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Abstract

While progress has been made on the visual
question answering leaderboards, models of-
ten utilize spurious correlations and priors in
datasets under the i.i.d. setting. As such,
evaluation on out-of-distribution (OOD) test
samples has emerged as a proxy for general-
ization. In this paper, we present MUTANT,
a training paradigm that exposes the model
to perceptually similar, yet semantically dis-
tinct mutations of the input, to improve OOD
generalization, such as the VQA-CP chal-
lenge. Under this paradigm, models utilize
a consistency-constrained training objective to
understand the effect of semantic changes in
input (question-image pair) on the output (an-
swer). Unlike existing methods on VQA-CP,
MUTANT does not rely on the knowledge
about the nature of train and test answer distri-
butions. MUTANT establishes a new state-of-
the-art accuracy on VQA-CP with a 10.57%
improvement. Our work opens up avenues for
the use of semantic input mutations for OOD
generalization in question answering.

1 Introduction

Availability of large-scale datasets has enabled the
use of statistical machine learning in vision and
language understanding, and has lead to significant
advances. However, the commonly used evalu-
ation criterion is the performance of models on
test-samples drawn from the same distribution as
the training dataset, which cannot be a measure
of generalization. Training under this “indepen-
dent and identically distributed” (i.i.d.) setting can
drive decision making to be highly influenced by
dataset biases and spurious correlations as shown
in both natural language inference (Kaushik and
Lipton, 2018; Poliak et al., 2018; McCoy et al.,
2019) and visual question answering (Goyal et al.,
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Figure 1: Illustration of the mutant samples. The in-
put mutation, either by manipulating the image or the
question, results in a change in the answer.

2017; Agrawal et al., 2018a; Selvaraju et al., 2020).
As such, evaluation on out-of-distribution (OOD)
samples has emerged as a metric for generalization.

Visual question answering (VQA) (Antol et al.,
2015) is a task at the crucial intersection of vision
and language. The aim of VQA models is to pro-
vide an answer, given an input image and a ques-
tion about it. Large datasets (Antol et al., 2015)
have been extensively used for developing VQA
models. However over-reliance on datasets can
cause models to learn spurious correlations such
as linguistic priors (Agrawal et al., 2018a) that are
specific to certain datasets and do not generalize
to “Out-of-Distribution” (OOD) samples, as shown
in Figure 1. While learning patterns in the data is
important, learning dataset-specific spurious cor-
relations is not a feature of robust VQA models.
Developing robust models has thus become a key
pursuit for recent work in visual question answer-
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ing through data augmentation (Goyal et al., 2017),
reorganization (Agrawal et al., 2018a).

Every dataset contains biases; indeed inductive
bias is necessary for machine learning algorithms
to work. Mitchell (1980) states that an unbiased
learner’s ability to classify is no better than a look-
up from memory. However this bias has a com-
ponent which is useful for generalization (positive
bias), and a component due to spurious correlations
(negative bias). We use the term “positive bias” to
denote the correlations that are necessary to per-
form a task — for instance, the answer to a “What
sport is . . . ” question is correlated to a name of a
sport. The term “negative bias” is used for spurious
correlations tat may be learned from the data — for
instance, always predicting “tennis” as the answer
to “What sport. . . ” questions. The goal of OOD
generalization is to mitigate negative bias while
learning to perform the task. However existing
methods such as LMH (Clark et al., 2019) try to re-
move all biases between question-answer pairs, by
penalizing examples that can be answered without
looking at the image; we believe this to be counter-
productive. The analogy of antibiotics which are
designed to remove pathogen bacteria, but also end
up removing useful gut microbiome (Willing et al.,
2011) is useful to understand this phenomenon.

We present a method that focuses on increas-
ing positive bias and mitigating negative bias, to
address the problem of OOD generalization in vi-
sual question answering. Our approach is to enable
the mutation of inputs (questions and images) in
order to expose the VQA model to perceptually
similar yet semantically dissimilar samples. The
intuition is to implicitly allow the model to under-
stand the critical changes in the input which lead
to a change in the answer. This concept of mu-
tations is illustrated in Figure 1. If the color of
the frisbee is changed, or the child removed, i.e.
when an image-mutation is performed, the answer
to the question changes. Similarly, if a word is
substituted by an adversarial word (bins→bottles),
an antonym, or negation (healthy→not healthy),
i.e. when a question-mutation is performed, the
answer also changes. Notice that both mutations
do not significantly change the input, most of the
pixels in the image and words in the question are
unchanged, and the type of reasoning required to
answer the question is unchanged. However the
mutation significantly changes the answer.

In this work, we use this concept of mutations

to enable models to focus on parts of the input that
are critical to the answering process, by training
our models to produce answers that are consistent
with such mutations. We present a question-type
exposure framework which teaches the model that
although such linguistic priors may exist in train-
ing data (such as the dominant answer “tennis” to
“What sport is ...” questions), other sports can also
be answers to such questions, thus mitigating nega-
tive bias. This is in contrast to Chen et al. (2020a)
who focus on using data augmentation as a means
for mitigating language bias.

Our method uses a pair-wise training protocol
to ensure consistency between answer predictions
for the original sample and the mutant sample. Our
model includes a projection layer, which projects
cross-modal features and true answers to a learned
manifold and uses Noise-Contrastive Estimation
Loss (Gutmann and Hyvärinen, 2010) for minimiz-
ing the distance between these two vectors. Our
results establish a new state-of-the-art accuracy
of 69.52% on the VQA-CP-v2 benchmark outper-
forming the current best models by 10.57%. At
the same time, our models achieves the best accu-
racy (70.24%) on VQA-VQA-v2 among models
designed for the VQA-CP task.

This work takes a step away from explicit de-
biasing as a method for OOD generalization and
instead proposes amplification of positive bias and
implicit attenuation of spurious correlations as the
objective. Our contributions are as follow.

• We introduce the Mutant paradigm for train-
ing VQA models and the sample-generation
mechanism which takes advantage of seman-
tic transformations of the input image or ques-
tion, for the goal of OOD generalization.
• In addition to the conventional classification

task, we formulate a novel training objective
using Noise Contrastive Estimation over the
projections of cross-modal features and an-
swer embeddings on a shared projection man-
ifold, to predict the correct answer.
• Our pairwise consistency loss acts as a regu-

larization that seeks to bring the distance be-
tween ground-truth answer vectors closer to
the distance between predicted answer vectors
for a pair of original and mutant inputs.
• Extensive experiments and analyses demon-

strate advantages of our method on the VQA-
CP dataset, and establish a new state-of-the-
art of 69.52%, an improvement of 10.57%.
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2 MUTANT

We consider the open-ended VQA problem as
a multi-class classification problem. The VQA
dataset D = {Qi, Ii, ai}Ni=1 consists of questions
Qi ∈ Q and images Ii ∈ I , and answers ai ∈ A.
Many contemporary VQA models such as Up-
Dn (Anderson et al., 2018) and LXMERT (Tan
and Bansal, 2019) first extract cross-modal features
from the image and question using attention layers,
and then use these features as inputs to a neural
network answering module which predicts the an-
swer classes. In this section we define our Mutant
paradigm under this formulation of the VQA task.

2.1 Concept of Mutations
Let X = (Q, I) denote an input to the VQA system
with true answer a. A mutant input X∗ is created
by a small transformation in the image (Q, I∗) or
in the question (Q∗, I) such that this transforma-
tion leads to a new answer a∗, as shown in Figure 1.
There are three categories of transformation T that
create the mutant input X∗ = T (X), addition, re-
moval, or substitution. For image mutations, these
correspond to addition or removal of objects, and
morphing the attributes of the objects, such as color,
texture, and lighting conditions. For instance ad-
dition or removal of a person from the image in
Figure 3 changes the answer to the question “How
many persons are pictured”. Question mutations
can be performed by addition of a negative word
(“no”, “not”, etc.) to the question, masking critical
words in the question, and substituting an object-
word with an antonym or adversarial word. Thus
for each sample in the VQA dataset, we can obtain
a mutant sample and use it for training.

2.2 Training with Mutants
Our method of training with mutant samples relies
on three key concepts that supplement the conven-
tional VQA classification task.

Answer Projection: The traditional learning
strategy of VQA models optimizes for a standard
classification task using softmax cross-entropy:

LV QA =
−1
N

N∑
i=1

log(softmax
(
fV QA(Xi), ai)). (1)

QA as a classification task is popular since the an-
swer vocabulary follows a long-tailed distribution
over the dataset. However this formulation is prob-
lematic since it does not consider the meaning of

the answer while making a decision, but instead
learns a correlation between the one-hot vector of
the answer-class and input features. Thus to an-
swer the question “What is the color of the banana”,
models learn a strong correlation between the ques-
tion features and the answer-class for “yellow”, but
do not encode the notion of yellowness or green-
ness of bananas. This key drawback negatively
impacts the generalizability of these models to raw
green or over-ripe black bananas at test-time.

To mitigate this, in addition to the classification
task, we propose a training objective that operates
in the space of answer embeddings. The key idea
is to map inputs (image-question pairs) and outputs
(answers) to a shared manifold in order to establish
a metric of similarity on that manifold. We train a
projection layer that learns to project features and
answers to the manifold as shown in Figure 2. We
then use Noise Contrastive Estimation (Gutmann
and Hyvärinen, 2010) as a loss function to mini-
mize the distance between the projection of cross
modal features z and projection of glove vector v
for ground-truth answer a , given by:

LNCE = −log
( ecos(zfeat, za)∑

ai∈A ecos(zfeat, zia)

)
, (2)

where zfeat = fproj(z) and za = fproj(glove(a)),
and A is the set of all possible answers in our train-
ing dataset. It is important to note that this sim-
ilarity metric is not between the true answer and
the predicted answer, but between the projection
of input features and the projection of answers, to
incorporate context in the answering task.

Type Exposure: Linguistic priors in datasets
have led models to learn spurious correlations be-
tween question and answers. For instance, in VQA,
the most common answer for “What sport ...” ques-
tions is “tennis”, and for “How many ...” questions
is “two”. Our aim is to remove this negative bias
from the models. Instead of removing all bias from
these models, we teach models to identify the ques-
tion type, and learn which answers can be valid for
a particular question type, irrespective of their fre-
quency of occurrence in the dataset. For instance,
the answer to “How many ...” can be all numbers,
answers to “What color ...” can be all colors, and
answers to questions such as “Is the / Are there
...” questions is either yes or no. We call this Type
Exposure since it instructs the model that although
a strong correlation may exist between a question-
answer pair, there are other answers which are also
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Figure 2: Overall architecture of the Mutant Method includes a cross-modal feature extractor, answer projection
layer, answering layer and type exposure model

valid for the specific type of question. Our Type
Exposure model uses a feedforward network to pre-
dict question type and to create a binary mask over
answer candidates that correspond to this type.

Pairwise-Consistency: The final component of
Mutant is pairwise consistency. We jointly train our
models with the original and mutant sample pair,
with a loss function that ensures that the distance
between two predicted answer vectors is close to
the distance between two ground-truth answer vec-
tors. The pairwise consistency loss is given below,
where za is the vector for answer a , m, GT denote
mutant sample and ground-truth respectively.

LPW = ||cos(zaGT , z
m
aGT

)− cos(zapred , z
m
apred

)||1.

This pairwise consistency is designed as a regu-
larization that incorporates the notion of semantic
shift in answer space as a consequence of a muta-
tion. For instance, consider the image mutation in
Figure 3 which changes the ground-truth answer
from ”two” to ”one”. This shift in answer-space
should be reflected by the predictor.

3 Generating Input Mutations for VQA

In order to train VQA models under the mutant
paradigm, we need a mechanism to create mutant
samples. Mutations are transformations that act on
semantic entities in either the image or the question,
in ways that can reliably lead to a new answer. For
the question, semantic entities are words, while for
images, semantic entities are objects. It is impor-
tant to note that our mutation process is automated
and does not use the knowledge about the test set
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Figure 3: Figure illustrating our dataset creation
pipeline for image mutations. m object instances of
“critical” object are identified from the question and im-
age, and mutation performed either by removal or color
inversion. A represents the answer to the question.

distribution in order to create new samples. In this
section, we delineate our automated generation pro-
cess for both image and question-mutation.

3.1 Image Mutations
For image mutation, we first identify critical ob-
jects from the image that results in a change in the
answer, and either remove instances of these ob-
jects (removal) or morph their color (substitution).

Removing Object Instances: Removing an in-
stance of an object class can be either critical to the
question (i.e. the answer to the question changes)
or non-critical (i.e. answer is unchanged). If an
object (or it’s synonym or hypernym) is mentioned
in the question, we deem it to be critical to the
question, otherwise it is deemed non-critical. For



882

Mutation Type Question Answer
Original Is the lady holding the baby? Yes
Substitution (Negation) Is the lady not holding the baby? No
Substitution (Adversarial) Is the cat holding the baby? No

Original How many people are there? Three
Deletion (Masking) How many [MASK] are there? “Number”

Original What is the color of the man’s shirt? Blue
Substitution (Negation) What is not the color of the man’s shirt? Magenta

Deletion (Masking) Is the [MASK] holding the baby? Can’t say

Original What color is the umbrella ? Pink
Deletion (Masking) What color is the [MASK]? “color”

Table 1: Examples of our question mutation. The image is shown on the left, and the original question is in the
first row of the table. Examples of the two types of mutation are shown in the table.

each object with M instances in the image, we
randomly remove m instances from the image s.t.
m ∈ {0, . . . ,M} using polygon annotations from
the COCO (Lin et al., 2014) dataset. Thus for each
image, we get multiple masked images, with pix-
els inside the instance bounding-box removed, as
shown in Figure 3. These masked images are fed to
a GAN-based inpainting network (Yu et al., 2018)
that makes the mutant image photo-realistic, and
also prevents the model from getting cues from the
shape of the mask. In the case of numeric ques-
tions, if m critical objects are removed, the answer
to for the mutant image changes from n to n−m.
For yes-no questions, removal of all critical objects
(m = n) will flip the answer from “yes” to “no”,
while removing m < n critical objects will not.
Note that m = 0 corresponds to the original image
and does not result in a change in the answer.

Color Inversion: For mutations that involve a
change in color, we use samples with questions
about the color of objects in the image, and change
the color of critical objects by pixel-level color in-
version in RGB-space. The true answer is replaced
with the new color of the critical objects. To get
objects with new colors, we do not use the knowl-
edge about colors of objects in the world. In some
cases, the new colors of the object may not corre-
spond to real-world scenes, thus forcing the model
to actually identifying colors, and not answer from
language priors, such as “bananas are yellow”.

3.2 Question Mutations

We use three types of question mutations as shown
in the example in Table 1. We first identify the crit-
ical object and then apply template-based question
operators similar to (Gokhale et al., 2020). The first
operator is negation for yes-no questions, which

Mutation Category Number of Samples

Object Removal 159,899
Color Change 30,759

Negation 237,611
Adversarial Substitution 146,814

Word Masking 104,666

Table 2: Distribution of generated mutant samples by
category of mutation

is achieved by a template based procedure that
negates the question by adding a “no” or “not” be-
fore a verb, preposition or noun phrase. The second
is the use of antonyms or adversarial object-words
to substitute critical words. The third mutation
masks words in the question and thus introduces
ambiguity in the question. Questions for which the
new answer cannot be deterministically identified
are annotated with a broad category label such as
color, location, fruit instead of the exact answers
such as red, library, apple which the model can-
not be expected to answer since some words have
been masked or replaced with adversarial words.
Yet, we want the model to be able to identify this
broad category of answers even under partially oc-
cluded inputs. The answer remains unchanged for
mutations with non-critical objects or words.

3.3 Mutant Statistics:

We use the training set of VQA-CP-v2 (Agrawal
et al., 2018a) to generate mutant samples. For each
original sample, we generate 1.5 mutant samples
on average, thus obtaining a total of 679k sam-
ples. Table 2 shows the distribution of our gener-
ated mutations with respect to the type of mutation.
Addition of mutant samples does not change the
distribution of samples per question-type.1

1More details about mutant samples are in Supp. material.
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Model VQA-CP v2 test (%) ↑ VQA-v2 val (%) ↑ Gap (%)
All Yes/No Num Other All Yes/No Num Other

GVQA (Agrawal et al., 2018b) 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65 16.94
AReg (Ramakrishnan et al., 2018) 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16 21.58
RUBi (Cadene et al., 2019) 47.11 68.65 20.28 43.18 63.10 - - - 14.05
SCR (Wu and Mooney, 2019) 48.47 70.41 10.42 47.29 62.30 77.40 40.90 56.50 13.83
LMH (Clark et al., 2019) 52.45 69.81 44.46 45.54 61.64 77.85 40.03 55.04 9.19
CSS (Chen et al., 2020a) 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11 0.96

UpDn (Anderson et al., 2018) 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66 23.74
UpDn + Ours 61.72 88.90 49.68 50.78 62.56 82.07 42.52 53.28 0.84

LXMERT (Tan and Bansal, 2019) 46.23 42.84 18.91 55.51 74.16 89.31 56.85 65.14 27.97
LXMERT + Ours 69.52 93.15 67.17 57.78 70.24 89.01 54.21 59.96 0.72

Table 3: Accuracies on VQA-CP v2 test and VQA-v2 validation set, along with Percentage gap between overall
accuracies on these two datasets. “Ours” represents the final model with Answer Projection, Type Exposure and
Pairwise Consistency. Overall best scores are bold, our best are underlined.

4 Experiments

4.1 Setting

Datasets: We train and evaluate our models on
VQA-CP-v2. This is a natural choice for evaluat-
ing OOD generalization since VQA-CP is a non-
i.i.d. reorganization of the VQA dataset, and was
created in order to evaluate VQA models in a set-
ting where language priors cannot be relied upon
for a correct prediction. This is because for every
question type (65 types according to the question
prefix), the prior distribution of answers is different
in train and test splits of VQA-CP. We also train
and evaluate our models on the VQA-v2 (Goyal
et al., 2017) validation set, and compare the gap
between the imbalanced and non-i.i.d. setting of
VQA-CP against the balanced i.i.d. setting of VQA.

Hyperparameters: All of our models are trained
on two NVIDIA Tesla V100 16GB GPUs for 10
epochs with batch size of 32 and learning rate 1e–5.
Each epoch takes approximately three hours for
UpDn and four hours for LXMERT.

4.2 Baseline Models

We compare our method with GVQA (Agrawal
et al., 2018b), RUBI (Cadene et al., 2019),
SCR (Wu and Mooney, 2019), LMH (Clark et al.,
2019), CSS (Chen et al., 2020a) as our base-
lines. Since most of these methods are built with
UpDn (Anderson et al., 2018) as the backbone,
we investigate the efficacy of UpDn under the mu-
tant paradigm. On the other hand, LXMERT (Tan
and Bansal, 2019) has emerged as a powerful
transformer-based cross-modal feature extractor,
and is pre-trained on tasks such as masked language

modeling and cross-modality matching, inspired
by BERT (Devlin et al., 2019). LXMERT is a top
performing single-model on multiple vision-and-
language tasks such as VQA, GQA (Hudson and
Manning, 2019), ViZWiz (Bigham et al., 2010),
and NLVR2 (Suhr et al., 2019). We therefore use is
as a strong baseline for our experiments. LXMERT
is representative of the recent trend towards using
BERT-like pre-trained models (Lu et al., 2019; Su
et al., 2019; Li et al., 2020; Chen et al., 2019) and
fine-tuning them on multiple downstream vision
and language tasks. Note that we do not use ensem-
ble models for our experiments and focus only on
single-model baselines.

4.3 Results on VQA-CP-v2 and VQA-v2

Performance on two benchmarks VQA-CP-v2 and
VQA-v2 is shown in Table 3. We compare exist-
ing models against UpDn and LXMERT incorpo-
rated into our Mutant method. For the VQA-CP
benchmark, our method improves the performance
of LXMERT by 23.29%, thus establishing a new
state of the art on VQA-CP, beating the previous
best by 10.57%. Our method shows improvements
across all categories, with 8.78% on the Yes-No
category, 17.75% on Number-based questions, and
9.57% on other questions. We use negation as
one of the question mutation operators on yes-no
questions, but such questions are not present in the
test set. However our model takes advantage of
this mutation and improves substantially on yes-no
questions. The Mutant method also consistently
improves the performance of the UpDn model by
21.98% overall. Note that baseline models AReg,
RUBI, SCR, LMH, and CSS all modify UpDn by
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Model Data
VQA-CP v2 test ↑ (%)

All Yes/NoNum Other

UpDn VQA-CP 39.74 42.27 11.93 46.05
UpDn VQA-CP + Mutant 50.16 61.45 35.87 50.14

Increase in Accuracy 10.42 19.18 23.94 4.09
LXMERT VQA-CP 46.23 42.84 18.91 55.51
LXMERT VQA-CP + Mutant 59.69 73.19 32.85 59.29

Increase in Accuracy 13.46 30.35 13.94 3.78

LXM + Ours VQA-CP + Img. Mut. 64.85 85.68 66.44 53.80
LXM + Ours VQA-CP + Que. Mut. 67.92 91.64 65.73 56.09
LXM + Ours VQA-CP + Both Mut. 69.52 93.15 67.17 57.78

Table 4: Top section: Comparison of UpDn and
LXMERT when trained on VQA-CP and augmented
with mutant samples, and the increase in accuracy due
to mutant samples. Bottom section: Comparison of
LXMERT when using image or text mutations, or both.

adding de-biasing techniques. We show our de-
biasing method improves on two SOTA models
and outperforms all of the above baselines, unlike
previous work which only modifies UpDn. This
empirically shows Mutant to be model-agnostic.

When trained and evaluated on the balanced
i.i.d. VQA-v2 dataset, our method achieves the best
performance amongst methods designed specifi-
cally for OOD generalization, with an accuracy of
70.24%. This is closest among baselines to the
SOTA established by LXMERT, which is trained
explicitly for the balanced, i.i.d. setting. To make
this point clear, we report the gap between the over-
all scores for VQA-CP and VQA-v2, following the
protocol from Chen et al. (2020a) in Table 3.

Results on VQA-v2 without re-training:
Additionally, we use our best model trained on
VQA-CP and evaluate it on the VQA test standard
set without re-training on VQA-v2 data. The ob-
jective here is to evaluate whether models trained
on biased data (VQA-CP) and mutant data is able
to generalize to VQA-v2 which uses an i.i.d. train-
test split. This gives us an overall accuracy of
67.63% comprising with 88.56% on yes-no ques-
tions, 50.76% on number-based questions, and
54.56% on other questions. This is better than all
existing VQA-CP models that are explicitly trained
on VQA-v2 (reported in Table 3), and thus demon-
strates the generalizability of our approach.

4.4 Analysis

Effect of Training with Mutant Samples:
In this analysis we measure the effect of augment-
ing the training data with mutant samples on UpDn
and LXMERT without any architectural changes.

Model
VQA-CP v2 test ↑ (%)

All Yes/No Num Other

UpDn 50.16 61.45 35.87 50.14
UpDn + AP 54.51 88.35 41.01 32.89
UpDn + TE 56.32 80.56 46.14 46.41
UpDn + AP + TE 55.76 90.25 43.78 41.40
UpDn + AP + PW 57.54 91.59 49.17 41.93
UpDn + TE + PW 60.32 86.10 50.23 49.58
UpDn + AP + TE + PW 61.72 88.90 49.68 50.78

LXM 59.69 73.19 32.85 59.29
LXM + AP 60.45 88.46 43.24 50.49
LXM + TE 63.36 77.10 46.50 61.27
LXM + AP + TE 64.73 85.34 47.23 58.71
LXM + AP + PW 67.14 90.49 65.52 55.34
LXM + TE + PW 64.17 94.71 35.19 48.80
LXM + AP + TE + PW 69.52 93.15 67.17 57.78

Table 5: Ablation study to investigate the effect of each
component of our method: Answer Projection (AP),
Type Exposure (TE), Pairwise Consistency (PW), and
independent effect of image and question mutations.

The results are reported in Table 4. Both mod-
els improve when exposed to the mutant samples,
UpDn by 10.42% and LXMERT by 13.46%. There
is a markedly significant jump in performance for
both models for the yes-no and number categories.
UpDn especially benefits from Mutant samples in
terms of the accuracy on numeric questions (a boost
of 23.94%).

We also compare our final model when trained
only with image mutations and only with question
mutations in Table 4. While this is worse than train-
ing with both types of mutations, it can be seen that
question mutations are better than image mutations
in the case of yes-no and other questions, while
image mutations are better on numeric questions.

Ablation Study:
We conduct ablation studies to evaluate the effi-
cacy of each component of our method, namely
Answer Projection, Type Exposure and Pairwise
Consistency, on both baselines, as shown in Table 5.
Introduction of Answer Projection significantly im-
proves yes-no performance, while Type Exposure
improves performance on other questions. We also
observe that the pairwise consistency loss signif-
icantly boosts performance on numeric questions
and yes-no questions. Note that there is a minor
difference between the original and the mutant sam-
ple, and the model needs to understand this differ-
ence, which in turn can enable the model to reason
about the question and predict the new answer. For
instance the pairwise consistency loss allows the



885

Model Method
VQA-CP v2 test ↑ (%)

All Yes/No Num Other

UpDn + Ours Base 61.72 88.90 49.68 50.78
UpDn + Ours LMH 55.38 90.99 39.74 40.99

Drop in Accuracy 6.34 -2.09 9.95 9.80

LXMERT + Ours Base 69.52 93.16 67.17 57.78
LXMERT + Ours LMH 63.85 88.34 48.23 55.28

Drop in Accuracy 5.67 4.82 18.86 2.50

Table 6: Effect of combining LMH de-biasing with the
Mutant paradigm, measured as drop in accuracy (%)

model to learn the correlation between one missing
object and a change in answer from “two” to “one”
in Figure 3, resulting in an improvement in the
counting ability of our VQA model. Similarly, the
pairwise consistency allows the model to improve
on yes-no questions for which the answer changes
when a critical object is removed.

Effect of LMH Debiasing on Mutant:
We compare the results of our model when trained
with or without the explicit de-biasing method
LMH (Clark et al., 2019). LMH is an ensemble-
based method trained for avoiding dataset biases,
and is the most effective among all de-biasing
strategies developed for the VQA-CP challenge.
LMH implements a learned mixing strategy, by
using the main model in combination with a bias-
only model trained only with the question, without
the image. The learned mixing strategy uses the
bias-only model to remove biases from the main
model. It can be seen from Table 6 that LMH leads
to a drop in performance when used in combina-
tion with Mutant. This is potentially because in
the process of debiasing, LMH ends up attenuating
positive bias introduced by Mutant that is useful
for generalization. Kervadec et al. (2020) have con-
currently shown that de-biasing methods such as
LMH indeed result in a decrease in performance
on out-of-distribution (OOD) test samples in the
GQA (Hudson and Manning, 2019) dataset, mirror-
ing our analysis on VQA-CP shown in Table 6.

5 Related Work

De-biasing of VQA datasets: The VQA-v1
dataset (Antol et al., 2015) contained imbalances
and language priors between question- answer
pairs. This was mitigated by VQA-v2 (Goyal et al.,
2017) which balanced the data by collecting com-
plementary images such that each question was
associated with two images leading to two differ-

ent answers. Identifying that the distribution of
answers in the VQA dataset led models to learn
superficial correlations, Agrawal et al. (2018a) pro-
posed the VQA-CP dataset by re-organizing the
train and test splits such that the the distribution of
answers per question-type was significantly differ-
ent for each split.

Robustness in VQA: Ongoing efforts seek to
build robust VQA models for VQA for various as-
pects of robustness. Shah et al. (2019) propose a
model that uses cycle-consistency to not only an-
swer the question, but also generate a complimen-
tary question with the same answer, in order to in-
crease the linguistic diversity of questions. In con-
strast, our work generates questions with a different
answer. Selvaraju et al. (2020) provide a dataset
which contains perception-related sub-questions
for each VQA question. Antonym-consistency has
been tackled in Ray et al. (2019). Inspired by in-
variant risk minimization (Arjovsky et al., 2019)
which links out-of-distribution generalization to in-
variance and causality, Teney et al. (2020b) provide
a method to identify invariant correlations in the
training set and train models to ignore spurious cor-
relations. Asai and Hajishirzi (2020); Gokhale et al.
(2020) explore robustness to logical transformation
of questions using first-order logic connectives and
(∧), or (∨), not (¬). Removal of bias has been a
focus of Ramakrishnan et al. (2018); Clark et al.
(2019) for the VQA-CP task. We distinguish our
work from these by amplifying positive bias and
attenuating negative bias.

Data Augmentation: It is important to note that
the above work on data de-biasing and robust mod-
els focuses on the language priors in VQA, but
not much attention has been given to visual priors.
Within the last year, there has been interest in aug-
menting VQA training data with counterfactual im-
ages (Agarwal et al., 2020; Chen et al., 2020a). In-
dependently, Teney et al. (2020a) have also demon-
strated that counterfactual images obtained via min-
imal editing such as masking or inpainting can lead
to improved OOD generalization of VQA models,
when trained with a pairwise gradient-based regu-
larization. Self-supervised data augmentation has
been explored in recent work (Lewis et al., 2019;
Fabbri et al., 2020; Banerjee and Baral, 2020) in
the domain of text-based question answering. The
mutant paradigm presented in this work is one of
the first enable the generation of VQA samples that
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result in different answers, coupled with a novel ar-
chitecture and a consistency loss between original
and mutant samples as a training objective.

Answer Embeddings: In one of the early works
on VQA, Teney and Hengel (2016) use a combi-
nation of image and question representations and
answer embeddings to predict the final answer. Hu
et al. (2018) learn two embedding functions that
transform image-question pair and answers to a
shared latent space. Our method is different from
this since we use a combination of classification
and NCE Loss on the projection of answer vec-
tors, as opposed to a single training objective. This
means that although the predicted answer is ob-
tained as the most probable answer from a set of
candidate answers, the NCE Loss in the answer-
space embeds the notion of semantic similarity
between the answer. Our Type Exposure model
is in principal similar to Kafle and Kanan (2016)
who use the predicted answer-type probabilities
in a Bayesian framework, while we use it as an
additional constraint, i.e. as a regularization for a
maximum likelihood objective.

6 Discussion and Conclusion

In this paper, we present a method that uses input
mutations to train VQA models with the goal of
Out-of-Distribution generalization. Our novel an-
swer projection module trained for minimizing dis-
tance between answer and input projections com-
plements the canonical VQA classification task.
Our Type Exposure model allows our network to
consider all valid answers per question type as
equally probable answer candidates, thus moving
away from the negative question-answer linguistic
priors. Coupled with pairwise consistency, these
modules achieve a new state-of-the-art accuracy
on the VQA-CP-v2 dataset and reduce the gap be-
tween model performance on VQA-v2 data.

We differentiate our work from methods using
random adversarial perturbations for robust learn-
ing (Madry et al., 2018). Instead we view input
mutations as structured perturbations which lead
to a semantic change in the input space and a de-
terministic change in the output space. We envi-
sion that the concept of input mutations can be
extended to other vision and language tasks for ro-
bustness. Concurrent work in the domain of image
classification shows that carefully designed pertur-
bations or manipulations of the input can benefit
generalization and lead to performance improve-

ments (Chen et al., 2020b; Hendrycks et al., 2019).
While perception is a cornerstone of understanding,
the ability to imagine changes in the scene or lan-
guage query, and predict outputs for that imagined
input allows models to supplement “what” deci-
sion making (based on observed inputs) with “what
if” decision making (based on imagined inputs).
The Mutant paradigm is an effort towards “what if”
decision making. Code is available here.
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Appendix

A Datasets

A.1 VQA-CP
VQA-CP (Visual Question Answering under
Changing Priors) (Agrawal et al., 2018a) is a re-
organization of the VQA dataset (Antol et al., 2015;
Goyal et al., 2017). The aim of VQA-CP is to have
a different distribution of answers per question type
is different in test and train splits. There are 65
question types based on the prefix of the questions
such as “how many”, “what color”, “what sport”,

“is there”, ”what is the”, “which”. In VQA-v2, sam-
ples are drawn at randomly and independently and
assigned either to train or test, thus resulting in the
same distribution for both splits.

P V QA
train (A|Q, I) = P V QA

test (A|Q, I).

In VQA-CP however, samples are assigned using
a greedy re-splitting algorithm, either to train or
test, in a way that makes sure that questions with
the same type an same answer are not shared by
train and test. It is important to note that there is
no leakage between train and test splits compared
to the original VQA splits.

P V QA−CP
train (A|Q, I) 6= P V QA−CP

test (A|Q, I).

The train set for VQA-CP-v2 contains 121k im-
ages, 245k questions and 2.5M answers, while the
test set contains 98k images, 220k questions and
2.2M answers.

A.2 COCO
The source of images in both VQA and VQA-CP
is the MS-COCO dataset (Lin et al., 2014). COCO
contains natural images representing complex, real-
world scenes containing common objects of 91 cate-
gories such as “person”, “chair”, “fork”, “horse”,

“sports-ball”, etc. For each image, COCO provides
5 captions along with bounding boxes and polygon
annotations for each object instance in the image.

B Image Mutant Generation Process

In this section we provide additional details about
our process for generating mutant samples from
original question-image-answer triplets (Q-I-A) in
the VQA-CP dataset. For all linguistic operations
we use a combination of SpaCy (Honnibal and
Montani, 2017) and the LemmInflect library (Jas-
cob, v0.2.1 (February 22, 2020) for lemmatization
and inflection.
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Figure 4: Illustration of COCO bounding box and poly-
gon annotations for m instances of an object, and the
inpainting results after removal

B.1 Selection of Objects

For each VQA sample, a list of words W is cre-
ated, which contains words from the ground-truth
answers and the question. All nouns in W are con-
verted to their singular form. For yes-no questions,
numeric questions, and questions about colors of
objects, a list of objects O is obtained from COCO.
Background and crowd objects are filtered out from
O. From O critical objects OC and and non-critical
objects ONC are obtained. Critical objects are
those objects in the image that when manipulated
or removed, may change the answer to the question
being asked. For this we follow a simple heuristic
that states that if an object-word or it’s synonym
or hyponym is present in W , then it is a critical
object. Then a critical object o ∈ O is chosen at
random, and m instances of this object are chosen
at random. The polygon annotations (a polygon
border) for this object are obtained from the COCO
dataset as shown in Figure 4. Using these annota-
tions, either a removal or color-inversion operation
is applied to create the mutant image.

B.2 Object Removal and In-painting

After the object instance is selected, it is removed
from the image by replacing all pixel values by 1
(white). This masked image is then input to a GAN-
based image inpainting network (Yu et al., 2018)
that fills up this pixels in the mask. This makes the
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Figure 5: Illustration of color inversion procedure

image photorealistic. This network is one of the
best available off-the-shelf blind image inpainting
models, and is trained on the ImageNet (Deng et al.,
2009). The masked image could also be used as the
mutant image however we prefer to use photoreal-
istic images for two main reasons. First, masked
images do not lie in the same distribution as natural
images, and secondly, the mask boundary may give
clues to the network about the the shape or outline
of the missing object.

B.3 Color Inversion Process

For mutation that involves a change in the color of
the object, we perform a simple pixel-wise color
inversion operation on each pixel in the mask to
get the mutant image as shown in Figure 5. This is
to ensure that we do not use any prior knowledge
about valid colors of a specific object. For instance,
bananas can typically be yellow, green, or black.
However, if we only change the color or a banana
to one of these three colors, we would be using
domain knowledge and inadvertently introducing
answers from the test set, defeating the purpose
of OOD generalization. Although the simple in-
version process can introduce unnatural colors like
blue bananas, it forces the model to understand
colors in the image to answer the question instead
of simply answering from linguistic priors (such
as the memorized knowledge that bananas can be
green, yellow, or black).

B.4 Answer Generation

The new answers are generated based on the type
of question. For yes-no questions, if all instances

of the object are removed then the answer changes
from yes to no. If only some instances are removed
or if the object is non-critical, the answer remains
the same. For number questions, if m instances
of a critical object are removed, the answer changes
from n to n−m, else the answer remains the same.
For color-based questions we convert the answer
color to their HEX value using Webcolors 2, in-
vert the value, and find the color in CSS-21 colors
closest to this value to generate the new answer.

C Question Mutant Generation Process

For generating question mutants, we use three op-
erators: negation, substitution by antonyms or ad-
versarial words, and masking critical words.

C.1 Negation

For yes-no questions and color-based questions,
we use a template-based negation technique that
puts a negative word such as “not” or “no” before
a preposition, noun phrase, or verb. For instance
“Is this chair broken?” is negated to “Is this chair
not broken?”. We show examples of negation in
Table 7. Negation simply flips the answer from yes
to no or no to yes.

C.2 Adversarial Words and Masking

Another form of question mutation is substituting
object-words with their adversarial words. To do
so, we create a list of all object words and their
synonyms and use BERT (Devlin et al., 2019) sim-
ilarity to rank the most similar words. To replace
a word, we chooser the most similar word which
is not present in the image. The third type of mu-
tation is masking, where a critical object word is
removed from the question and replaced with the
token “MASK”.

For both these types of mutations, determining
the correct answer in some cases is not possible as
can be seen from examples in Table 7. Thus we
use the broad category as the answer. For instance,
when a question such as “How big is the book”
is replaced with either “How big is the plane” or

“How big is the [MASK]”, it is clear that the question
is about the size of an object. Thus we annotate
this question with this broad category “size” as the
answer. In other cases, where even a broad category
cannot be ascertained, the answer is replaced with
“can’t say” or ”don’t know”.

2https://pypi.org/project/webcolors/

https://pypi.org/project/webcolors/
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Mutation Q A Qmutant Amutant

Negation

Is this bread? yes Is this not bread no
What is the color of the woman’s shirt? black What is not the color of the woman’s shirt? white
Are there deciduous trees? no Are there no deciduous trees? yes
Is there a boy? no Is the no boy? yes

Adversarial
Who is riding the boat? man Who is riding the desk “can’t say”
How big is the plane? large How big is the book? “size”
How many pillows are on the bed? four How many pillows are on the table? “number”

Masking

What type of drink is being displayed? wine What type of [MASK] is being displayed? “beverage”
How many bins? two How many [MASK] ? “number”
What is the green stuff on the sandwich? lettuce What is the green stuff on the [MASK]? “food”

Table 7: Examples of three types of question mutation with new answers

Figure 6: The distribution of answers by question types for VQA train and Mutant compared with VQA-test

To generate answer clusters and representative
answer categories, we extract Glove (Penning-
ton et al., 2014) word vectors for each answer
phrase/word using Spacy. We use k-means cluster-
ing (Lloyd, 1982) with Euclidean distance metric
and with varying number of K. We manually tune
the number of clusters till we observe a clear set of
categories appear at K = 50. We then manually
annotate the category names.

D Dataset Analysis

Here we provide dataset analysis in terms of dis-
tribution of answers by question-type, number of
samples for each type of mutation, and the final

Category VQA-CP (%) Mutant (%)
Yes/No 41.86 47.88
Number 11.91 13.64

Other 46.23 38.48

Table 9: Distribution of samples in the dataset by an-
swer type

distribution of the dataset in terms of answer-type.

D.1 Distribution by Question Type

We show the distribution of answers per question
type in Figure 6 for three categories “How many”,

“What sport”, and “What color” for the top-10 an-
swers. It can be seen that the distribution is distinct
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Mutation Category Number of Samples
Object Removal 159,899
Color Change 30,759

Negation 237,611
Adversarial Substitution 146,814

Word Masking 104,666

Table 10: Distribution of generated mutant samples by
category of mutation

from the test data and close to the VQA-CP train
data apart from the introduction of categorical an-
swers such as “number” and “sports” during ques-
tion mutation. Our mutation method does not leak
information about answers from test set to train set.

D.2 Distribution by Mutation Type
Table 10 shows the number of samples generated
by each type of mutation.

D.3 Distribution by Answer Type
There are three answer types in both VQA-CP and
Mutant datasets: yes/no, number, and other. Cre-
ation of mutant samples leads to a small change in
the distribution as shown in Table 9.


