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Abstract

The supervised models for aspect-based sen-
timent analysis (ABSA) rely heavily on la-
beled data. However, fine-grained labeled data
are scarce for the ABSA task. To alleviate
the dependence on labeled data, prior works
mainly focused on feature-based adaptation,
which used the domain-shared knowledge to
construct auxiliary tasks or domain adversarial
learning to bridge the gap between domains,
while ignored the attribute of instance-based
adaptation. To resolve this limitation, we pro-
pose an end-to-end framework to jointly per-
form feature and instance based adaptation for
the ABSA task in this paper. Based on BERT,
we learn domain-invariant feature representa-
tions by using part-of-speech features and syn-
tactic dependency relations to construct aux-
iliary tasks, and jointly perform word-level
instance weighting in the framework of se-
quence labeling. Experiment results on four
benchmarks show that the proposed method
can achieve significant improvements in com-
parison with the state-of-the-arts in both tasks
of cross-domain End2End ABSA and cross-
domain aspect extraction.

1 Introduction

Aspect extraction and aspect sentiment classifica-
tion are two important sub-tasks in Aspect Based
Sentiment Analysis (ABSA) (Liu, 2012; Pontiki
et al., 2016), which aim to extract aspect terms and
predict the sentiment polarities of the given aspect
terms, respectively. Since these two sub-tasks have
been well studied in the literature, a number of re-
cent studies focus on the End2End ABSA task by
employing a unified tagging scheme to tackle the
two sub-tasks in an end-to-end manner (Mitchell
et al., 2013; Zhang et al., 2015; Li et al., 2019a).
The unified tagging scheme fuses aspect boundary
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tags {B, I, O} and sentiment polarities {POS, NEG,
NEU} together, and formulates End2End ABSA as
a sequence labeling problem. For example, given
a sentence “The price is reasonable, although the
service is poor.”, the End2End ABSA task aims to
jointly extract aspect terms and detect sentiment
polarities over them. The extracted pairs in this ex-
ample are {“price”: Positive; “service”: Negative}.
However, these existing studies heavily rely on su-
pervised learning over a large amount of labeled
data, which is usually hard to obtain for ABSA
due to the intensive nature of human annotation.
Therefore, it will be very attractive to explore the
End2End ABSA task in a cross-domain setting,
which allows us to train a robust ABSA model for
a resource-poor target domain based on enough
annotated data in a resource-rich source domain.

Traditional domain adaptation methods primar-
ily focus on coarse-grained sentiment classifica-
tion (Blitzer et al., 2007; Pan et al., 2010; Glorot
et al., 2011; Bollegala et al., 2012; Xia et al., 2013;
Yu and Jiang, 2016; Ganin et al., 2016; Li et al.,
2018b). Most of these methods can be grouped into
two categories: feature-based domain adaptation
and instance-based domain adaptation. Feature-
based methods focus on finding a new feature rep-
resentation which could reduce domain discrep-
ancy. Instance-based methods aim to re-weight
training samples in source domain which essen-
tially attempts to assign higher weights to instances
similar to the target domain, and lower weights to
instances different from the target domain.

In contrast, due to the difficulty in fine-grained
domain adaptation, only a few approaches have
been proposed for cross-domain ABSA. Most
of them explored cross-domain ABSA from the
feature-based adaptation perspective, aiming to
induce domain-invariant representations for each
word. Specifically, Ding et al. (2017) and Wang
and Pan (2018) proposed to use domain-shared
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syntactic knowledge to construct auxiliary tasks to
reduce domain disparity. More recently, Li et al.
(2019b) used the memory network to model the
syntactic relations between words and designed a
selective adversarial learning strategy to achieve
word-level adaptation. However, all these methods
are still based on traditional neural network archi-
tectures. As we all know, with the recent trend of
pre-training in NLP (Peters et al., 2018; Radford
et al., 2018; Devlin et al., 2018), many pre-trained
text encoders such as BERT have demonstrated
their strong capability for domain-invariant rep-
resentation learning, which poses new challenges
for domain adaptation. Based on our preliminary
experiments, we find that simply using BERT with-
out domain adaptation has already obtained indis-
tinguishable performance compared with previous
domain adaptation methods. Therefore, it will be
more attractive to extend these feature-based adap-
tation approaches to pre-trained models and further
improve the domain adaptation performance.

Apart from the feature-based domain adaptation
methods, Jiang and Zhai (2007) pointed out the
importance of performing instance-based adapta-
tion for different NLP tasks. As revealed by the
theoretical analysis in Jiang and Zhai (2007), the
domain discrepancy mainly comes from feature
mismatches and instance mismatches, and needs
to be jointly modeled from two attributes. How-
ever, previous studies only demonstrated the im-
portance of instance-based domain adaptation in
coarse-grained sentiment classification (Xia et al.,
2014), and it is still unclear how to perform in-
stance adaptation for the ABSA task.

To address the two challenges mentioned above,
we first utilize BERT to learn domain-invariant fea-
tures for the ABSA task, followed by proposing
an instance weighting method for cross-domain
ABSA. Finally, we integrate them into an end-to-
end framework to jointly perform feature and in-
stance adaptation. Specifically, for feature-based
adaptation, we use the domain-shared part-of-
speech information and dependency relations as
self-supervised signals to enhance BERT to learn
domain-invariant representation for cross-domain
ABSA. For instance-based adaptation, since ABSA
is typically modeled as a word-level prediction task,
we propose to leverage a domain classier to dynami-
cally learn an importance weight for each word and
re-weight different words from the source domain
during supervised training. Finally, we propose a

unified framework to jointly perform feature and
instance-based adaptation via sequential learning
and joint learning, respectively. Experimental re-
sults on four benchmark datasets show that our
method can significantly improve the performance
of cross-domain End2End ABSA and cross-domain
aspect extraction, and we further carry out ablation
studies to quantitatively measure the effectiveness
of each component in our unified framework.

The main contributions of this paper can be sum-
marized as follows:
• To the best of our knowledge, we are the

first to address both tasks of cross-domain
End2End ABSA and cross-domain aspect ex-
traction based on BERT.
• We propose a Unified Domain Adaptation

(UDA) framework encompassing both feature-
based adaptation and instance-based adapta-
tion, which can significantly improve the per-
formance of the fine-tuned BERT model with-
out domain adaptation.
• Compared with the state-of-the-art domain

adaptation method, our UDA approach gains
an average improvement of 6.92% on Micro-
F1 for cross-domain End2End ABSA.

2 Problem Statement

Following Li et al. (2019b), we model both the
End2End ABSA task and the aspect extraction
task as sequence labeling problems. The input
is a sequence of tokens w = {w1, w2, ..., wT },
and the output is a sequence of labels y =
{y1, y2, ..., yT }. For the End2End ABSA task, yi ∈
{B-POS, I-POS, B-NEG, I-NEG, B-NEU, I-NEU,
O}; for the aspect extraction task, yi ∈ {B, I, O}.
In this paper, we focus on unsupervised domain
adaptation, where labeled data are not available in
the target domain. Given a set of labeled tokens
from a source domain DS = {(wi

s, y
i
s)}

NS
i=1, and

a set of unlabeled instances from a target domain
DU = {wi

u}
NU
i=1, our goal is to predict token

labels for target test instances: yTi = ft(w
i
t),

DT = {wi
t}

NT
i=1 .

The essential cause of domain adaptation is
that the data distribution of the source domain
and that of the target domain are different, i.e.,
Ps(w, y) 6= Pt(w, y). The optimal model f∗t for
the target domain could be obtained by minimizing
the following expected loss:

f∗t = argmin
f∈H

∫
(w,y)

Pt(w, y)L(w, y, f) (1)
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In unsupervised domain adaptation, since labeled
data are not available in the target domain. We
therefore minimize the empirical loss of data drawn
from the source domain instead:

f∗t = argmin
f∈H

∫
(w,y)

Pt(w, y)L(w, y; f)

= argmin
f∈H

∫
(w,y)

Pt(w, y)

Ps(w, y)
Ps(w, y)L(w, y; f)

≈ argmin
f∈H

1

Ns

Ns∑
i=1

Pt(w
s
i , y

s
i )

Ps(ws
i , y

s
i )
L(ws

i , y
s
i ; f)

= argmin
f∈H

Ns∑
i=1

Pt(y
s
i |ws

i )Pt(w
s
i )

Ps(ysi |ws
i )Ps(ws

i )
L(ws

i , y
s
i ; f)

(2)
According to the last line in Equation 2, as P (w, y)
can be factored into P (y|w)P (w), an ideal domain
adaptation model consider the following two at-
tributes:

• feature-based adaptation, which needs to find
a general feature representation w under
which Pt(y|w)

Ps(y|w) → 1;

• instance-based adaptation, which uses r(w) =
Pt(w)
Ps(w) as weights for sampling the instances
in the source domain.

However, most previous domain adaptation meth-
ods in ABSA only presume feature-based adap-
tation which leverage auxiliary tasks or domain
adversarial networks to learn domain-invariant fea-
ture representations while ignore instance-based
adaptation. In this work, we take both attributes
into consideration within a joint framework based
on BERT for domain adaptation of the ABSA task.

3 Approach

Overview: As discussed above, the domain dif-
ferences mainly come from two attributes, namely
feature discrepancy and instance discrepancy.
Therefore, we approach cross-domain End2End
ABSA and cross-domain aspect extraction with a
Unified Domain Adaptation (UDA) framework en-
compassing two components, named feature-based
and instance-based domain adaptation components,
which are showed in Figure 1. To reduce the fea-
ture discrepancy, we introduce two auxiliary tasks
based on the domain-shared knowledge. To reduce
the instance discrepancy, we perform word-level in-
stance weighting to focus more on important words
for the target domain. Finally, we unified the two
components in a sequential and joint manner.

3.1 Feature-Based Domain Adaptation

Structural correspondence learning (Ando and
Zhang, 2005; Blitzer et al., 2007) is the core idea of
feature-based domain adaptation, whose goal is to
use the structural correspondence to narrow the gap
between domains. As a self-supervised learning
mechanism based on large-scale corpus, the mask
language model task of BERT is essentially a struc-
tural correspondence learning method. However,
it does not use pivot words as masked objects, but
randomly selects words to mask and predict. Based
on our preliminary observations, in both tasks of
End2End ABSA and aspect extraction, although as-
pect words vary a lot across domains, there are still
some universal language structure correspondence
between domains such as part-of-speech tags and
dependency relations, which can serve as pivots to
connect the domains. Nevertheless, this informa-
tion has not been explicitly captured by BERT.

Motivated by this, we propose to use part-of-
speech information and dependency relations as
self-supervised signals to fine-tune BERT to learn
the structural correspondence between domains for
cross-domain ABSA. The overall architecture for
our feature-based domain adaptation component is
shown in Figure 1(a).

3.1.1 Masked POS Tag Prediction
We first convert the word sequences w =
{w1, w2, ..., wT } into continuous embedding e =
{e1, e2, ..., eT }. The embedding of each word
is the sum of four type embeddings ei =
[ti, si, pi, tagi]. ti ∈ Rd is the word embedding
of wi. si ∈ Rd is the segment embedding, which
is used as a segmentation mark between sentences.
pi ∈ Rd is the embedding for the absolute position
of a word. tagi ∈ Rd is the POS tag embedding.

The first three kinds of embedding are the same
as those defined in Devlin et al. (2018), and are
initialized using the pre-trained BERT embedding.
The POS tag embedding matrix is randomly ini-
tialized and trained with unlabeled data from the
source and target domains. Since BERT uses
sub-word tokenizer, we assume that sub-words
share the same POS tags. The word embed-
ding sequences e = {e1, e2, ..., eT } were con-
verted into a context-aware representation H =
{h1, h2, ..., hT } through a multi-layer transformer
as follows:

H = transformer(E)
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(a) Feature-Based Domain Adaptation Component (b) Instance-Based Domain Adaptation Component

Figure 1: Two components in our Unified Domain Adaptation (UDA) approach. Figure 1(a) shows two auxiliary
tasks we proposed to learn a domain invariant representation for cross-domain ABSA. Figure 1(b) shows an il-
lustration of our word-level instance weight method. The black line represents the flow of training data from the
source domain to optimize Lm (Equation 10). The red line represents the unlabeled data from the source and target
domain, which is used to optimize Ld (Equation 8). The dotted line indicates that there is no back propagation
during training.

To prepare the input for masked POS tag predic-
tion task, we randomly select about 25% of tokens
and replaced the original tokens and POS tags with
[MASK]. After being encoded by transformer, the
masked feature in H is fed into the softmax layer,
and converted to the probability over POS tag types
pposi as follows:

pposi = softmax(Wphi + bp)

where pposi ∈ Rn tags, n tags is the number of
POS tag type, Wp and bp are the weight matrix and
bias vector of the softmax layer. We only use the
masked features for prediction and we use cross-
entropy loss for optimization:

Lpos =
∑
DU

T∑
i

I(i)l(pposi , yposi ) (3)

where I(i) is an indicator function, which is equal
to 1 if masked, otherwise 0, and yposi is the real
POS tag type of the i-th token.

3.1.2 Dependency Relation Prediction
To reconstruct the syntactic relation in H that is
useful for ABSA, we feed the context-aware repre-
sentation H to two non-linear transformation func-
tions to obtain Hhead = {hhead1 , hhead2 , ..., hheadT }
and Htail = {htail1 , htail2 , ..., htailT } as:

hheadi = tanh(W1hi + b1), (4)

htaili = tanh(W2hi + b2), (5)

where hheadi ∈ R
d
4 and htaili ∈ R

d
4 , and W1 and

W2 are learnable parameters. hheadi and htaili can
be viewed as the representations of the head token
and child token in the dependency tree, respec-
tively. Suppose the i-th and j-th words in the input
sequence are connected in the dependency tree and
represent the head node and the child node, re-
spectively. We use oij to predict their dependency
relation:

oij = [hheadi ;htailj ;hheadi − htailj ;hheadi � htailj ]

where [; ] indicates concatenation operation, − and
� indicate element-wise subtraction and multipli-
cation, respectively. The oij was converted into
pdepij by a softmax layer.

pdepij = softmax(Wdoij + bd)

where Wd ∈ Rd×narc is the weight matrix for re-
lation classification, and narc is the number of re-
lation classes. We use token pairs that are directly
connected in the dependency tree to construct train-
ing examples. I(ij) indicates whether token pairs
(i, j) have a direct edge in dependency tree or not.
If they are connected in the dependency tree, we
predict their dependency relation. The optimization
objective is as follows:

Ldep =
∑
DU

T∑
i

T∑
j

I(ij)l(pdepij , ydepij ) (6)
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We perform feature-based domain adaptation
through two auxiliary tasks, and optimize the fol-
lowing objective function for feature-based domain
adaptation:

Lfeature = Lpos + λLdep (7)

where λ is a trade-off hyper-parameter to control
the contributions of two tasks, and Lpos and Ldep

are defined in Equation 3 and Equation 6 respec-
tively.

3.2 Instance-Based Domain Adaptation
As analyzed above, instances-based domain adap-
tation aims to use pt

ps
to re-weight instances in the

source domain to reduce the gap across domains.
However, unlike the coarse-grained domain adapta-
tion, our fine-grained ABSA tasks are modeled as
sequence labeling tasks, which are essentially word-
level classification problems. Since each sentence
has domain-invariant words and domain-specific
words, we need to obtain the domain distribution
of each word and re-weight it at the word level.

Specifically, while training the main task, we
also train a word-level domain classifier based on
unlabeled data, whose goal is to identify whether
each word is from the source domain or the target
domain. The output of transformer H was then
send to a softmax layer to get the domain distribu-
tion probability of the i-th word wi as follows:

pDi = softmax(Wdhi + bd)

where pDi ∈ R|y
n d| is the domain distribution prob-

ability and yn d = {source, target}. The domain
classifier D is trained by the cross entropy loss
between pDi and the ground-truth yDi as follows:

Ld =
∑
DU

T∑
i=1

l(pDi , y
D
i ) (8)

Through the domain classifier D, we can get the
domain distribution of each word, and we use the
ratio of its target-domain probability to its source-

domain probability, i.e.,
pDi,t
pDi,s

, as the weight of each

word during training the main task. Since the train-
ing of domain classifiers will make it difficult to
generalize across domains, we cut off the gradient
back pass, so that Ld only optimizes the parame-
ters Wd and bd in the softmax layer. As shown in
Figure 1(b), when training D, the red dashed line
represents the feed-forward calculation, but there

is no gradient return. The main task is optimized
with the weighted cross entropy loss as follows:

pmi = softmax(Wmhi + bm) (9)

Lm =
∑
DS

T∑
i

αi ∗ l(pmi , ymi ) (10)

where αi (i.e., the weight of each word) is com-

puted based on the re-normalization over
pDi,t
pDi,s

of all

the T tokens, and the probability pDi,t and pDi,s are
obtained by the domain classifier D.

Although AD-SAL (Li et al., 2019b) also learns
an importance weight for each word, our method
is significantly different. First of all, AD-SAL still
essentially belongs to feature-based domain adapta-
tion, and our method belongs to instance-based do-
main adaptation. For AD-SAL, the goal is to learn
domain-invariant representations for each word
through domain adversarial learning. As aspect
words are the core of ABSA (this is also consistent
with our motivation), AD-SAL introduces aspect
attention weights in domain adversarial learning
to learn domain-invariant representations for as-
pect words. In contrast, our method uses domain
classifier to automatically learn the importance of
each word for the target domain, so that it pays
more attention to words (including aspect words
and opinion words) that are closer to the target
domain during the main task training process. Sec-
ondly, the training process of SAL is independent
of the main task. In contrast, in our method, the
weight of each word is learned through the domain
classifier, and the learning process is combined
with the main task, which will make the model au-
tomatically learn which words are more important
for the target domain and the main task.

3.3 Training Mechanism
As analyzed before, our work mainly contains
two components: feature-based and instance-based
component, which was corresponding to the two
attributes of domain adaptation respectively. To
dynamically learn a weight for the instance-based
component, Ld (Equation 8) and Lm (Equation 10)
update jointly. The training objective of instance-
based domain adaptation is as follows:

L = Lm + Ld (11)

The feature-based domain adaptation aims to
learn a shared feature space for the target domain,
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which could be trained separately from the main
task. Thus, we can merge the instance-based com-
ponent and the feature-based component in a se-
quential or joint training way.

Sequential Training: In the sequential training,
we first train the auxiliary tasks to learn a shared
feature space, and the training objective is given
in Equation 7. Based on the learned shared fea-
ture space, we then perform instance-based domain
adaptation, and the training objective is given in
Equation 11.

Joint Training: We can also merge the two com-
ponents in a joint way, i.e., training auxiliary tasks
and the main task in a multi-task manner. The
training objective is:

L = Lm + Ld + Lpos + λLdep (12)

As revealed by Ando and Zhang (2005) and Blitzer
et al. (2007), the success of the target task comes
from multiple related tasks to help discover com-
mon structures between domains. As they are
trained jointly, the information from auxiliary tasks
could be propagated to the main task.

4 Experiment

4.1 Data & Experiment Setup

Datasets: We conduct experiments on four
benchmark datasets: Laptop (L), Restaurant(R),
Device (D), and Service (S). L contains reviews
from the laptop domain in SemEval-2014 ABSA
challenge (Pontiki et al., 2014). Following the
setup in Li et al. (2019a), R is the union set of
the restaurant datasets from SemEval ABSA chal-
lenge 2014, 2015, and 2016 (Pontiki et al., 2014,
2015, 2016). D is a combination of device reviews
from Toprak et al. (2010) and S is introduced by Hu
and Liu (2004) containing reviews from web ser-
vices. Detailed statistics are shown in Table 1.

Settings & Implementation Details: We con-
duct experiments on 10 source→target pairs using
the four domains above. Following the setup in (Li
et al., 2019b), we removed D→L and L→D, as D
and L are similar. For each source→target pair,
the training data consists of the training data in
the source domain and the unlabeled training data
in the target domain. The evaluation results are
obtained based on the test data from the target do-
main. We use Spacy to extract part-of-speech tags
and dependency relations, and finally used 54 types

Dataset Domain Sentences Training Testing
L Laptop 3845 3045 800
R Restaurant 6035 3877 2158
D Device 3836 2557 1279
S Service 2239 1492 747

Table 1: Statistics of the datasets.

of part-of-speech tags and 47 types of dependency
relation.

For our proposed UDA approach, since it is a
general DA framework, we can potentially use any
pre-trained BERT model or their variants as our
base model. In this work, we adopt two kinds of
base models: BERTB and BERTE. For BERTB, it
refers to the uncased BERTbase model pre-trained
by Devlin et al. (2018)1. For BERTE, it refers to an
extended version of BERTB, which further incor-
porates the domain knowledge (Xu et al., 2019) by
fine-tuning the pre-trained BERTB model with the
BERT language model on product reviews from
a combination of Yelp Challenge Datasets2 and
the Electronics dataset from Amazon3 (He and
McAuley, 2016). Note that for the BERT language
model fine-tuning, we use 32 bit floating point com-
putations using the Adam optimizer (Kingma and
Ba, 2014). The batch size is set to 32, and the
learning rate is set to 3 · 10−5. For training down-
stream tasks, we set λ to 0.1, and use the Adam
optimizer. We perform grid search over a learning
rate of 2 · 10−5, 3 · 10−5, 5 · 10−5 and a batch size
of 16, 32, 64. We tune all these parameters on the
validation set, which is composed by 10% samples
from the training set 4.

Evaluation Metric: The evaluation metric we
used is Micro-F1. Following the setting in existing
work, only exact match could be counted as correct.
All experiments are repeated 5 times and we report
the average results over 5 runs.

4.2 Baselines & Main Results

We compare our Unified Domain Adaptation
(UDA) approach with several highly competitive
DA methods as follows:

1We make use of the uncased BERTbase model as part of
the pytorch-transformers library: https://github.com/
huggingface/pytorch-transformers

2https://www.yelp.com/dataset/
challenge

3http://jmcauley.ucsd.edu/data/amazon/
links.html

4The source code and corpus can be obtained at https:
//github.com/NUSTM/BERT-UDA

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
http://jmcauley.ucsd.edu/data/amazon/links.html
http://jmcauley.ucsd.edu/data/amazon/links.html
https://github.com/NUSTM/BERT-UDA
https://github.com/NUSTM/BERT-UDA
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Source→Target Pairs
Methods S→R L→R D→R R→S L→S D→S R→L S→L R→D S→D AVG
Hier-Joint† 31.10 33.54 32.87 15.56 13.90 19.04 20.72 22.65 24.53 23.24 23.72
RNSCN† 33.21 35.65 34.60 20.04 16.59 20.03 26.63 18.87 33.26 22.00 26.09
AD-SAL† 41.03 43.04 41.01 28.01 27.20 26.62 34.13 27.04 35.44 33.56 33.71
BERTB 44.66 40.38 40.32 19.48 25.78 30.31 31.44 30.47 27.55 33.96 32.44
BERTB-DANN 45.84 41.73 34.68 21.60 25.10 18.62 30.41 31.92 34.41 23.97 30.79
BERTB-UDA 47.09 45.46 42.68 33.12 27.89 28.03 33.68 34.77 34.93 32.10 35.98
BERTE 51.34 45.40 42.62 24.44 23.28 28.18 39.72 35.04 33.22 33.22 35.65
BERTE-DANN 50.31 47.39 42.20 28.35 26.69 28.77 38.83 34.29 33.42 37.14 36.74
BERTE-UDA 53.97 49.52 51.84 30.67 27.78 34.41 43.95 35.76 40.35 38.05 40.63

Table 2: Comparison results for cross-domain End2End ABSA based on Micro-F1. The results marked by †
are extracted from Li et al. (2019b). It is worth noting that different from Li et al. (2019b), we did not remove
training/test samples where all the tokens are labeled as ‘O’ in our experiments, because a moderate amount of
product reviews only contain implicit aspects in real scenarios. If we remove these samples, we can get an extra
improvement of around 5% on Micro-F1 for all the BERT-based methods in our preliminary experiments.

Source→Target Pairs
Methods S→R L→R D→R R→S L→S D→S R→L S→L R→D S→D AVG
Hier-Joint† 46.39 48.61 42.96 27.18 25.22 29.28 34.11 33.02 34.81 35.00 35.66
RNSCN† 48.89 52.19 50.39 30.41 31.21 35.50 47.23 34.03 46.16 32.41 40.84
AD-SAL† 52.05 56.12 51.55 39.02 38.26 36.11 45.01 35.99 43.76 41.21 43.91
BERTB 54.29 46.74 44.63 22.31 30.66 33.33 37.02 36.88 32.03 38.06 37.60
BERTB-DANN 54.32 48.34 44.63 25.45 29.83 26.53 36.79 39.89 33.88 38.06 37.77
BERTB-UDA 56.08 51.91 50.54 34.62 32.49 34.52 46.87 43.98 40.34 38.36 42.97
BERTE 57.56 50.42 45.71 26.50 25.96 30.40 44.18 41.78 35.98 35.13 39.36
BERTE-DANN 58.55 52.40 45.21 31.29 30.16 30.86 46.90 40.43 36.32 39.17 41.13
BERTE-UDA 59.07 55.24 56.40 34.21 30.68 38.25 54.00 44.25 42.40 40.83 45.53

Table 3: Comparison results for cross-domain Aspect Extraction (AE) based on Micro-F1.

• Hier-Joint (Ding et al., 2017): A recurrent neu-
ral network (RNN) with manually designed
rule-based auxiliary tasks.
• RNSCN (Wang and Pan, 2018): A recursive

neural structural correspondence network that
incorporates syntactic structures.
• AD-SAL (Li et al., 2019b): A recent deep

model that achieves state-of-the-art perfor-
mance on End2End ABSA across domains.
• BERTB (Devlin et al., 2018) and BERTE (Xu

et al., 2019): directly fine-tuning the two kinds
of pre-trained models on the down-stream task.
• BERTB-DANN and BERTE-DANN: We respec-

tively use BERTB and BERTE as the base mod-
els, and simultaneously perform adversarial
training on each word, which can be viewed
as the BERT version of the widely used DANN
approach proposed by Ganin et al. (2016).

The overall comparison results on cross-domain
End2End ABSA are shown in Table 2. On the
one hand, we can observe that BERTB-UDA gen-
erally performs better than the state-of-the-art DA
approach (i.e., AD-SAL) on most transfer pairs
for cross-domain End2End ABSA. Moreover, with

BERTE as the base model, our BERTE-UDA ap-
proach can significantly boost the average perfor-
mance of BERTB-UDA from 35.75% to 40.63%,
which outperforms AD-SAL by 6.92% on aver-
age. On the other hand, by comparing BERT-based
approaches, we can clearly see that simply per-
forming adversarial training (i.e., DANN) for each
word does not give satisfactory improvements over
BERTB and BERTE, whereas our UDA approach
can significantly outperform all the BERT-based
baselines and consistently achieve the best perfor-
mance on all the transfer pairs. All these obser-
vations demonstrate the effectiveness of our UDA
framework.

We also report the results on cross-domain AE
in Table 3. Clearly, we can find that the overall
trend of the performance of each approach is simi-
lar to their performance in cross-domain End2End
ABSA. But the results of End2End ABSA are much
lower than those of AE, which is reasonable as
AE is one of its sub-tasks. Compared with AD-
SAL, our BERTE-UDA approach is 1.62% higher
in terms of the average performance of all transfer
pairs for the task of cross-domain AE. Compared
with cross-domain End2End ABSA, the improve-
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ABSA Only Feature Only Instance Sequential Joint
S→R 53.09 51.55 53.56 53.97
L→R 49.79 48.08 49.47 49.52
D→R 50.67 46.22 52.13 51.84
R→S 27.09 25.01 28.02 30.67
L→S 24.51 25.92 26.73 27.78
D→S 35.89 34.21 34.89 34.41
R→L 41.93 40.52 42.46 43.95
S→L 35.17 34.33 34.52 35.76
R→D 37.79 39.27 40.42 40.35
S→D 38.45 36.70 37.85 38.05
AVG 39.44 38.18 40.01 40.63

Table 4: Ablation study of our UDA approach based on
BERTE for cross-domain End2End ABSA.

ment of our approach is not that huge, probably
due to the inherent difficulty of cross-domain AE,
where most aspect words in different domains do
not intersect.

4.3 Ablation Study
Since our UDA framework includes two compo-
nents, i.e., feature-based and instance-based do-
main adaptation, we further conduct experiments
over different variants of the proposed model in Ta-
ble 4 to show the effect of each component. Only
Feature and Only Instance represent the feature-
based domain adaptation and the instance-based
domain adaptation on basis of BERTE, respectively.
Compared with BERTE, both components have
achieved much better F1 scores on most transfer
pairs. This indicates that our proposed two com-
ponents have effectively reduced the domain dis-
crepancy. Besides, we also merge the two com-
ponents in a sequential and joint way, denoted by
Sequential and Joint respectively. It is easy to see
that Joint performs slightly better than Sequential,
which shows the advantages of joint optimization.

To qualitatively show the effect of our word-
level instance weighting method, we show the most
important words for the target domain on three
transfer pairs in Table 5. The results show that the
common opinion words (e.g., beauty, amazement
and satisfactory) or aspect words (e.g., employee,
desk and kitchen) gain more weight in the word-
level instance weighting.

5 Related Work

Aspect extraction and aspect-level sentiment clas-
sification are two important subtasks in Aspect-
Based Sentiment Analysis (ABSA), which aim to
extract aspect terms and identify the sentiment ori-
entations towards them, respectively (Liu, 2012).
As two fundamental tasks, aspect extraction (Qiu

S→R

contentious, bearing, hated, beauty, ##mi,
amazement, ##ant, canned, mistake, madden,
accused, nicely, employee, proud, difficulty,
impressive, likely, catalogue, ##working

L→R

enjoying, lesson, strongly, reality, comfortably,
artwork, food, loving, dissatisfaction, spice,
##kind, fork, appears, weary, desk, projects,
monster, covering, recipients, purchases

D→R

displayed, desk, robust, lightly, capable, waking,
satisfactory, birthday, releasing, kitchen, noises,
appearing, experiences, sophisticated, extreme,
providing, nuts, interaction, recommendations

Table 5: Words with higher instance weights in the
instance-based adaptation component of our UDA ap-
proach.

et al., 2011; Liu et al., 2015; Poria et al., 2016;
Wang et al., 2016a, 2017; Li et al., 2018a; Xu
et al., 2018) and aspect-level sentiment classifi-
cation (Dong et al., 2014; Tang et al., 2016; Wang
et al., 2016b; Ma et al., 2017; Wang et al., 2018; Li
et al., 2019c) have been extensively studied in the
literature.

Since these two tasks are strongly related with
each other, a number of previous studies propose
to tackle them together in an end-to-end man-
ner (Mitchell et al., 2013; Zhang et al., 2015).
Some recent studies have further demonstrated that
a unified tagging scheme can effectively eliminate
the error propagation issue of traditional pipeline
methods, and thus achieve the state-of-the-art per-
formance. However, since annotating each word
with fine-grained label is time-consuming, it is next
to impossible to obtain enough annotated data for
the ABSA task in every new domain. Therefore,
in this work, we resort to transfer learning, and
focus on proposing an effective domain adaptation
approach for the ABSA task.

Existing domain adaptation studies in sentiment
analysis primarily focus on coarse-grained domain
adaptation problem. Most of them can be grouped
into two categories: feature-based methods (Blitzer
et al., 2007; Pan et al., 2010; Chen et al., 2012;
Zhuang et al., 2015; Yu and Jiang, 2017; Ganin
et al., 2016; Li et al., 2018b) and instance-based
methods (Jiang and Zhai, 2007; Bickel et al., 2007;
Xia et al., 2013, 2014). The former one attempts to
learn a domain-invariant representation with aux-
iliary tasks or domain adversarial learning, while
the latter one tries to re-weight source instances in
order to assign higher weights to instances similar
to the target domain and lower weights to instances
different from the target domain.
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Due to the challenges in fine-grained domain
adaptation, only a few studies have explored the
ABSA task in cross-domain settings. Ding et al.
(2017) and Wang and Pan (2018) used domain gen-
eral syntactic relations to construct auxiliary task
to bridge the domains. Li et al. (2019b) proposed
a selective adversarial learning method to learn
domain-invariant representations for aspect words.
However, these methods are still based on tradi-
tional networks such as LSTM, but fail to resort
to recent pre-trained text encoders such as BERT.
Moreover, all these methods only perform feature-
based adaptation, but ignore instance-based adap-
tation. In contrast, our work aims to propose a
unified feature and instance-based method based
on BERT for cross-domain ABSA. Besides, it is
worth noting that Rietzler et al. (2019) explored
BERT for cross-domain aspect sentiment classifi-
cation, where the aspect terms or categories are
provided for both source and target domains. Dif-
ferent from their work, we primarily focus on the
cross-domain End2End ABSA task in this work,
which aims to first extract aspect terms followed
by identifying the sentiment towards each detected
aspect term.

6 Conclusion

In this paper, we explored the potential of BERT
to domain adaptation, and proposed a unified fea-
ture and instance-based adaptation approach for
both tasks of cross-domain End2End ABSA and
cross-domain aspect extraction. In feature-based
domain adaptation, we use domain-shared syntactic
relations and POS tags to construct auxiliary tasks,
which can help learn domain-invariant represen-
tations for domain adaptation. In instance-based
domain adaptation, we employ a domain classi-
fier to learn to assign appropriate weights for each
word. Extensive experiments on four benchmark
datasets demonstrate the superiority of our Unified
Domain Adaptation (UDA) approach over existing
methods in both cross-domain End2End ABSA and
cross-domain aspect extraction.
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