
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 6716–6722,
November 16–20, 2020. c©2020 Association for Computational Linguistics

6716

HSCNN: A Hybrid-Siamese Convolutional Neural Network
for Extremely Imbalanced Multi-label Text Classification

Wenshuo Yang1,2, Jiyi Li2∗, Fumiyo Fukumoto2 and Yanming Ye1
Hangzhou Dianzi University, Hangzhou, China1

University of Yamanashi, Kofu, Japan2

yangwen7873@gmail.com, {jyli,fukumoto}@yamanashi.ac.jp, yeym@hdu.edu.cn

Abstract
The data imbalance problem is a crucial issue
for the multi-label text classification. Some
existing works tackle it by proposing imbal-
anced loss objectives instead of the vanilla
cross-entropy loss, but their performances re-
main limited in the cases of extremely imbal-
anced data. We propose a hybrid solution
which adapts general networks for the head
categories, and few-shot techniques for the tail
categories. We propose a Hybrid-Siamese Con-
volutional Neural Network (HSCNN) with ad-
ditional technical attributes, i.e., a multi-task
architecture based on Single and Siamese net-
works; a category-specific similarity in the
Siamese structure; a specific sampling method
for training HSCNN. The results using two
benchmark datasets and three loss objectives
show that our method can improve the perfor-
mance of Single networks with diverse loss ob-
jectives on the tail or entire categories.

1 Introduction

The data imbalance problem is a crucial issue for
the multi-label text classification. In many cor-
pora for the classification tasks, the number of in-
stances of a category follows the long tail distribu-
tion, where many tail categories has only a small
number of instances. To handle this problem, some
works sample hard examples for training (Shrivas-
tava et al., 2016); some works address the prob-
lem by proposing imbalance loss objectives, e.g.,
weighted cross-entropy loss and Focal loss (Lin
et al., 2017), in place of the vanilla cross-entropy
loss (Kim, 2014). Although the imbalanced loss
objectives are better than the vanilla one, their per-
formances remain limited in the cases of extremely
imbalanced data because they are not designed for
it, i.e., tail (head) categories have extremely small
(large) numbers of instances.

On the one hand, the recent few-shot learning
techniques (e.g., optimization-based methods (Finn

et al., 2017; Munkhdalai and Yu, 2017; Mishra
et al., 2018), metric-based methods (Koch et al.,
2015; Vinyals et al., 2016; Snell et al., 2017)) have
become popular for various NLP tasks (Yu et al.,
2018; Han et al., 2018). They have already shown
the capability for few-shot classifications. They
thus may also perform well for tail category clas-
sification (some of the tail categories are few-shot,
all have relatively small numbers of instances). On
the other hand, for the head categories with many
instances, general approaches such as the single
CNN model (Kim, 2014; Liu et al., 2017) may be
more effective in terms of performance and more
efficient in terms of complexity. Therefore, our
basic idea for tackling the problem of extremely
imbalanced multi-label text classification is a hy-
brid solution that adapts a general approach (i.e., a
Single network) for head categories and a few-shot
approach for tail categories, so that we can take
the advantages of both of them. For the few-shot
approach, we select the Siamese network (Koch
et al., 2015) because it is easier to integrate with
different Single networks. A naı̈ve solution is train-
ing them separately and utilizing their results on
head categories and tail categories respectively as
the combined classification results.

To make the hybrid solution effective, rather than
a naı̈ve combination on the results of two types
of networks, we propose a Hybrid-Siamese Con-
volutional Neural Network (HSCNN) with addi-
tional technical properties. First, it is based on a
multi-task architecture to deal with forgetting and
overfitting problems when training the Siamese net-
work. Second, the single similarity output of the
vanilla Siamese structure is limited for estimating
the similarities for a large number of categories and
multiple categories; we thus propose a category-
specific similarity in the Siamese structure. Third,
we propose a specific sampling method to train the
HSCNN.
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The results using two benchmark datasets and
three loss objectives (including one vanilla cross-
entropy loss and two imbalanced losses) show that
the proposed method can improve the performance
of a Single network with diverse loss objectives on
the tail categories and the entire categories. The
main contributions of this paper can be summa-
rized as follows. (1). We propose a hybrid method
based on general and few-shot techniques to mit-
igate the extremely imbalanced multi-label text
classification problem. (2). We propose a novel
HSCNN model based on a multi-task architecture,
a category-specific similarity, and a specific sam-
pling method. (3). Our approach can be integrated
with the imbalanced loss objectives to improve the
performance; the Hybrid-Siamese architecture can
extend to incorporate with other types of Single
networks rather than the Single CNN network.

2 Our Approach

We denote the data as D = {di}i and an instance
as di, the category set as C and a category as c. The
number of training instances is N . The number of
training instances of a category c is Nc.

2.1 Single and Siamese Architectures

The Single architecture we use for multi-label text
classification is similar to the CNN based models
in existing works (Kim, 2014; Liu et al., 2017;
Shimura et al., 2018). It includes an embedding
layer, a convolutional layer and a pooling layer, and
two fully connected layers. The black dashed line
in Figure 1 marks a Single architecture. Note that
this Single CNN network can also be replaced by
other types of Single networks such as RNN, HAN
(Yang et al., 2016), and so on. We utilize the CNN
based one because it is one of the typical models.

We have several alternatives on the loss objec-
tives computed by the predicted categories and true
categories. Table 1 lists them. For each instance di,
yc1 = 1 if di has the category c, yc0 = 1− yc1; pc1
is the predicted probability that di has category c,
pc0 = 1−pc1. We use both the vanilla Binary Cross
Entropy (BCE) and the imbalanced loss objectives
including Weighted binary Cross Entropy (WCE)
and Focal loss (Lin et al., 2017). We empirically
set αc = log ((N −Nc)/Nc) for WCE loss and
γ = 1 for Focal loss following the existing works
(Li et al., 2020b). We do not use the Dice loss (Li
et al., 2020b) because we empirically observe that
it does not perform well for the multi-label text

Loss Objectives
BCE −

∑
c

∑
v∈{0,1} ycv log pcv

WCE −
∑
c αc

∑
v∈{0,1} ycv log pcv

Focal−
∑
c

∑
v∈{0,1} ycv(1− pcv)γ log pcv

Table 1: Loss Objectives

Figure 1: HSCNN Model

classification with a large number of categories,
although it is also an imbalanced loss objective.

Siamese network (Koch et al., 2015) is a typical
technique of few-shot learning. It contains two
duplicated Single networks, and the inputs are two
instances. The output is computed by comparing
the representations extracted after the first fully
connected layer of the Single network (Linear1 in
Figure 1) for the two instances. Assuming that the
representations of two input instances di and dj are
xi and xj , there are two options on the comparison
component. One option is leveraging a contrastive
loss on the distance of xi and xj . Another option
(Koch et al., 2015) is utilizing a fully connected
network on the difference of xi and xj to estimate
their similarity and using a cross-entropy loss on
the similarity. Because we need to estimate the
similarities among a large number of categories, we
select the later one to measure the rich information
of the similarities. The dashed red line in Figure 1
marks a vanilla Siamese structure.

2.2 Hybrid-Siamese CNN

A naı̈ve hybrid solution is training Single and
Siamese networks separately and adapting them
for head and tail categories respectively. To make
the hybrid solution effective, we propose a Hybrid-
Siamese Convolutional Neural Network (HSCNN)
model (Figure 1) with three technical attributes.

Multi-task architecture: On the one hand, in
the naı̈ve solution, we can first train a Single net-
work, then use it to initialize a Siamese network,



6718

and after that train the Siamese network alone. The
Siamese network may forget the knowledge learned
by the Single network. On the other hand, When
the number of training instances is large, the num-
ber of instance pairs is squared and huge. It is
infeasible to train the Siamese network with all in-
stances pairs, and we can only sample a subset. The
number of training pairs is relatively small, which
results in the overfitting of the Siamese network.

To prevent the above problems, we propose a
multi-task architecture based on the Single and
Siamese networks. As shown in Figure 1 with
black solid line, the loss function is as follows,
L = λsLs + λm1Lm1 + λm2Lm2 . Ls is the loss
of the Siamese network, and Lm is the loss of a
Single network. For similar pairs of input instances,
Lm1 and Lm2 are the same. For dissimilar pairs,
Lm1 and Lm2 are the losses for each input instance,
respectively. The comparison part of the HSCNN
and the Single CNN part are trained together in the
multi-task architecture. The Single network part
can be regarded as a constraint to avoid the forget-
ting and overfitting of the Siamese network part.
Without loss of generality, we set λs=λm1=λm2=1.

Category-specific similarity: The Siamese
structure has only a single similarity output, which
is limited for estimating the similarity between
a large number of categories and multiple cate-
gories. For example, if an instance has multiple
categories and each category has a representation
vector, it is difficult to learn a representation of
this instance near the representations of all these
categories through a single similarity output. There-
fore, we propose a category-specific similarity in
the Siamese structure to capture the rich informa-
tion in the similarities.

As shown in Figure 1, HSCNN has an asym-
metric structure. In addition to the inputs of two
instances di and dj , there is another input cate-
gory c which means that dj has category c. Given
the input triplet (di,dj ,c), the similarity output
can be explained as “whether di is similar with
dj on category c”. Denoting the one-hot encod-
ing of category c as qc, a category-specific differ-
ence is computed by h = |xi − xj | ◦ hc, where
hc = σ((wqc + b)/

√
|C|). σ is the ReLU activa-

tion function and ◦ is the elementwise multiplica-
tion. A linear layer with the sigmoid function then
computes the similarity. This category-specific sim-
ilarity can also be explained as a Machine Read-
ing Comprehension (MRC) framework (Li et al.,

2020a, 2019), which can improve non-MRC tasks’
performance by learning additional information
from the query. It is also related to the joint em-
bedding on the instance and category (Wang et al.,
2018), while ours focuses on the category-specific
similarity of instances.

Sampling method: A common sampling
method of the training data for a Siamese network
is randomly selecting similar ((di,c),(dj ,c)) and dis-
similar pairs ((di,ci),(dj ,cj)) with the ratio of 1:1.
In this work, we generate one pair by randomly
selecting the categories and selecting the instances
in the categories. We set a heuristic rule to en-
sure that each category can be selected as least
T (e.g., ten) times. To follow the asymmetric struc-
ture of HSCNN, we propose a specific sampling
method for training HSCNN. For each similar pair
((di,c),(dj ,c)), we generate one triplet (di,dj ,c) for
training; for each dissimilar pair ((di,ci),(dj ,cj)),
we generate two triplets (di,dj ,cj) and (dj ,di,ci),
the ratio of similar and dissimilar pairs is thus 1:2.

We train and utilize HSCNN for classification as
follows. Training: We first train the Single CNN
separately by utilizing the raw training data in the
dataset until convergence. After that, we use it to
initialize HSCNN and train HSCNN by utilizing
the sampled triplets as the training data. Classifica-
tion: When using HSCNN to predict the categories
of test instances, we use the Siamese part’s out-
put. For a test instance di and a category c, we
randomly select five instances from the category
c of the raw training data. We compute the mean
x̄c of the representations of these five instances
obtained by the representation extraction compo-
nent. We compare the representation xi of di with
x̄c by the comparison component to calculate the
similarity. If the similarity is higher than 0.5, we
assign the category of c to di. Note that the option
of first computing the mean representation of the
five instances is not mandatory in our proposed
approach. Another option for classification is first
comparing di with each of the five instances and
then using majority voting to aggregate the results.
We choose the mean representation option because
we obtain a little bit better results than another op-
tion. Merge: We finally merge the classification
results of CNN and HSCNN as the results of our
hybrid solution on the entire categories. We set
a threshold Nφ on the number of instances in a
category. For tail categories (Nc < Nφ, a subset
with the instances that contain at least one tail cate-
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Dataset Train Test |C| N̄c Nmax
c Nmin

c

RCV1 23,149 781,265 103 225 10,787 1
Delicious 12,920 3,185 983 14 3,867 12

Table 2: Data statistics. |C| is total number of cate-
gories, N̄c is mean of Nc. Nmax

c and Nmin
c are maxi-

mum and minimum of Nc. (URLs are in Appendix.)

gory), we use HSCNN results; For head categories
(Nc ≥ Nφ), we use CNN results.

3 Experiments

3.1 Experimental Settings
The two benchmark datasets we use are the multi-
label text corpus RCV1 (Lewis et al., 2004) and De-
licious (Tsoumakas et al., 2008). Table 2 lists the
dataset statistics. There are many categories, and
the categories are extremely imbalanced on the in-
stance numbers. We randomly split the raw training
data into 75% for training and 25% for validation.
We use the fastText (Joulin et al., 2017) to generate
the initial word embeddings in the models. For
training HSCNN, we sample 150,000 triplets for
RCV1 and 300,000 triplets for Delicious; Delicious
uses more triplets because it has more categories.

We mainly compare our approach with the Sin-
gle CNN (black dashed line in Figure 1, named
as “Sing.”) in the cases of using different loss ob-
jectives list in Table 1. We also compare with ad-
ditional baselines in the case of using BCE loss.
“Naı̈ve” is a hybrid solution using a vanilla Siamese
network and Single network separately. “/CSS”
uses HSCNN without the category-specific simi-
larity and specific sampling. “/MT” uses HSCNN
without multi-task architecture. “/CSS” and “/MT”
are for the ablation test.

The parameters of the CNN architectures for all
approaches refer to the ones used in exiting work
(Shimura et al., 2018). The detailed parameters
are list in the appendix. The evaluation metrics are
Micro-F1, Macro-F1, Precision, and nDCG. For
computing Precision and nDCG, we need to rank
all of the categories for an instance. Here, the prob-
abilities of head categories are obtained from the
outputs of Single CNN; the similarities to a tail cat-
egory is obtained from the outputs of the Siamese
part of HSCNN. The probabilities of head cate-
gories and the similarities to the tail categories are
not directly comparable, but the ranges of them are
both in [0,1]. We just roughly rank the categories
based on the probability/similarity directly. We
evaluate the performance on the tail categories and

the entire categories, respectively. We arbitrarily
set the threshold Nφ of the hybrid solutions as 100.
RCV1 has 35 categories withNc < 100; Delicious
has 472 such categories.

3.2 Experiments results

Table 3 lists the main experimental results. The
left part of Table 3 shows the performance on the
tail categories. First, comparing “Sing.” and “Our”,
our approach can prominently improve the results
of Single network in all cases of using vanilla or
imbalanced loss objectives.

Second, comparing “Sing.” and “Naı̈ve”, a
“Naı̈ve” hybrid method is even worse than “Sing.”.
One potential reason is that, in the head categories
with a large number N of training instances, the
number of these instances is sufficient to train a
Single CNN. However, for the vanilla Siamese
network, the number of potential training pairs is
O(N 2), but we can only sample a small subset of
them. Our multi-task component solves this prob-
lem. Another potential reason is that the vanilla
Siamese network only has single similarity output
and is limited for estimating the similarity for a
large number of categories and multiple categories.
For example, two instances that are “partially and
almost” similar will have noise on the inconsistent
categories if they are labeled as a similar pair. Our
category-specific component solves this problem.

Third, comparing “Naı̈ve” and “/CSS” (or “/MT”
and “Our”), the proposed multi-task architecture
can improve the performance. Comparing “Naı̈ve”
and “/MT” (or “/CSS” and “Our”), the proposed
category-specific similarity and specific sampling
can improve the performance. Using all additional
technical attributes (“Our”) can mutually benefit
each other and improve the performance a lot.

The right part of Table 3 is the performance on
entire categories. The observations on entire cat-
egories are consistent with that on tail categories.
The improvement of Macro-F1 is more prominent
than that of Micro-F1. It is because there are a
large number of instances in head categories that
influence the average computation of Micro-F1.

We also investigate the influences of different
threshold Nφ on the performance of entire cate-
gories. Figure 2 shows the results. Micro-F1 in-
creases gradually as the threshold increases. Macro-
F1 increases when the Nφ is not too large and then
decreases. It is because the numbers of training
triplets are not enough for the categories with many
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Data Me.
Tail categories Entire categories

BCE WCE FL BCE WCE FL
Sing. Naı̈ve /CSS /MT Our Sing. Our Sing. Our Sing. Naı̈ve /CSS /MT Our Sing. Our Sing. Our

RCV1

Mi. 6.83 5.79 6.10 6.83 18.86 18.27 30.29 27.83 29.65 75.41 75.05 75.13 75.40 75.51 77.12 77.21 76.58 76.66
Ma. 3.96 3.37 3.47 3.88 12.80 12.02 23.08 17.54 21.10 36.19 35.96 36.00 36.17 39.20 43.58 47.33 46.31 47.52
P@1 2.17 2.29 2.31 2.69 3.72 2.00 3.76 2.77 3.99 94.75 94.14 94.14 94.70 94.90 92.99 93.59 94.53 94.86
P@3 1.69 1.35 1.47 1.55 1.79 1.39 1.92 1.71 1.69 77.60 77.53 77.54 77.56 77.60 76.55 76.91 77.48 77.57
P@5 1.26 1.10 1.13 1.23 1.26 1.08 1.25 1.19 1.26 54.38 54.28 54.28 54.34 54.37 53.80 54.02 54.28 54.40
G@1 2.71 2.29 2.31 2.69 3.72 2.00 3.76 2.77 3.99 94.75 94.14 94.14 94.70 94.90 92.99 93.59 94.53 94.86
G@3 1.92 1.66 1.69 1.79 1.99 1.53 2.31 1.95 2.36 81.76 81.73 81.72 81.74 81.77 80.57 80.93 81.63 81.76
G@5 1.51 1.35 1.37 1.49 1.55 1.27 1.75 1.53 1.78 64.56 65.53 64.54 64.57 64.60 63.73 64.04 64.49 64.59

Deli.

Mi. 2.43 1.86 1.93 2.41 5.85 2.97 5.77 2.40 6.24 23.72 12.56 16.53 23.72 24.96 23.79 24.42 25.05 25.53
Ma. 1.51 1.47 1.48 1.50 1.73 1.86 1.99 1.56 2.24 5.97 5.76 5.89 5.93 8.52 6.50 7.26 6.41 7.20
P@1 1.32 1.28 1.28 1.29 8.45 1.50 8.55 1.41 8.42 64.97 47.78 53.83 64.97 65.04 65.35 65.57 65.23 65.89
P@3 1.13 1.13 1.13 1.13 6.45 1.12 6.55 1.27 6.23 58.96 39.14 48.00 57.99 59.00 58.81 58.94 58.36 58.77
P@5 0.98 0.92 0.93 0.98 5.47 1.03 5.49 1.15 5.31 54.02 32.81 37.65 53.36 54.06 54.05 54.10 53.78 53.99
G@1 1.32 1.28 1.28 1.29 8.45 1.50 8.55 1.41 8.42 64.97 47.78 53.83 64.79 65.04 65.35 65.57 65.23 65.89
G@3 1.18 1.16 1.16 1.17 6.89 1.20 6.99 1.30 6.73 60.32 41.13 49.13 60.01 60.37 60.33 60.47 59.89 60.34
G@5 1.07 1.03 1.05 1.07 6.09 1.12 6.14 1.21 5.96 56.56 36.24 39.45 55.87 56.60 56.63 56.71 56.29 56.59

Table 3: Results, Nφ = 100. Deli.: Delicious; Me.: Metric; Mi.: Micro-F1; Ma.: Macro-F1; G@k: nDCG@k.
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Figure 2: Results on entire categories: change the threshold Nφ for our hybrid solution.

Data #triplets Tail categories Entire categories
Micro-F1 Macro-F1 Micro-F1 Macro-F1

RCV1
75,000 17.72 10.76 75.31 33.51
150,000 18.86 12.80 75.51 39.20
300,000 18.87 12.93 75.51 40.8

Deli.
150,000 1.26 1.61 23.44 5.45
300,000 5.85 1.73 24.96 8.52
450,000 5.83 1.81 24.95 8.57

Table 4: Experimental results with different number of
sampled triplets for training HSCNN.

instances as the threshold Nφ increases. Because
the Macro-F1 scores are only worse than those of
the baselines at about Nφ > 225 for RCV1 and
Nφ > 175 for Delicious, the proposed HSCNN
model based on few-shot technique is not only lim-
ited to few-shot categories but also performs well
for the tail categories. The optimal Nφ depends on
the distribution of instance numbers of categories
in a dataset; selecting a conservative value for Nφ
such as 50 or 100 is expected to obtain better results
than the Single models.

Furthermore, Table 4 lists the results with dif-
ferent numbers of sampled triplets for training
HSCNN. First, the number of sampled triplets
should not be too small (e.g., RCV1 with 75,000

triplets). Second, the required number of sampled
triplets to reach acceptable results depends on the
dataset and possibly the number of categories, i.e.,
the number of categories of Delicious dataset is
much larger than that of RCV1 dataset. RCV1
dataset with 150,000 already reaches a relatively
high performance; Delicious dataset with 150,000
still has a relatively low performance. Third, a very
large number of sampled triplets (e.g., RCV1 with
300,000 triplets) may still improve the performance
but cannot improve the performance much more.

4 Conclusion

In this paper, we propose a hybrid solution with a
HSCNN model for dealing with extremely imbal-
anced multi-label text classification. The proposed
method can improve the performance of Single net-
works with diverse loss objectives on the tail cate-
gories or entire categories. In future work, we will
try other types of Single networks (e.g., (Lai et al.,
2015; Yang et al., 2016; Shimura et al., 2019)).
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A Appendices

Additional information on datasets and experimen-
tal settings are as follows.

Datasets: Figure 3 and 4 shows the distribution
of the instance numbers of the categories in the
datasets RCV11 and Delicious2. In both datasets,
the instance numbers of the categories have long-
tail distribution.
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Figure 3: Distribution of instance numbers of cate-
gories: RCV1.

Experimental Settings: Table 5 lists the param-
eters of our model which refer to the common ones

1www.ai.mit.edu/projects/jmlr/papers/
volume5/lewis04a/lyrl2004_rcv1v2_README.
htm

2http://www.uco.es/kdis/mllresources/
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Figure 4: Distribution of instance numbers of cate-
gories: Delicious.

used in the existing works. We implement the meth-
ods by PyTorch. Dropout1 is after the embedded
layer and Dropout2 is after the convolutional layer.

Description Value Description Value
Filter size 3,4,5 Feature maps 128
Pooling Max pooling Hidden layers 1024

Activation ReLu Batch size 100
Word vectors fastText Activation function Relu
Hidden layer 1024 Dropout1 0.25

Dropout2 0.5 Epoch 100∗

Table 5: Model settings. *: with early stopping
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