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Abstract
The term translationese has been used to de-
scribe features of translated text, and in this pa-
per, we provide detailed analysis of potential
adverse effects of translationese on machine
translation evaluation. Our analysis shows
differences in conclusions drawn from evalu-
ations that include translationese in test data
compared to experiments that tested only with
text originally composed in that language. For
this reason we recommend that reverse-created
test data be omitted from future machine trans-
lation test sets. In addition, we provide a re-
evaluation of a past machine translation eval-
uation claiming human-parity of MT. One im-
portant issue not previously considered is sta-
tistical power of significance tests applied to
comparison of human and machine translation.
Since the very aim of past evaluations was the
investigation of ties between human and MT
systems, power analysis is of particular impor-
tance, to avoid, for example, claims of human
parity simply corresponding to Type II error
resulting from the application of a low pow-
ered test. We provide detailed analysis of tests
used in such evaluations to provide an indica-
tion of a suitable minimum sample size for fu-
ture studies.

1 Introduction

Human-translated text is thought to display features
that deviate to some degree from those of text orig-
inally composed in that language. Baker (1993)
report that translated text can: be more explicit
than the original source, less ambiguous, simplified
(lexical, syntactically and stylistically); display a
preference for conventional grammaticality; avoid
repetition; exaggerate target language features; as
well as display features of the source language.
The term translationese is often used to describe
the presence of such phenomena in translated text.

Standard evaluation protocol in Machine Trans-
lation (MT) comprises system tests on a sample of

human-translated text. Since creating this human-
translated text is expensive, re-use of test sets
for both directions of translation is commonplace,
without regard to whether source or target contain
features of translationese. For example, translation
shared tasks at the Conference on Machine Trans-
lation (WMT) (Bojar et al., 2018) generally test
translation between a given language pair with two
portions of data combined to make up the overall
test set. Portion (a) of the test data (accounting
for approximately 50% of sentences) is made up
of text that originated in Chinese that was human-
translated into English, while portion (b) (i.e. the
remaining 50%), was translated in the opposite
direction, originating in English with manual trans-
lation into Chinese. The motivation for creating the
test data in this way is to create test sets for both
directions simultaneously (so at no extra cost).1

Although translationese has been cited as a likely
confound in MT evaluation results in the past (Lam-
bersky et al., 2012; Toral et al., 2018; Läubli et al.,
2018), to the best of our knowledge, no detailed
investigation into the impact of translationese on
the accuracy of MT evaluation has been reported
to date. With this aim, we examine the degree to
which translationese phenomena may impact hu-
man and automatic evaluation results in MT. We
firstly examine past results of WMT shared tasks,
a main venue for MT evaluation, and reveal that
although system rankings are overall very similar
for human evaluation of forward and reverse test
data, in a small number of cases system rankings
diverge to a more serious degree. For example, for
Turkish-English translation at WMT-18 forward
and reverse system rankings correlate at only r =
0.703 in one case. Apart from human evaluation,

1WMT news task ceased employing reverse-created test
data in 2019, motivated by the analysis provided in this current
work published in an earlier archival version (Graham et al.,
2019).
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much more concerning is the divergence in forward
and reverse rankings when BLEU is relied upon for
evaluation of systems, where the correlation can be
as low as 0.106 in the worst case.

Subsequently, we provide a reassessment of a
human evaluation previously criticized for includ-
ing reverse-created test data that claimed human
parity of Chinese to English MT. We reveal insights
into additional potential sources of inaccuracy of
conclusions beyond the presence of translationese
with the aim of preventing future inaccuracies.

2 Related Work

Hassan et al. (2018) provide one of the earliest
claims in MT of systems achieving human-parity in
terms of the quality of translations. The reliability
of these claims was quickly contested in follow-
up studies by Läubli et al. (2018) and Toral et al.
(2018), who both drew attention to the 50/50 set-up
of test data creation, highlighting the inclusion of
reverse-created test data as a likely confound. In
their repeat of the human evaluation of the transla-
tions produced by Hassan et al. (2018), both Läubli
et al. (2018) and Toral et al. (2018) used only test
data that originated in the source language.

Inspired by this work, other authors considered
the effect of the 50/50 set-up on evaluation us-
ing WMT data. Edunov et al. (2019) questioned
whether improvements in performance due to back-
translation were just an artifact of the test set con-
struction. They found that, whilst back-translation
had a disproportionately large positive effect on
BLEU for reverse-created test sets, human eval-
uation showed that back-translation did indeed
provide robust improvements to MT for forward-
created text. Related to this, Freitag et al. (2019)
also showed BLEU to be misleading on the reverse-
created part of the test sets, when analysing why
their automatic post-editing (APE) method pro-
duced improved translations according to human
evaluation, but not according to BLEU. Given the
concern in the community about using reverse-
created test sets, the organisers of the WMT19
news translation task used only forward-created
sentences in all their test sets (Barrault et al., 2019).
In this current paper we provide detailed evidence
to justify this decision.

We note that Zhang and Toral (2019) also pro-
vide analysis of the effect of reverse-created test
sets on WMT evaluation campaigns. However they
focus only on the effect of translationese with re-

spect to human evaluation, without considering its
differing effect on automatic evaluation. Also, they
do not consider the problem of statistical power in
human evaluation, which we raise below.

The use of reverse-created test sets was not the
only concern raised by Läubli et al. (2018) and
Toral et al. (2018). Both used more context than
the original sentence-level evaluation in Hassan
et al. (2018), Läubli et al. (2018) now asking hu-
man judges to assess entire documents, and Toral
et al. (2018) involving assessment of MT output
sentences in the order that they appeared in orig-
inal documents. Furthermore, in contrast to the
use of Direct Assessment (Graham et al., 2016)
by Hassan et al. (2018), both reassessments used
relative ranking, a method formerly used in WMT
for evaluation (Callison-Burch et al., 2007, 2008,
2009, 2010, 2011, 2012; Bojar et al., 2013, 2014,
2015, 2016), but now abandoned, partly due to low
inter-annotator agreement.

Therefore, although both re-evaluations im-
proved the methodology employed in two respects,
by eliminating reverse-created test data and includ-
ing more context, both potentially include other
sources of inaccuracy, such as lack of reliability
of human judges when human evaluation takes the
form of relative ranking.

Furthermore, Toral et al. (2018) employ
Trueskill to reach the conclusion that the MT sys-
tem in question has not achieved human perfor-
mance, and although Trueskill has been used in
past WMT evaluations to produce system rankings,
its aim is to minimize the number of judgments
required to produce those rankings when resources
are limited. So results may not be directly compara-
ble with results of standard statistical significance
tests, now current practice at WMT evaluations.

Finally, neither Toral et al. (2018) nor Läubli
et al. (2018) discuss statistical power of signifi-
cance tests used to distinguish the performance of
system and human, an important aspect of evalua-
tion and one of particular importance with respect
to evaluations that aim to investigate claims of hu-
man parity, where Type II error could result in false
claims.

Besides criticisms already made of the human
evaluation in Hassan et al. (2018), an additional
aspect of importance not yet highlighted is the pro-
portion of distinct translations that were included in
the original human-parity evaluation of systems, a
consideration that also relates strongly to the ques-
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tion of statistical power. In most MT human eval-
uations, it is not feasible to evaluate the full test
set of sentences for all systems and it is common
to instead evaluate a sample of translations, usu-
ally drawn at random from the test data. In cur-
rent WMT evaluations, for example, translations
of all test sentences produced by all participating
systems are pooled and a random sample is human-
evaluated. This method ensures that as great a
number as possible of distinct test sentences are ex-
amined. Alongside system performance estimates,
WMT also reports the number of distinct test sen-
tences evaluated, n, and it is this number that they
consider the sample size used for statistical signifi-
cance tests subsequently used to draw conclusions
about which competing systems outperform others.
For example, all else being equal, a difference in
system performance estimates for a pair of systems
computed from a larger set of distinct translations
is interpreted as more reliable.

FW
D

Ave. z n N System

67.1 0.185 92 828 Reference-HT
64.8 0.048 92 828 Combo-5
64.3 0.042 92 828 Combo-6
64.3 0.023 92 828 Combo-4
64.1 0.020 92 828 Reference-PE
61.1 −0.144 92 828 Reference-WMT

56.2 −0.345 92 828 Sogou

50.9 −0.580 92 828 Online-A-1710
48.5 −0.717 92 828 Online-B-1710

R
E

V

Ave. z n N System

73.8 0.434 89 801 Combo-6
73.2 0.393 89 802 Combo-5
72.8 0.392 89 801 Combo-4

70.3 0.256 89 801 Reference-PE
70.0 0.252 89 801 Reference-HT
68.8 0.167 89 801 Sogou

63.0 −0.089 89 801 Reference-WMT
60.0 −0.214 89 801 Online-B-1710
61.1 −0.217 89 802 Online-A-1710

B
O

T
H

Ave. z n N System

69.0 0.235 181 1,629 Combo-6
68.5 0.218 181 1,629 Reference-HT
68.9 0.218 181 1,630 Combo-5
68.5 0.204 181 1,629 Combo-4
67.1 0.136 181 1,629 Reference-PE

62.4 −0.093 181 1,629 Sogou
62.0 −0.117 181 1,629 Reference-WMT

55.9 −0.402 181 1,630 Online-A-1710
54.1 −0.469 181 1,629 Online-B-1710

Table 1: Results of Hassan et al. (2018) for forward, re-
verse and both test set creation directions. N = number
of human judgments; n = number of distinct transla-
tions, Reference-HT = human translations created by
(Hassan et al., 2018), Reference-PE = post-edited on-
line MT system; Reference-WMT = original WMT ref-
erence translations; horizontal lines denote clusters ac-
cording to Wilcoxon rank sum test at p < 0.05.

Other MT human evaluations, despite claims of
following WMT human evaluation methodology,
have diverged from this method of sample size
computation, however, including the human-parity
evaluation of Hassan et al. (2018) and Läubli et al.
(2018). For example, although a large sample of hu-
man judgments is reported as n≥ 1,827 per system
in Hassan et al. (2018), firstly this number in fact in-
cluded quality control check translations, generally
removed from data before computing sample sizes.
More importantly however, very high numbers of
repeat evaluations of the same translations were
included in the human-parity evaluation of Hassan
et al. (2018). In other words, a very low number of
distinct test sentences were in fact human evaluated
despite reporting a large sample size. The method
of computing sample size therefore diverges from
that reported of WMT evaluations in a small but
important way. The sample size reported instead
corresponds to the total number of human ratings
collected as opposed to distinct test sentences (as in
WMT evaluations). In this current work, we make
this important distinction explicit by referring to
the number of distinct test sentences evaluated as n
and the number of human judgments collected as
N . We also recommend this distinction be made
and adopted as common practice in future human
evaluations of MT or that the number of distinct
translations (as opposed to the number of human
evaluations) be reported as the sample size.

Table 1 shows results reproduced from the Has-
san et al. (2018) data set, where we now report both
the number of human judgments collected, N , and
the number of distinct test sentences included, n, in
addition to adding separate results for forward and
reverse-created test data. Only when tested on the
less legitimate reverse direction data does MT now
appear to outperform human translation. Nonethe-
less, when interpreting results in Table 1, it is im-
portant to remember, however, that the reliability of
even the conclusions drawn from forward-created
test data only is still uncertain however, due to the
small n, as only 92 distinct translations were in fact
included in the evaluation claiming human parity.
It remains a possibility that, for example, had the
number of distinct test sentences evaluated been
higher, distinct conclusions would also be drawn.

We therefore rerun the evaluation using the origi-
nal translation data included in Hassan et al. (2018)
with entirely up-to-date WMT human evaluation
methodology in addition to ensuring that a suf-
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Figure 1: Differences in human evaluation Direct Assessment (DA) scores for test sentences created in the reverse
direction to testing and those created in the same/forward direction to testing broken down by language pair,
showing that reverse human evaluation scores higher than forward ones in almost all cases.

ficiently large sample of distinct translations are
assessed by human judges. We also take into ac-
count the very legitimate criticism made by both
Toral et al. (2018) and Läubli et al. (2018) and
include document-level context in the human eval-
uation. Furthermore, since no previous evaluation
has included statistical power analysis, prior to run-
ning our own human evaluation, we examine the
power of significance tests to estimate a suitable
sample size to decrease the likelihood of Type II
error leading to conclusions of human parity due to
the application of a low powered test.

Additionally, we examine potential issues for
MT evaluation when test data created in the reverse
direction to testing is included. Despite being iden-
tified by Toral et al. (2018) and Läubli et al. (2018)
as a serious cause of concern in MT evaluations, to
the best of our knowledge no previous study exists
that examines in detail the degree to which reverse-
created test data may have skewed past results. The
sections that follow therefore include an investiga-
tion into the issue of translationese in MT evalua-
tion, in addition to a re-evaluation of Hassan et al.
(2018) data with all potential sources of criticism,
in terms of test data and evaluation methodology,
now taken into account and corrected.

3 Translationese

Using reverse-created test data is thought to unreal-
istically decrease the difficulty of MT evaluations
(Toral et al., 2018; Läubli et al., 2018), because

in real-world MT scenarios, input text is unlikely
to very often comprise text that has already been
translated from the target language. We therefore
compare results of systems when test data is split
according to the creation direction and examine
differences in scores for systems in terms of both
human and automatic metrics.

3.1 Human Evaluation
In order to examine differences in human evalua-
tion results when translationese is in test data, we
firstly examine WMT-17 and WMT-18 systems
and compute two separate human evaluation scores
for each system. For each individual system, we
compute its forward Direct Assessment (DA) score,
comprising the average DA score computed only
for test sentences that were created in the same
direction as testing, and a corresponding reverse
DA score from test data created in the opposite di-
rection to testing. Then, to examine the extremity
to which MT human evaluation results may differ
when systems are tested in the reverse as opposed
to forward direction, we subtract a given system’s
forward DA score (expected to be lower than its
reverse counterpart) from its reverse DA score (ex-
pected to be higher than its forward counterpart).
This provides the difference in human DA scores
for each system, with positive differences expected
in general since reverse-created test data is hypothe-
sised to be an artificially easier test for MT systems.

Figure 1 shows the distribution of DA score dif-
ferences (reverse DA − forward DA) for all sys-
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Figure 2: Differences in BLEU scores for systems participating in WMT-15–WMT-18 news translation task com-
puted for test sentences created in the reverse direction to testing and those created in the same/forward direction
to testing broken down by language pair, showing a mix of positive and negative differences in BLEU scores
depending on test set creation direction.

tems participating in WMT-17 and WMT-18 news
translation shared task broken down by language
pair, where positive differences for systems indi-
cate a higher human evaluation score when systems
are tested in the reverse direction relative to the cor-
responding forward direction DA score.

As can be seen from the box plot in Figure 1
almost all reverse DA scores are higher than equiv-
alent forward DA scores. This confirms the sus-
picion that absolute human evaluation results are
in general higher when test data is created in the
reverse direction to testing.

3.2 BLEU

Besides human evaluation, the performance of MT
systems is often measured using automatic metrics,
the most common of which remains to be the BLEU
score (Papineni et al., 2002). Figure 2 shows a box
plot of absolute differences in BLEU scores for
systems (reverse BLEU − forward BLEU) partici-
pating in WMT news translation tasks from 2015
to 2018. Counter expectation there is a clear mix
of positive and negative BLEU score differences
for several language pairs.

Comparison of BLEU scores is not as straight-
forward as human evaluation however, and there
are further consideration to be made before draw-
ing conclusions from the mix of positive and neg-
ative absolute BLEU score differences described
above. For example, the fact that splitting the test

set into forward and reverse directions creates two
test sets comprised of distinct sentences is likely
to impact how each distinct BLEU score should
be interpreted, as BLEU is not a simple arithmetic
average of sentence scores (like human evaluation
DA scores).

3.3 Relative Differences

Besides absolute differences in BLEU scores for in-
dividual systems, we also consider how differences
correspond to one another for pairs of systems com-
peting in the same competition. For example, for
an individual competition, the problems associated
with test data creation are more problematic if they
occur differently for different systems and less se-
vere if they affect all systems in the same way, as
system scores are mainly interpreted relative to one
another.

The scatter plot in Figure 3 shows relative dif-
ferences in BLEU scores when we change from
forward to reverse test data for all pairs of systems
participating in WMT-15 to WMT-18, as well as
differences in human DA scores for systems partic-
ipating in WMT-17 to WMT-18. The absence of
systems in the upper-left and lower-right quadrants
reassuringly shows that although extreme changes
in BLEU and human scores do occur when test
set creation direction is altered, the changes are at
least somewhat systematic in the sense that when
a difference in scores occurs (a drop or increase
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Figure 3: Differences in BLEU and human scores for
pairs of systems participating in WMT-15 to WMT-18
and WMT-17 to WMT-18 respective news translation
tasks for test sentences created in the reverse and for-
ward directions.

when we change from forward to reverse test data),
it occurs similarly for pairs of systems participating
in the same competition. However, although there
is a diagonal orientation in the plot, it still is some-
what worryingly broad and it remains possible that
inclusion of reverse test data could bias BLEU and
human scores in different ways for different types
of systems.

3.4 System Rankings

Figure 4 shows Pearson, Spearman and Kendall’s
τ correlation of forward and reverse scores for sys-
tems participating individual competitions from
WMT-15–WMT-18 terms of both BLEU and hu-
man evaluation. As can be seen, the correspon-
dence between forward and reverse rank correlation
of systems according to BLEU varies considerably
across different evaluation test sets, from as low as
a τ of 0.2 (tr-en newstest2018), where BLEU score
rankings are extremely different depending on test
data creation direction, up to a τ of 1.0, where rank
correlation is identical (cs-en; fi-en newstest2017;
fi-en; en-cs newstest2018).

In overall summary, our analysis of differences
in both BLEU and human evaluation scores re-
veal differences in system rankings when tested on
reverse and forward-created test data, differences
substantial in some cases. Subsequently we have
confirmed the validity of suspicions about lack of
reliability of test data raised by Toral et al. (2018)
and Läubli et al. (2018) caused by inclusion of
reverse-created test data. However, as stated previ-
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Figure 4: Pearson, Spearman and Kendall’s τ cor-
relation of forward and reverse BLEU and HUMAN
scores of data for all available systems from WMT-15
– WMT-18 news translation task for BLEU and WMT-
17–WMT-18 for human assessment.

ously, neither reassessments of Hassan et al. (2018)
ticked all boxes in terms of valid human evaluation
methodologies and in the section that follows we
therefore once again reassess the original evalua-
tion.

4 Re-evaluation of Human Parity Claims

As described in detail in Section 2, past re-
evaluations of human parity claims were hampered
by sub-optimal test settings. In our re-evaluation,
we firstly carry out statistical power analysis so
that, in the case of encountering any ties between
systems or indeed human and system, tests used
to draw conclusions will have sufficient statisti-
cal power to avoid human-parity claims that in
fact simply correspond to Type II error. Statistical
power is of particular importance when considering
document-level evaluation due to the fact that gath-
ering ratings of documents as opposed to sentences
requires substantially more annotation time and for
this reason is highly likely to result in a reduction
in the number of assessments collected in any eval-
uation. For example, Läubli et al. (2018) included
as few as 55 documents in their re-evaluation of
Hassan et al. (2018). Our concern about a poten-
tial substantial reduction in sample size in future
document-level evaluations is well-founded there-
fore, especially considering standard segment-level
MT human evaluations commonly include a sam-
ple of 1,500 segments. In the case of Läubli et al.
(2018) this corresponds to an extreme reduction of
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approximately 96% to the sample size. Since the
very nature of the question being investigated in-
volves a potential tie between human and machine,
such a small sample size is a serious risk to the
reliability of conclusions drawn simply due to its
impact in terms of statistical power.

As a rough guide to what constitutes sufficient
statistical power, we borrow the five-eighty conven-
tion from the behavioural sciences that provides a
balance between Type I versus Type II error, where
significance and power levels are set at 0.05 and
0.8 respectively (Cohen, 1988). Table 2 shows the
statistical power, the probability of identifying a
significant difference when one exists, of the statis-
tical test applied in WMT evaluations, Wilcoxon
rank-sum test, for a range of effect and sample sizes
(n), where for the purpose of the test the appropri-
ate effect size is the probability of the translations
of system A being scored lower than those of sys-
tem B. As shown in Table 2 for the usual sample
size employed in WMT evaluations, 1,500, statis-
tical power even for closely performing systems,
where the effect size, the probability of the transla-
tions of system A being scored lower than those of
system B, is 0.47, statistical power remains above
0.8. For such pairs of systems, however, if we
were to employ the smaller sample size of 55 docu-
ments, as in Läubli et al. (2018), the power of the
test to identify a significant difference falls to as
low as 0.081, approaching one tenth of acceptable
statistical power levels.2

A good compromise between fully document-
level evaluation, where only ratings of documents
are collected, and fully segment-level evaluations,
in which segments are presented to human judges
in isolation of the document, is collection of rat-
ings of segments with the wider document context
available to the human assessor and have the seg-
ments evaluated in their original order. In this way,
a sufficient sample size can still be achieved to en-
sure appropriate levels of statistical power with the
added aim of human judges being able to take into
account the quality of translations within the wider
document context.3

We therefore plan our re-evaluation as follows:
(i) collect segment ratings for documents produced

2In Läubli et al. (2018) the Sign test was used as opposed
to Wilcoxon rank sum and has similar statistical power for
such an effect size.

3This approach is not that of Toral et al. (2018), where
document context was only available in for the source input
document as opposed to MT output document.

by a single system within the correct document
context; (ii) aim to collect direct assessments of
a sufficient number of translations exceeding the
minimum acceptable sample size in terms of power
analysis, approximately 385 distinct translations;
(iii) use n, the number of distinct translations as
opposed to repeat human assessments as the sam-
ple size; (iv) employ Direct Assessment, the most
up to date technology for this purpose and that em-
ployed by WMT for the official results since 2017,
a method shown to produce highly repeatable re-
sults; (v) only employ forward-created test data;
(vi) only draw conclusions specific to Chinese to
English translation and news domain; (vii) produce
clusters with a standard significance test, Wilcoxon
rank-sum test.

4.1 Re-evaluation Results
Direct Assessment (DA) HITs were set up and run
as in WMT human evaluations on Mechanical Turk
but with the distinction of segments being evaluated
in the correct order in which they appeared in a doc-
ument, comprising an initial set of results, which
we refer to as segment rating + document context
(SR+DC). In addition to the segment rating, work-
ers were additionally shown entire documents and
asked to rate them, providing a secondary set of
results for comparison purposes. We refer to these
fully document-level results as document rating +
document context (DR+DC) configuration. As is
usual in DA evaluations, translations were rated in
a 0–100 scale and quality control was applied.

131 workers participated producing a total of
13,214 assessments of translations, of which 6,606
(49.99%) were from workers who passed DA’s qual-
ity control checks. Table 3 shows results of our re-
evaluation4 of the top systems originally included
in Hassan et al. (2018), where REF-HT is the origi-
nal set of human translations produced by Hassan
et al. (2018) themselves and against which human-
parity of MT was claimed, while REF-PE is ma-
chine translated outputs that have been post-edited
by humans, and Combo-6 is the best-performing
system in Hassan et al. (2018).

Results when segments are rated by human
judges within the correct document context (Seg-
ment Rating + Document Context) show that the
DA score achieved by the human reference trans-
lation, REF-HT, is significantly higher than both

4All evaluation data is publicly available at
https://www.scss.tcd.ie/~ygraham/
emnlp2020-translationese

https://www.scss.tcd.ie/~ygraham/emnlp2020-translationese
https://www.scss.tcd.ie/~ygraham/emnlp2020-translationese
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effect size

n 0.330 0.340 0.350 0.360 0.370 0.380 0.390 0.400 0.410 0.420 0.430 0.440 0.450 0.460 0.470 0.480 0.490

55 0.886 0.842 0.788 0.725 0.659 0.586 0.512 0.438 0.367 0.300 0.243 0.188 0.144 0.111 0.081 0.066 0.056
330 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.995 0.982 0.947 0.878 0.763 0.604 0.427 0.265 0.144 0.073
385 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.992 0.971 0.924 0.824 0.672 0.485 0.302 0.159 0.077
440 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.986 0.951 0.870 0.730 0.538 0.338 0.176 0.081

1485 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.965 0.809 0.471 0.156
1540 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.971 0.821 0.485 0.161
1595 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.975 0.838 0.499 0.164

Table 2: Statistical Power of two-sided Wilcoxon Rank Sum Test for a range of sample and effect sizes; power ≥
0.8 highlighted in bold.

Segment Rating + Document Context

Ave. Ave. z n N System

80.3 0.143∗ 902 1811 REF-HT
76.6 0.038 904 1646 REF-PE
76.5 0.036 863 1805 Combo-6

Document Rating + Document Context

Ave. Ave. z n N System

78.9 0.184 114 216 REF-HT
77.5 0.090 107 218 REF-PE
76.0 0.050 106 238 Combo-6

Table 3: Re-evaluation of human-parity-claimed Chi-
nese to English system of Hassan et al. (2018); ∗ de-
notes system that significantly outperforms all lower
ranked systems according to a two-sided Wilcoxon
rank-sum test p < 0.05

REF-PE and Combo-6, agreeing with results of
both Läubli et al. (2018) and Toral et al. (2018).
Since this approach has a large enough sample size
to ensure sufficient statistical power, the tie be-
tween REF-PE and Combo-6 is a legitimate one
however. Although this tie does indeed indicate
high performance of Combo-6, since REF-PE is in
fact post-edited MT output however, this tie does
not provide legitimate evidence to support a human-
parity claim.

Although we already know from the power anal-
ysis carried out for planning the current evaluation
that fully document-level evaluations in which hu-
man assessors are required to rate documents (as
opposed to segments) will encounter problems in
terms of sufficient statistical power when ties oc-
cur, we nonetheless run this kind of evaluation for
demonstration purposes. Document Rating + Doc-
ument Context results in Table 3 do indeed pro-
duce what appears to be a statistical tie between the
three sets of outputs as no “system” significantly
outperforms all lower ranking ones. However, a
conclusion of human parity cannot legitimately
be claimed from this tie due to the low statisti-
cal power of the test caused by the small sample
of documents that were rated. Ties in this case do

not indicate human-parity but simply that the test
is too weak to identify significant differences.

In summary, similar to Toral et al. (2018) and
Läubli et al. (2018), our results show evidence that
the original system, Combo-6, was outperformed
by human translation. It should be noted however
that from our results it cannot be inferred that ma-
chine translation in general has not yet reached
human performance but simply that the system that
originally claimed human-parity in fact did not
achieve it, as tested on WMT-17 newstask data.

5 Conclusion

We explore issues relating to the reliability of ma-
chine translation evaluations. Firstly, we provide
a detailed analysis of how the presence of transla-
tionese phenomena can adversely affect machine
translation results. In terms of the legitimacy of
machine translation evaluation results, our analysis
provides sufficient evidence that translationese is a
problem for evaluation of systems, in particular in
terms of comparison of system performance with
automatic metrics such as BLEU. This results in
our first recommendation in future MT evaluations
to avoid the use of source side test data that was
created via human translation from another lan-
guage. We provided guidance in relation to sample
size and statistical power to help planning future
human evaluations of MT, particularly relevant to
document-level human-parity investigations. This
guidance will help to avoid false conclusions due
to the application of low powered statistical tests.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 workshop on statistical machine translation. In
Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 1–46, Lisbon, Portugal.
Association for Computational Linguistics.
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