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Abstract

Tracking progress in machine learning has be-
come increasingly difficult with the recent ex-
plosion in the number of papers. In this pa-
per, we present AXCELL, an automatic ma-
chine learning pipeline for extracting results
from papers. AXCELL uses several novel com-
ponents, including a table segmentation sub-
task, to learn relevant structural knowledge
that aids extraction. When compared with ex-
isting methods, our approach significantly im-
proves the state of the art for results extraction.
We also release a structured, annotated dataset
for training models for results extraction, and a
dataset for evaluating the performance of mod-
els on this task. Lastly, we show the viabil-
ity of our approach enables it to be used for
semi-automated results extraction in produc-
tion, suggesting our improvements make this
task practically viable for the first time. Code
is available on GitHub.1

1 Introduction

Machine learning studies how machines learn with
respect to a task, a performance metric, and a
dataset (Mitchell, 2006). The (task, dataset, metric
name, metric value) tuple can therefore be seen as
representing a single result of a machine learning
paper. To make progress as a field we need to make
comparisons between results achieved with differ-
ent methodologies. In light of the explosion in the
number of machine learning publications in recent
years, such comparisons have become more diffi-
cult.2 This poses serious challenges to peer review,
among others. For instance, across ten language
modelling papers submitted to ICLR 2018, the per-
plexity score of the best baseline differed by more

1https://github.com/paperswithcode/
axcell

2In 2019, over 33,000 machine learning papers were pub-
lished on the arXiv.org open-access e-print archive, with a
year-on-year growth of around 50% since 2015.

than 50 points (Ruder, 2018).
One way to deal with the deluge of papers is

to develop automatic approaches for extracting re-
sults from papers and aggregating them into leader-
boards. Authors typically publish their results in
a tabular format in the paper, including a selection
of comparisons between their approach and past
papers. Automatic extraction of result tuples from
tables—and optionally metadata such as model
names—enables a full comparison between pub-
lished methods.

Online leaderboards for comparison have be-
come increasingly common in the research com-
munity. But these are only available for a few tasks
and do not aid the comparison of models across
tasks. To fill the gap, result aggregation tools such
as Papers With Code3 and NLP-Progress4 utilise
crowdsourced community contributions to populate
paper leaderboards. However, human annotation
of results can be laborious and error-prone, lead-
ing to omission or misreporting of paper results.
Automating at least some parts of the process can
speed-up the annotation, reduce number of errors
and lower the expert knowledge required to cor-
rectly annotate a paper. This motivates the need for
a machine learning approach to create a compre-
hensive results resource for the field.

Existing state-of-the-art approaches for results
extraction are brittle and noisy, relying on text
formatting hints and tables extraction from PDF
files (Hou et al., 2019). In contrast, we propose
AXCELL, a pipeline for automatic extraction of
results from machine learning papers. AXCELL

breaks down the results extraction task into several
subtasks including table type classification, table
semantic segmentation and linking results to leader-
boards. We employ an ULMFiT-based classifier

3https://www.paperswithcode.com/sota
4http://nlpprogress.com/

https://github.com/paperswithcode/axcell
https://github.com/paperswithcode/axcell
https://www.paperswithcode.com/sota
http://nlpprogress.com/
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architecture (Howard and Ruder, 2018) to make
full use of paper and table context to interpret tabu-
lar content, and extract results accordingly.

As a whole, this paper makes three main con-
tributions to the literature. First, we significantly
improve over the state-of-the-art for results extrac-
tion with our AXCELL system. On the subset of
the NLP-TDMS dataset of Hou et al. (2019) where
LATEX code is available, our approach achieves a
micro F1 score of 25.8 compared to the state of
the art of 7.5. Secondly, we release a structured,
annotated dataset for training models for results
extraction, and an evaluation dataset for evaluating
the performance of models on this task. Lastly,
our approach is used in an in-production setting at
paperswithcode.com to semi-automatically (by aid-
ing the human review) extract results from papers
and track progress in machine learning.

2 Related Work

Results Extraction. Previous works have stud-
ied the problem of extracting results tuples (task,
dataset, metric name, metric value) from papers.
Singh et al. (2019) perform search over publica-
tions and compose a leaderboard for a queried
triplet. Similar to our approach, they use tables
extracted from LATEX sources. In contrast, they
do not extract absolute metric values but rank pa-
pers and do not appear to utilise the text content
of publications. Our goal in this paper is to ex-
tract complete results to create leaderboards, so
unlike Singh et al. (2019), we focus on extracting
raw metric values. Additionally we make use of
the content of the publication as context for entity
recognition and linking.

Closer to our formulation, Hou et al. (2019) ex-
tract absolute metric values alongside the metric
name, task and dataset. They also use text excerpts
as well as direct tabular information to make infer-
ences for table contents. They frame extraction as
a natural language inference problem and apply an
NLI model based on a BERT architecture (Devlin
et al., 2019) to extract results from PDF files. The
disadvantage of this approach is that using PDFs
leads to a lot of noise in structural information such
as the partition of a table into cells. In our work,
we explicitly utilise the structural information from
the LATEX source to extract entire tables in order to
perform semantic segmentation. We demonstrate
that this structural information and segmentation
are crucial for boosting extraction performance.

Table Extraction. The more general problem of
retrieving information from tables has been studied
in past works (Milosevic et al., 2019; Ghasemi-
Gol and Szekely, 2018; Wei et al., 2006; Herzig
et al., 2020). Our focus in this paper is on the
problem of extracting and interpreting content of
tables characteristic to machine learning papers.
The goal of our table semantic segmentation model
is to classify cells into categories. That is, instead
of performing structural segmentation where one
tries to distinguish between captions, headers and
rows in a stream of text (Pinto et al., 2003) we focus
on semantic segmentation (i.e., assigning roles to
each cell) of tables.

3 Our Approach

The task of paper results extraction is to take a ma-
chine learning paper as an input and extract results
contained within the paper, specifically tuples of
the form (task, dataset, metric name, metric value).
As an example, if we were to take the Efficient-
Net paper of Tan and Le (2019) as an input, some
example results tuples we would want to extract
would be (Image Classification, ImageNet, Top
1 Accuracy, 84.4%), (Image Classification, Ima-
geNet, Top 5 Accuracy, 97.1%) and (Image Classi-
fication, Stanford Cars, Accuracy, 94.7%).

To tackle this problem effectively we define sub-
tasks that take us from paper to results. In par-
ticular, we introduce the AXCELL pipeline that
consists of the following subtasks: (i) table type
classification, identifying whether a table in a pa-
per has relevant results; (ii) table segmentation,
segmenting and classifying table cells according to
whether they hold metrics, datasets, models, etc.;
and (iii) linking results to leaderboards, taking
the result tuples and matching them to an existing
leaderboard of results. The end-to-end system is
shown in Figure 1 with reference to an example.
We now introduce the different components of AX-
CELL.

3.1 Table Type Classification

The first stage of AXCELL is to categorize ta-
bles from papers into one of three categories:
leaderboard tables, ablation tables and
irrelevant tables. A leaderboard table
contains the principal results of the paper on a
selected benchmark, including comparisons with
other papers. An ablation table compares dif-
ferent permutations of the paper’s methodology.
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Abstract
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. . .

Title Back-transla. . .
Abs In this paper. . .
Intro Neural mach. . .
. . . . . .
Refs [1] . . .

[2] . . .

method Giga

R-1 R-2 R-L

. . . . . . . . .
TPG-2 [8] 43.4 . . .

NMT-1 47.6 . . .
NMT-2 48.2 . . .

Table X: Test set evaluation. . .

2) text
extraction

1) table
extraction

Results on Giga Word dataset show. . .
On average R-L is 2% higher. . .
Compared to NMT-1 the bigger. . .
The TPG-2 model introduced in [8]. . .
. . .

4) mention
lookup

method Giga Giga Giga

method R-1 R-2 R-L

. . . . . . . . .
TPG-2 [8] 43.4 . . .

NMT-1 47.6 . . .
NMT-2 48.2 . . .

type: leaderboard table

5) table
segmentation

3) caption
classification

5) table
segmentation

cell8,2 cell9,2 . . .

model NMT-1 NMT-2
value 47.6 48.2
table ctx. Giga, R-1 Giga, R-1
desc. ctx. test
abs. ctx. translation, summarization

. . .

6) contexts
generation

6) contexts
generation

dataset paper’s model

metric cited model

task meta

cell model task dataset metric value score

8, 2 NMT-1 Summarization GigaWord Rouge-1 47.6 0.96
8, 2 NMT-1 Summarization GigaWord Rouge-L 47.6 0.03
8, 2 NMT-1 Langauge Modeling Billion Word Perplexity 47.6 0.001

. . .
9, 2 NMT-2 Summarization GigaWord Rouge-1 48.2 0.96

. . .

model task dataset metric value

NMT-2 Summarization GigaWord Rouge-1 48.2
. . .

7) linking &
normalization

8) filtering

Figure 1: Graphical depiction of AXCELL. The extraction starts with LATEX source code of a paper, from which
we extract 1) tables and 2) text. 3) We classify the caption to filter out irrelevant tables. 4) The content of each cell
is looked up in the paper’s text. Retrieved mentions are used to 5) segment cells based on their meaning (see the
legend in the top-right corner). The segmented table and the paper’s text are used to 6) obtain contexts for each
numeric cell. 7) Results tuples are scored based on contexts and numeric values are normalized to match required
format. 8) Inferior results or results below a confidence threshold are filtered out.

Lastly, irrelevant tables include hyperparam-
eters, dataset statistics and other information that
is not directly relevant for result extraction.

For this stage we employ a classifier with a
ULMFiT architecture (Howard and Ruder, 2018)
with LSTM layers and a SentencePiece unigram
model (Kudo, 2018) for tokenization.5 We train the
SentencePiece model and pretrain a left-to-right
ULMFiT language model on text of papers from an
unlabelled dataset of arXiv articles (see Section 4).
Table 5 in the Appendix contains details on the
hyperparameters and training regime.6

The classifier head is a standard ULMFiT classi-
fier with a pooling layer followed by two linear lay-
ers. We treat the problem as a two-label classifica-
tion with labels: leaderboard and ablation.
A table is considered irrelevant if it is neither
a leaderboard nor ablation (we use a confidence
threshold of 0.5). In practice it is common for a
single table to include both principal results intro-
duced in a given paper as well as results of ablation

5Our classifier uses the fast.ai implementation (Howard
and Gugger, 2020).

6We experimented with finetuning alternative language
models such as BERT and SciBERT but our initial experiments
did not yield superior results. A full investigation of alternative
models, including pretraining from scratch, is left for future
research.

studies. For this reason we extract results from
both leaderboard and ablation tables and
pick only the best results during filtering (see Sec-
tion 3.6). We train the model on the SEGMENT-
EDTABLES dataset (see Section 4.2).

3.2 Table Segmentation

The second stage of AXCELL is to pass relevant
tables to a table segmentation subtask. The goal is
to annotate each non-numeric cell of a table with a
label denoting what type of data a given cell con-
tains. To this end, we classify each table cell into
one of: dataset name, metric name, paper
model, cited model, and other (containing
meta and task cells). An example of a segmented
table is shown in Figure 1.

To help classify each table cell, we provide a
context in which the cell content is mentioned. We
search for cell content in the full paper content
using a BM25 scoring algorithm. Retrieved text
fragments are then passed to a ULMFiT-based clas-
sifier with some handcrafted features for the cell.
These features include information such as the po-
sition of the cell in the table, whether the cell is a
header, and cell styles. A full list is available in the
Appendix. For processing the retrieved text frag-
ments, the retrieved term from the cell is replaced
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On TREC-6, <MASK> significantly
improves upon training from
scratch; as examples are shorter
and fewer, supervised and
semi-supervised <MASK> achieve
similar results.

Figure 2: An example of a text excerpt from the paper
by Howard and Ruder (2018) used as evidence for a cell
content query with ULMFiT (covered with <MASK> to-
ken) as paper model.

with a special mask <MASK> token to inhibit mem-
orization of common names (see Figure 2 for an
example). Table segmentation can then be treated
as a classification problem with 5 exclusive labels.
We use the same pre-trained language model to
train the table type classifier. Results for this stage
of the model are outlined in Table 3.

3.3 Cell Context Generation

The next stage after table segmentation is to gen-
erate contexts for numeric cells. As an example,
if we know a numeric cell has a dataset cell some-
where in its row, and a model cell somewhere in its
column, then this table context is informative for
deciding the dataset and model for this result. But
there is much broader context in the paper that is
useful for linking.

For example, a paper studying semantic seg-
mentation with models evaluated on KITTI and
CamVid datasets could mention semantic segmen-
tation in the introduction, test set in a subsection
referring to a results table, KITTI in the description
of that table and class IoU in the column header.
Figure 3 shows a visual representation of this hier-
archy of context.

To reflect this hierarchy we generate several
types of contexts for each cell. The table
context, as discussed, looks at a numeric cell
and other cells in its row or column labeled as
model, dataset or metric. We also define text con-
texts: a caption context, the table caption;
a mentions context, text fragments referenc-
ing the table; an abstract context, the paper
abstract; and a global paper context, contain-
ing the entire paper text. The gathered contexts
are then used to link potential results to predefined
leaderboards of results.

Back-translation . . .

Abstract

In this paper we . . . state-of-the-art machine transla-
tion . . . by 1 BLEU score . . . We open source our . . .

1. Introduction
. . . challenging problem
. . . speech recognition
. . . machine translation
. . . language model-
ing. . . Additionally, we
formally prove that
. . . perplexity . . . on
downstream tasks . . .

2. Related work . . . In
[124] authors consider
self-supervised textual
dyslexization task . . .

. . . which proves the main
theorem. �

5. Experiments
. . . Table 2 presents
. . . Workshop on Statisti-
cal Machine Translation
datasets . . . WMT 2014
and WMT 2017 . . . In
case of English–German
dataset . . . IWSLT 2015
. . .

Table I: . . . test set. . . BLEU metric.

WMT 2014 . . .
. . . en-fr fr-en . . .

. . . . . . . . . . . .
NMT (ours) 56.3 41.8 . . .

Linking result:
Task: Machine Translation

Dataset: WMT2014 English–French Test

Metric: BLEU score

Value: 56.3

Model: NMT

Confidence: 0.98

Figure 3: Using the context hierarchy and evidences
for linking. This figure highlights the context hierarchy,
from the global paper to the specific table, the evidence
for tasks (blue), datasets (pink) and metrics (violet) for
the 56.3 value extracted from cell contexts, and lastly
the result from linking.

3.4 Linking Cells to Leaderboards

Once we have the cell contexts, the next stage of
AXCELL is to link them to leaderboards to form
performance records. The goal is to take a metric
value associated with a paper model cell and
infer the leaderboard it is connected to. A leader-
board is defined by a (task, dataset, metric name)
triplet. For example: (Image Classification, Ima-
geNet, Top 1 Accuracy) can capture papers that
report performance on Image Classification for Im-
ageNet and report Top 1 Accuracy. To simplify
the problem, we assume a closed-domain with all
leaderboards known in advance. To match results
to leaderboards we look for evidence in cell con-
texts, which we now explain.

Pieces of evidence are words or phrases that
correspond to a task, dataset or metric. For ex-
ample, SST-2, binary and polarity could all serve
as evidence for the two-class Stanford Sentiment
Treebank dataset (Socher et al., 2013). Pieces of ev-
idence allow us to infer whether an entity has been
mentioned in a given context. Using the same ex-
ample, if “SST-2” appears in the table caption then
this is evidence that a numeric value in the table
could be linked to the Stanford Sentiment Treebank
dataset.

3.5 Model

Our goal is to determine the probability p(k|E) of
a leaderboard k ∈ {1 . . .K} being associated with
a given cell, conditioned on the evidence E we
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have collected for this cell. Instead of modelling
this directly using a discriminative model, we opt
for a simple generative model p(k,E) that can be
adapted to new leaderboards as well as types of
evidence without additional training data. While
this should be possible for discriminative models
as well, we leave this open for future work.

Let E = {e1, . . . , es} consist of pieces of ev-
idence ej of the form ej = (m, t, c) where m
is a mention such as “acc”, t is a type of en-
tity such as “Metric” and c is the type of context
the evidence was found in, such as “Table.” Our
model generates leaderboard and evidence using
p(k,E) = p(k)p(E|k). To model the likelihood of
evidence, we make a Naive Bayes assumption and
set p(E|k) =

∏
e∈E p(e|k).

We assume that the type of context c controls the
generation of the remainder of the evidence m and
t:

p(e|k) = p(m, t, c|k) = p(c)p(m, t|c, k).

Once we know the context type c, using a latent
noise variable n we generate evidence either inde-
pendent or dependent of the actual leaderboard:

p(m, t|c, k) =p(t|c, k)
[
p(n|t, c)p(m|n, t)

+(1− p(n|t, c))p(m|¬n, t, k)
]
.

Finally, we assume that a leaderboard generates
its mention as follows:

p(m|¬n, t, k) = p(m|¬n, t, property(t, k))

where property(t, k) is the t property of the leader-
board k. For example if the leaderboard k con-
sists of (Image Classification, ImageNet, Accuracy)
then property(Metric, k) = Accuracy .

Inference To score a leaderboard k given evi-
dence E, we calculate p(k,E)/

∑
k′ p(k

′, E) sum-
ming over all leaderboards in the taxonomy. This
is feasible as we assume a closed-domain scenario.

Estimation Most of our parameters are hand-
set to uniform distributions. In particular, we set
p(k) = 1

K , p(t|c, k) = 1
3 , p(c) = 1

5 . We set
p(m|¬n, t, property(t, k)) to be inversely propor-
tional to the number of other entities of type t with
the same mention evidence m (see Appendix C for
details).

The probabilities p(n|t, c) of a mention of type
t in context c being noisy are tuned manually for

each of 15 (t, c) pairs. The probabilities p(m|n, t)
of a noisy mention are assumed to be the same for
all mentions of a given type t and are tuned as well.
We tune 18 parameters in total.

3.6 Filtering
The final step of AXCELL is to filter out (i) results
for cited models, (ii) results with a linking score
that is too low and (iii) inferior results (to avoid
extraction of ablation results).

First, we filter out records not associated with
models introduced in a paper being processed. We
then remove records for which a linking score is be-
low some given threshold. The remaining records
are grouped by leaderboard and for each leader-
board only the best result is kept, based on higher
is better annotation available in taxonomy; e.g., Ac-
curacy would keep higher values, Error Rate would
keep lower values. Finally, we remove all results
with a linking score below the second threshold.
This gives us the final list of results tuples extracted
from the paper.

4 Dataset

In this section we explain the datasets we used
for training and evaluating AXCELL for results ex-
traction. The primary input we use for a training
dataset is LATEX source code of machine learning
papers from arXiv.org. Over 90% of considered
papers have source code available. This allows us
to obtain a high quality dataset without common ar-
tifacts that arise from extracting data directly from
PDF files.

For training our models we use two main
datasets:

• ARXIVPAPERS: An unlabelled dataset of over
100,000 machine learning papers. Used for
language model pre-training.

• SEGMENTEDTABLES: A table segmentation
dataset where each cell is annotated according
to whether it is a paper, metric, dataset, and
so on. Used for table segmentation and table
type classification.

We manually tune the linking and filtering per-
formance of our method using a validation dataset:

• LINKEDRESULTS: An annotated dataset of
over 200 papers with results tuples, capturing
the performance of models in the papers, and
links to tables.
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Lastly we evaluate the end-to-end performance
of AXCELL on our test set:

• PWC LEADERBOARDS: An annotated
dataset of over 2,000 leaderboards with re-
sults tuples. Used for end-to-end performance
evaluation.

We now describe in detail these datasets.

4.1 arXiv Papers
The dataset contains 104, 710 papers published on
arXiv.org between 2007–2020. 93, 811 papers are
available with LATEX sources, from which we ex-
tracted 277, 946 tables in total. Due to licensing
limitations the dataset we release with this paper
contains only metadata (available in the public do-
main) and links to articles. The dataset is unlabeled,
designated for use in self-supervised pretraining.

4.2 Segmented Tables
This is a dataset for table classification and
segmentation, containing 1994 annotated tables
from 352 articles. The dataset provides data on
dataset mentions in captions, the type of table
(leaderboard, ablation, irrelevant)
and ground truth cell annotations into classes:
dataset, metric, paper model, cited
model, meta and task.

4.3 Linked Results
This is a set of 239 papers we annotated with 1591
results tuples, capturing the performance of mod-
els in the papers. Additionally we include metrics
scores in a normalized form. We also record meta-
data such as the names of the models used in papers.
Each results tuple (task, dataset, metric name, met-
ric value) is linked to a particular table, row and
cell it originates from. Note that results that appear
outside of a table, for instance in the paper’s text or
graphs, are not present in this dataset.

4.4 PWC Leaderboards
This is a dataset of 2,291 leaderboards, where the
data is collected from the Papers with Code la-
belling interface (see Figure 5 in Appendix). This
interface allows annotators on Papers with Code
to take a paper and label it with results tuples.
Annotations are then reviewed by the community
and revised if necessary. Since this is the biggest
and most diverse curated ground-truth dataset, it
is a good test for evaluating the end-to-end perfor-
mance of our solution.

Table 1: End-to-end extraction results on subset of
NLP-TDMS (Exp) dataset.

Method
Micro Macro

P R F1 P R F1

(task, dataset, metric)

TDMS-IE 53.4 66.3 59.2 57.1 66.1 58.5
AXCELL 65.8 58.5 61.9 56.0 55.8 54.1

(task, dataset, metric, score)

TDMS-IE 6.8 8.4 7.5 8.6 9.5 8.8
AXCELL 27.4 24.4 25.8 20.2 20.6 19.7

5 Experiments

We now evaluate the end-to-end performance of
AXCELL on the results extraction task. We eval-
uate on two datasets: the NLP-TDMS dataset in-
troduced in Hou et al. (2019), in order to compare
our method to the state of the art, and on our PWC
LEADERBOARDS dataset, which contains many
more leaderboards and acts as a more challenging
benchmark.

5.1 NLP-TDMS Results

We compare AXCELL to the TDMS-IE model from
Hou et al. (2019) on the NLP-TDMS dataset in Ta-
ble 1. The NLP-TDMS (Full) dataset contains 332
papers related to Natural Language Processing with
848 performance annotations of task, dataset, met-
ric and score and 168 unique leaderboards. The
subset NLP-TDMS (Exp) is limited to 77 leader-
boards appearing in at least 5 papers. See Table 10
in the Appendix for dataset statistics. To compare
with Hou et al. (2019), we use the Exp dataset.

Hou et al. (2019) extract records directly from
PDF, so the methods are not fully comparable. In
order to run AXCELL on that dataset we limit the
dataset to papers for which LATEX source code is
available. Table 1 shows results on that subset with
TDMS-IE performance computed based on pub-
lished predictions. Our solution yields significantly
better results for whole records retrieval despite not
being trained on their taxonomy (i.e., the zero-shot
scenario in Hou et al. (2019)).

5.2 PWC LEADERBOARDS Results

Having validated the performance of our approach
compared to the state of the art, we now apply it to
our much larger dataset of leaderboards. Compared
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Table 2: Extraction results of AXCELL on PWC
LEADERBOARDS dataset (restricted to our taxonomy)
for entire records (TDMS), records without score
(TDM) and individual entities.

Entity
Micro Macro

P R F1 P R F1

TDMS 37.4 23.2 28.7 24.0 21.8 21.1

TDM 67.8 47.8 56.1 47.9 46.4 43.5
Task 70.6 57.3 63.3 60.7 62.6 59.7
Dataset 70.2 48.4 57.3 53.5 52.7 49.9
Metric 68.8 58.5 63.3 58.4 60.4 56.5

to the NLP-TDMS dataset, whose taxonomy con-
sists of 77 leaderboards, our taxonomy consists of
3,445 leaderboards making prediction much more
challenging.

The results of our approach for extracting each
entity are detailed in Table 2. We achieve rea-
sonable performance on extracting the full TDMS
(task, dataset, metric, score) tuple, which is the
most challenging setting and the highest scores for
extracting task and metric information. The lower
scoring entities are generally the ones that depend
on the quality of extraction of other entities. For
example, extracting leaderboards depends on how
well we extract task, dataset and metric entities.

The large difference in performance between
extraction of TDM and full TDMS tuples is due
to the fact that in order to get the score right, the
model needs to correctly predict the table, column
and row the score value is present in. Additionally,
the extracted value needs to be normalized. On the
other hand, the right TDM can often be inferred
from other results reported in a paper.

6 Performance Studies

Due to working with machine learning papers from
multiple domains (from CV to NLP to biology) and
a multistep approach (where errors compound) the
errors are characterized by a long-tail distribution
and it is difficult to pin-point the biggest source
of errors. In this section, we analyze the various
steps of AXCELL in order to better understand their
relative importance.

6.1 Table Type Classification

The biggest issue of table type classification is in
distinguishing between leaderboard and ablation
tables (see Figure 7 in Appendix). These tables can

be very similar structurally: ablations may even
compare on the same split of data as the primary
result. As the distinction is not always clear, during
results retrieval we extract results from both types
of tables and pick only the best results during filter-
ing (i.e., the highest or lowest based on predicted
metric).

6.2 Table Segmentation

One goal of table segmentation is to generalise to
tables from unseen tasks. To study this, we parti-
tioned SEGMENTEDTABLES dataset into 11 folds,
based on the task name extracted from paper ab-
stracts. The fold with tables from Image Classifica-
tion papers is always used as a validation set. For
each of the remaining 10 folds we train 5 models
with a given fold used as a test set and the other 9
folds used as training data. The final table segmen-
tation model used in AXCELL is the one with the
highest micro F1 score on the validation set.

Table 3 shows micro precision, recall and F1

score of classifying each non-numeric cell into one
of 5 exclusive classes: dataset, metric, competing
model, paper’s model or other.

We can see that we achieve strong results on
all tasks, although some tasks perform better than
others. A task like semantic segmentation has less
table and benchmark diversity, so benchmark ta-
bles for datasets like Cityscapes and PASCAL VOC
2012 are fairly standardised across papers. This
makes extraction fairly straightforward. In contrast,
the worse performing tasks are unusual in their own
way. In image generation, for instance, we are less
able to extract the correct dataset entity, whereas
in speech recognition, our model has more prob-
lems distinguishing paper models from competing
models; see Figure 6 in the Appendix.

6.3 Linking

To evaluate linking performance in isolation of
other steps we run it on tables with ground truth
type and segmentation annotations. The annota-
tions are available in the SEGMENTEDTABLES

dataset for 24 Speech Recognition and 32 Seman-
tic Segmentation papers with 287 annotated leader-
board records in total. For each cell with associated
leaderboard annotation we generate cell contexts
and use linking to retrieve the top-5 predictions.
We test four approaches to generate evidence of
mentions.
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Table 3: Table segmentation results for 10-fold training
with image classification papers fixed as a validation
set and variable test set. Micro precision, recall and F1

score are averaged over 5 runs.

validation test

test set P R F1 P R F1

image gen. 84.5 87.9 86.2 73.4 81.6 77.3
misc. 84.0 88.2 86.0 81.7 93.5 87.2
machine trans. 83.1 90.8 86.8 80.5 94.4 86.9
NLI 83.6 89.6 86.5 84.5 97.3 90.4
object detection 81.9 91.4 86.3 83.7 96.7 89.7
pose estimation 85.1 89.9 87.4 86.0 96.8 91.1
question ans. 83.6 89.5 86.4 80.4 89.6 84.8
semantic seg. 81.4 91.1 86.0 90.2 95.9 92.9
speech rec. 84.7 89.8 87.2 67.2 90.7 77.1
text class. 83.9 90.4 87.0 74.9 93.3 83.1

Bag-of-Phrases The full name and any word
(which is not an English stop-word) occurring in
the name of a metric or dataset (as found in tax-
onomy) is evidence of mention. For example, for
Exact Match Ratio metric we get exact match ratio,
exact, match and ratio.

Abbreviations We run an abbreviation detec-
tor (Neumann et al., 2019) over the ARXIVPAPERS

dataset to extract pairs of common abbreviations
and their full forms. The previous approach is ex-
tended with abbreviations of full forms occurring
in the name of the metric or dataset. For example,
with an extracted abbreviation–full form pair (en-vi,
English-Vietnamese) and dataset name IWSLT2015
English-Vietnamese, en-vi is added as mention evi-
dence for this dataset. For the Exact Match Ratio
metric we extend the Bag-of-Phrases evidence with:
em and er (extracted Exact Match Ratio abbrevi-
ations), em (extracted Exact Match abbreviation),
mr (extracted Match Ratio abbreviation) and r (ex-
tracted Ratio abbreviation). To deal with the noise
in abbreviations for a given full form we include
only short forms that appear at least 20% of times
as an abbreviation of that full form.

Manually Curated We extend the Bag-of-
Phrases approach with list of manually curated
mention evidence. Only mentions of datasets and
metrics related to speech recognition and semantic
segmentation are modified.

Combined The previous approach extended
with abbreviations.

In Table 4 we show Top-1 and Top-5 accuracy of
the predictions over all leaderboard records from

Table 4: Linking performance using ground truth anno-
tations of table types and segmentation.

Top-1 Accuracy [%]

evidence speech rec. sem. segmentation
TDMS T D M TDMS T D M

BoP 42 86 45 72 49 95 71 67
abbrs 56 87 57 74 56 95 79 74
curated 76 87 77 87 77 95 89 87
combined 67 87 68 78 72 95 86 85

Top-5 Accuracy [%]

evidence speech rec. sem. segmentation
TDMS T D M TDMS T D M

BoP 72 88 73 84 82 99 89 93
abbrs 76 89 76 84 93 100 94 99
curated 85 90 85 91 97 99 99 99
combined 81 89 81 89 97 99 99 99

each collection of papers. Using abbreviations
significantly improves the performance over the
Bag-of-Phrases approach. The worse performance
caused by adding abbreviations to manually curated
lists suggests that abbreviations could increase the
rate of false-positive matches of mentions. Another
explanation might be that manually curated lists of
mentions are biased towards leaderboards related
to speech recognition and semantic segmentation
due to construction of the lists.

The overall performance of the linking step al-
lows us to use it in production environment for
efficient semi-automated extraction of results. Our
solution proposes to users the Top-5 predictions as-
sociated with cells they indicated, thus eliminating
the tedious and error-prone step of matching the
results with existing leaderboards and ensuring that
metric values are correctly normalized.

6.4 End-to-End Performance

We use annotations for Semantic Segmentation
papers from SEGMENTEDTABLES and LINKE-
DRESULTS datasets to analyse how AXCELL per-
forms in an end-to-end fashion. Figure 4 shows
fractions of gold truth records incorrectly rejected
in various steps of our pipeline. Both table type
classification and segmentation steps were done us-
ing models trained with the Semantic Segmentation
fold as a test set.

The most common reason for misprediction of
datasets is confusion between validation and test
sets. Additionally the linking model has difficul-
ties in distinguishing between variants of Inter-
section over Union metrics (mean IoU, frequency
weighted IoU, class and category IoU). The confus-
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92.2%

incorrect dataset 16.9%

48.7%

incorrect metric 14.3%

incorrect dataset & metric 7.1%

incorrect task & metric 1.9%
incorrect task 3.2%

table misclassified as irrelevant 7.8%

45.5%

missing model 3.2%

correct 28.6%

too low confidence 10.4%

35.1%

replaced by misclassified record 6.5%

Figure 4: Analysis of end-to-end extraction on the Semantic Segmentation fold of LINKEDRESULTS dataset. Green
blocks show percentage of gold truth tuples of (task, dataset, metric, score) that are correctly classified in various
stages of our pipeline. Red blocks show reasons for which a given fraction of gold truth records is incorrectly
rejected.

ing datasets and metrics names are also reasons for
a low confidence of linked results, as the score is
distributed over similar entities.

One should keep in mind that the above analysis
might not fully generalise to other tasks. As shown
in Table 3 and Figure 6, table segmentation per-
forms differently on papers related to different ma-
chine learning tasks. Moreover, it is more common
in case of Semantic Segmentation papers to report
results on both validation and test sets due to test
sets often being hidden. The difference between
tasks is also apparent in linking performance on
Speech Recognition and Semantic Segmentation
papers, as presented in Table 4. While the Top-1
Accuracy is similar for both tasks, in terms of Top-
5 Accuracy the linking step performs significantly
better on Semantic Segmentation papers—most of
the time the top 5 entries are sufficient to cover
variants of Semantic Segmentation datasets and
metrics.

7 Future Work

We cover three possible extensions to our work for
future research.

First, we might want to consider methods that re-
trieve all results rather than just the principal results
introduced in the paper. This includes extracting
ablation studies to enable search over fine-grained
comparison results.

Secondly, we could look more into automatic tax-
onomy discovery. Currently, we assume a closed-
domain approach with a taxonomy of leaderboards
known in advance. While manually extending the
taxonomy requires only adding the task, dataset

and metric names, it becomes problematic to cover
a large fraction of papers due to publication rate
and long tail of leaderboards.

Finally, to relax the necessity of AXCELL to
have access to LATEX source we consider using
the ARXIVPAPERS dataset as a corpus to train ex-
traction working directly with PDF files.

8 Conclusions

We presented a pipeline for extracting results from
machine learning papers. Our method performs
well across various tasks and leaderboards within
machine learning, with a taxonomy that can be eas-
ily extended without retraining. Additionally we
released a new collection of datasets for training
and evaluating on the results extraction task. These
datasets enable the training of more fine-grained
feature extractors and detailed error analysis. We
demonstrated that our approach achieves signifi-
cant performance gains over the state-of-the-art.
Future work may want to build on our approach for
more comprehensive extraction tasks, focussing on
more types of result, as well as other information
contained in papers such as architectural details
and hyperparameters.
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Table 5: ULMFiT language model architecture and hy-
perparameters.

vocabulary size 30,000
tokenization unigram model
RNN type LSTM
recurrent layers 3
embeddings dimension 400
hidden state dimension 1152

optimizer AdamW
lr schedule one cycle policy
maximum lr 0.01
weight decay 0.1
pretraining 12 epochs
batch size 256
BPTT 80
number of parameters 32M
floating-point arithmetic fp32

Appendix

A Training Details

A.1 Language Model Pre-training

Table Type Classifier and Table Semantic Segmen-
tation models use ULMFiT architecture (Howard
and Ruder, 2018) with a language model pre-
trained from scratch on the ARXIVPAPERS dataset.
We trained a single language model with most of
the hyperparameters set to the defaults from the
fast.ai implementation (Howard and Gugger, 2020)
(see Table 5).

All ULMFiT-based models were trained on a
single NVIDIA Tesla V100 GPU instance with 16
GB of memory. See the corresponding Jupyter
notebooks for the average training times.

A.2 Table Type Classifier

We use the pre-trained language model described
above to train Table Type Classifier on the SEG-
MENTEDTABLES dataset. We used the Image Clas-
sification fold of the SEGMENTEDTABLES dataset
as a validation set, Speech Recognition fold as a
test set and the remaining 9 folds as a training set.
We run grid search over configurations presented
in Table 6. The model with the best binary accu-
racy (distinguishing leaderboard and ablation tables
from irrelevant tables) on the validation set is used
in AXCELL. All models are trained for 12 epochs
in total with gradual unfreezing of encoder layers.

Table 6: ULMFiT table classifier hyperparameters.
Multiple values were used for grid search, with the
same 5 random seeds per configuration. The final con-
figuration is in bold.

dropout mult. [0.0, 0.5, . . . , 1.0]
batch size [64, 128, 192, 256]
floating-point [fp16, fp32]
validation set Image Classification
test set Speech Recognition
features [caption, caption+headers]

Table 7: ULMFiT table semantic segmentation hyper-
parameters. Multiple values were used for grid search,
with the same 5 random seeds per configuration. The
final configuration is in bold.

mask query [False, True]
lowercase input [False, True]
dropout mult. [0.0, 0.5, . . . ,0.75, . . . , 1.0]
batch size 64
floating-point fp16
validation set Image Classification
test set [. . . , Pose Estimation, . . . ]

A.3 Table Semantic Segmentation

We use the pre-trained language model and folds
of the SEGMENTEDTABLES dataset. We used the
Image Classification fold as a validation set. For
each of the remaining 10 folds we run grid search
with a given fold used as a test set and the other
9 folds used as training data. The search was per-
formed over the configurations showed in Table 7.
The model with the best micro F1 score on the val-
idation set is used in AXCELL. Table 8 presents
features input to the model. All models are trained
for 10 epochs in total.

Table 8: Features For Table Segmentation

Feature Description

is emphasised whether text in cell is bold, colored, etc.
cell style e.g. "align-left top-border"
text mentions of cell’s content (as in Fig-

ure 3)
cell content cell’s content without styles and refer-

ences, e.g. “ULMFiT”
row context concatenated cell’s row, e.g. "ULMFiT

<sep> 94.5% <sep> 92.1%"
column context concatenated cell’s column, e.g.

“Method <sep> LSTM <sep> GRU
<sep> ULMFiT <sep> BERT”

cell reference list of reference ids used in cell, e.g.
“bib4, bib18”
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Table 9: Linking and filtering hyperparameters.

p (n |Task,Paper) 0.1
p (n |Task,Abstract) 1.0
p (n |Task,Sections) 1.0
p (n |Task,Caption) 0.1
p (n |Task,Table) 0.1

p (n |Dataset,Paper) 0.99
p (n |Dataset,Abstract) 1.0
p (n |Dataset,Sections) 1.0
p (n |Dataset,Caption) 0.25
p (n |Dataset,Table) 0.01

p (n |Metric,Paper) 0.99
p (n |Metric,Abstract) 1.0
p (n |Metric,Sections) 1.0
p (n |Metric,Caption) 0.25
p (n |Metric,Table) 0.01

p (m |n,Task) 0.01
p (m |n,Dataset) 0.001
p (m |n,Metric) 0.01

filtering threshold1 0.8
filtering threshold2 0.85

A.4 Linking and Filtering

Table 9 shows manually tuned hyperparameters for
linking and filtering. The results with confidence
score in [threshold1, threshold2) are not returned,
but can prevent returning inferior results (in terms
of metric value).

B Datasets

B.1 ARXIVPAPERS Dataset

The ARXIVPAPERS dataset consists of 104,710 pa-
pers published on arXiv.org in the following cate-
gories: Artificial Intelligence (cs.AI), Computation
and Language (cs.CL), Computer Vision and Pat-
tern Recognition (cs.CV), Information Retrieval
(cs.IR), Machine Learning (stat.ML, cs.LG), Neu-
ral and Evolutionary Computing (cs.NE).

When submitting a preprint to arXiv.org the sub-
mitter must either7 grant arXiv.org a non-exclusive
and irrevocable license to distribute the article8

or select one of CC BY 4.0, CC BY-SA 4.0, CC
BY-NC-SA 4.0 or CC0 1.0 public domain license.
Currently the most common is the first, default op-

7https://arxiv.org/help/license
8http://arxiv.org/licenses/

nonexclusive-distrib/1.0/license.html

Table 10: Statistics of the NLP-TDMS (Hou et al.,
2019) Full and Exp datasets.

Full Exp

unique leaderboards 168 77
unique tasks 35 18
unique datasets 99 44
unique metrics 72 30

papers 332 332
results 848 606

tion. Additionally, arXiv.org provided metadata of
submitted papers is available in public domain.

As a consequence of legal requirements we are
not able to fully publish the dataset of articles in
a ready to use form, with extracted texts and ta-
bles. In order to make research in this area repro-
ducible and results comparable, we publish our
extraction pipeline and detailed information of ex-
traction results. In particular, each paper contained
in the ARXIVPAPERS dataset includes the follow-
ing fields:

• arxiv_id: arXiv identifier with version,

• archive_size: the file size in bytes of the e-
print archive,

• sha256: SHA-256 hash of the e-print archive,

• title: paper’s title,

• status: the text and tables extraction status
for this paper, one of: success, no-tex (La-
TeX source is unavailable), processing-error
(extraction issues), withdrawn (the paper is
withdrawn from arXiv),

• sections: number of extracted sections and
subsections,

• tables: number of extracted tables.

Extraction of texts and tables from papers was
run on a single machine with 48 cores / 96 threads
CPU with 2.5 GHz base clock. See the correspond-
ing Jupyter notebooks for the average extraction
time.

B.2 SEGMENTEDTABLES and
LINKEDRESULTS datasets

The SEGMENTEDTABLES dataset contains anno-
tations of 1,994 tables. Each paper contains the
following fields:

https://arxiv.org/help/license
http://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html
http://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html
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Table 11: Statistics for the SEGMENTEDTABLES and
LINKEDRESULTS datasets.

SEGMENTEDTABLES

papers 352
tables 1994
leaderboard tables 796
ablation tables 468

LINKEDRESULTS

unique leaderboards 470
unique tasks 56
unique datasets 245
unique metrics 88

papers 239
results 1591

• arxiv_id: arXiv identifier with version,

• sha256: SHA-256 hash of the e-print archive,

• fold: one of 11 folds (image classification,
image generation, machine translation, mis-
cellaneous, natural language inference, object
detection, pose estimation, question answer-
ing, semantic segmentation, speech recogni-
tion, text classification), assigned automati-
cally based on tasks names found in paper’s
abstract,

• tables: annotated tables with

– index: 0-based index of tables extracted
from paper,

– leaderboard: a boolean denoting if this
table is a leaderboard table,

– ablation: a boolean denoting if this table
is an ablation table,

– dataset_text: datasets mentioned in ta-
ble’s caption, not normalized,

– segmentation: for leaderboard tables, a
2D array (list of lists) with one label per
cell.

Additionally we annotated a subset of the tables
present in SEGMENTEDTABLES with performance
results. Each table has an array of records with
items containing the following fields:

• task, dataset, metric: task, dataset and metric
names normalized across all papers from the
dataset,

• value: normalized metric value,

• model: model name,

• row, column: 0-based cell location with this
result.

Annotation Process Both datasets were anno-
tated in our custom made web interface. For each
paper the annotator is present with: title, abstract,
tags (user editable), notes (user editable) and ex-
tracted tables. The interface allows annotators to
quickly consult: PDF version of the paper, HTML
version of the paper, Papers With Code and Seman-
tic Scholar pages of the paper.

For each table extracted from the paper we show:

• caption (extracted),

• dataset text (user editable): caption fragment
denoting datasets presented in the table,

• notes (user editable),

• tags (user editable),

• table content with color-coded segmentation.

Dataset text field denotes comma separated men-
tions of datasets found in table’s caption. For ex-
ample, for caption “Table 8: WER on SWB and
CH with various LM configurations.” the annota-
tors were instructed to put “SWB, CH”, i.e., to use
exact form from the caption and not the full dataset
name.

Table tags are defined as follows:

• leaderboard: table contains the principal re-
sults of the paper, including comparisons with
other papers,

• ablation: table compares different variants of
the paper’s methodology,

• error: parsing error in the table extraction,

• datasets: table describing datasets used in the
paper,

• architecture: table listing hyperparameters or
architecture details,

• irrelevant: other type of tables, f.e., showing
samples from a dataset.
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The SEGMENTEDTABLES dataset contains tables
not tagged with error label. Table tags are not
exclusive.

For semantic segmentation, tables are present as
a grid. An annotator can select a range of cells and
assign them one of the following classes:

• best model: the best performing model intro-
duced in the paper being annotated,

• paper model: model introduced in the paper
that is not the best performing,

• competing model: model from another pa-
per used for comparison or a baseline method
used by authors,

• subdataset: subdataset (f.e., “dev”, “test” or
“MS-COCO Trees”,

• dataset,

• paper dataset: dataset introduced in the paper

• metric,

• error: parsing issue, not required if the table
is tagged with the error tag,

• parameters: model parameters used to distin-
guish various configurations (f.e., number of
parameters, hidden state size, backbone net-
work),

• meta: cell describing what is in other cells,
f.e., “Model”, “Dataset”, “Task”, “Our mod-
els”.

Segmentation annotation was done for tables la-
belled with the leaderboard tag. In order to easy
present the color-coded table structure the cell tags
are exclusive. For cells for which more than one tag
applies, the annotators were instructed to use most
informative tag. For example, a cell containing
“TIMIT PER” should be tagged as “dataset” and
not “metric”, as metric is often implied by dataset.

By selecting cells an annotator can annotate what
is in corresponding cells by editing a dynamically
created spreadsheet-like grid. The grid allows one
to specify: task name, dataset name, metric name,
metric value and model name. The annotators were
instructed to provide records only for cells corre-
sponding to the best performing models introduced
in a given paper.

The interface allows to link directly to a particu-
lar table to make it easy for annotators to consult
ambiguous cases.

Table 12: Statistics for the PWC LEADERBOARDS
dataset with all entries (Full) and entries restricted to
our taxonomy (Restricted).

Full Restricted

unique leaderboards. 2295 649
unique tasks 252 134
unique datasets 1156 433
unique metrics 414 162

papers 733 516
results 5406 2802

Figure 5: A screenshot of the labeling interface used to
annotate PWC LEADERBOARDS dataset. An annotator
is presented with tables extracted from a paper on the
left-hand side and annotations on the right hand side.

B.3 PWC LEADERBOARDS dataset

The PWC LEADERBOARDS dataset is based on
open data published by Papers With Code and an-
notated by their community. We converted the
data into format similar in structure to the LINKE-
DRESULTS dataset.

C Mention Probabilities

Using the methodology from Section 3.4, we can
calculate p (k |E) by combining probabilities of
mentions, p (m | ¬n, t, property(t, k)).

We compute all possible mentions directly from
tasks, datasets and metrics names appearing in
leaderboards. For a name of dataset or metric the
mentions list consists of the whole name as well
as each word, without duplicates and English stop
words. As tasks names often consist of common
words, to limit the number of false positives the
mentions list for a given task contains only that
task’s name. The mentions can be additionally ex-
tended with human curated lists or abbreviations
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extracted from papers, as described in Section 6.3.
Let R(t) = {property(t, k) : k ∈ {1, . . . ,K}}

be a set of all entities of type t and let M(t, r)
denote a set of all possible mentions for a given
entity r ∈ R(t). We compute the probabil-
ity p (m | ¬n, property(t, k)) assuming all men-
tions (separately for tasks, datasets and metrics)
for a given entity r are distributed uniformly,
p (r | ¬n, t,m) = 1/|M(t, r)|. We then use Bayes
rule to get p (m | ¬n, property(t, k)), assuming
that all mentions of a given type are distributed
uniformly. This results in the conditional probabil-
ity of a mention being inversely proportional to the
number of entities having that mention evidence in
common:

p (m | ¬n, t, property(t, k)) ∝
1

|{r′ ∈ R(t) : m ∈M(t, r′)}|
.

D Additional Results

Figure 7: Confusion matrix of table type classification
step.

lea
de

rbo
ard

ab
lat

ion oth
er

Predicted label

leaderboard

ablation

other

Tr
ue

 la
be

l 64% 29% 7%

26% 64% 10%

3% 15% 82%

Figure 6: Confusion matrices of segmenting cells into
five classes: dataset (including subdatasets), metric,
model introduced in processed paper, competing model
and other. Results averaged over 5 runs for each task,
using 10-fold training as described in Section 6.2 with
tables from a) Speech Recognition, b) Image Genera-
tion and c) Semantic Segmentation papers as a test set.
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(a) Speech Recognition
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(b) Image Generation
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(c) Semantic Segmentation


