Figure 9 for a visualisa-
tion). Although this is a particularly clear case of
visual compositionality, metaphoric composition-
ality of this kind seems to be present also in other
examples. In Table 3 we give an overview of some
of the metaphors we tried. We tried to select on
metaphors that could be strongly visual, and that
would not rely on excessively complex shapes or
hues.

Collecting pictures that represent such
metaphors from online data is a difficult task.
The metaphors have to be compositional, visually
grounded and included in captions. We thus col-
lected a tiny dataset of 22 such metaphors (some
of which we include in Table 3) with an average
of 5 images associated with each element: source,
target and modifier. To make negative examples

Metaphor Sim ST Sim (S+M)T
Sunset is sky on
fire

0.64 0.82

Blonde hair are
river of gold

0.01 0.1

Snow is white
carpet

0.82 0.90

Lawn is green
carpet

-0.3 0.4

Hair are white
waterfall

-0.5 0.62

Table 3: Compositional metaphors: the similarity be-
tween two visual vectors representing the (S)ource and
the (T)arget of a metaphor increases if a modifier’s vec-
tor is added to the source - (S+M)T. For example, the
cosine similarity of the blonde hair vector and river in
the second row is 0.01. If we sum river with a vec-
tor representing its modifier golden (which is a vector
created out of several pictures of gold and golden ele-
ments) the similarity goes up to 0.1.

we created a “balancing” list of 22 false metaphors
by randomly shuffling targets and modifiers. To
keep the experiment clear in its scope, we tried
to avoid for this negative counterpart borderline
compositions that could work as unusual but still
valid or evocative metaphors, since that would
create a fascinating but hard to define grey area.
For each of these metaphors, we operated the
following steps:

1. We measured the cosine similarity of the
source and target visual vectors: for exam-
ple, the similarity of the Sky vector with the
Sunset vector.

2. We either summed or multiplied the modifier’s
vector to the source’s vector; for example, we
added the Fire vector to the Sky vector.

3. We measured the cosine similarity of the new
“modified source” vector with the target vector:
the similarity of Sky+Fire with Sunset.

Every time the modifier increases the similarity be-
tween a true metaphor’s source and target, we count
it as a true positive. Every time the same happens
for a false metaphor, we count it as a false positive .
We show the performance of the InceptionResNet
and ResNet50 models on this dataset in Table 4.1

We find that most real metaphors improve through
the addition of the modifier’s vector, while most

1The other two models returned very similar results and
therefore we do not discuss them specifically.
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false metaphors do not, achieving the best F-score
of 0.68 using ResNet50.

For both classifiers, the majority of the real
metaphors improved (in terms of source-target co-
sine similarity) if we added the modifier with the
source: in other words, in over 60 per cent of the
cases we reproduced the mere visual composition-
ality of these metaphors. At the same time, the
majority of the false metaphors got worse (in terms
of souce-target cosine similarity) if we added the
modifier to the source, confirming that the effect
is linked to the visual compositionality of such ex-
pressions.

Multiply Precision Recall F1
InceptionResNet 0.55 0.68 0.61

ResNet50 0.63 0.31 0.42
Sum Precision Recall F1

InceptionResNet 0.60 0.64 0.62
ResNet50 0.64 0.73 0.68

Table 4: Precision, Recall and F1 for two models’
metaphorical compositionality. The F-score measures
to what extent the modifier improves the similarity be-
tween source and target in real metaphors (precision),
but not in false metaphors (recall). We test the com-
position of visual vectors using multiplication (top) or
sum (bottom).

7 Conclusions and Future Works

We conceived this study as an exploration of visu-
ally grounded metaphors in two experiments and
two tiny datasets. In the first experiment we fo-
cus on categorisation: two image captioning mod-
els classified pictures of previously unseen ele-
ments and compared them with human-generated
metaphors for the same pictures, returning a low
overlap between human generated metaphors and
models’ mis-classifications. It is important to keep
in mind that metaphors are flexible and diverse,
and some of the mis-classifications of the mod-
els might be valid metaphors for humans - they
were just absent from the specific dataset we col-
lected. In this respect, an overlap of 30% between
human metaphors and the first 5 captions produced
by the models is encouraging. In a number of
cases, the mis-classifications of the models do not
seem to align with anything similar to a human-like
metaphor, especially if variables like background
or peripheral elements come into play. This doesn’t
mean that the so-called visually rooted metaphors

are not visually rooted: but they might rely on
either more complex similarity that were not cap-
tured by our models, or on a composition of visual
and extra-visual world knowledge. In the second
experiment we focus on unsupervised composition
using a multi-dimensional visual feature space that
offers a flexible representation for our domain. Us-
ing an unsupervised approach we cannot produce
a comparison against a labelled dataset as in the
classification experiment. However, we do show
that the apparent visual compositionality in several
metaphors can be predicted in the visual feature
space. In most cases adding the metaphoric modi-
fier to the metaphor’s source made the source and
the target closer than they were before. This shift
indicates that the metaphors are grounded in the
visual features that are encoded by image classi-
fication models. The visual elements present in
those metaphors are working in the visual space
and account for the effectiveness and flexibility of
the metaphoric expressions.

There are several ways to continue from this
study. First of all, our datasets are very small.
Collecting larger corpora of visually grounded
metaphors and relative pictures would be neces-
sary to expand our study. This would also imply
finding more systematic ways of selecting both
the metaphors and their pictures, since for these
studies we used our sole sensibility to select and
collect the examples. It would also be interest-
ing to add more complex cases, especially when
operating on the continuum visual space, and to
compare the compositional efficiency of different
metaphors. While such selection and collection
steps are challenging due to the complex nature
of the problem we study, the ever-growing wealth
of annotated pictures makes us optimist about its
feasability. An open question remains to what de-
gree different metaphors are grounded visually and
to what degree they can be predicted from the lan-
guage models. It would also be interesting to check
which visual clues are most useful to the classifiers
when they reproduce human metaphorical combi-
nations. Finally, even if no human ever produced
a specific metaphor, this doesn’t mean that such
metaphor is bad: it would be interesting in the fu-
ture to measure the level of human appreciation
of visually grounded metaphors generated through
image captioning. These will be the foci of our
future work.
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