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Abstract

Despite the success of generative pre-trained
language models on a series of text generation
tasks, they still suffer in cases where reason-
ing over underlying commonsense knowledge
is required during generation. Existing ap-
proaches that integrate commonsense knowl-
edge into generative pre-trained language mod-
els simply transfer relational knowledge by
post-training on individual knowledge triples
while ignoring rich connections within the
knowledge graph. We argue that exploiting
both the structural and semantic information of
the knowledge graph facilitates commonsense-
aware text generation. In this paper, we pro-
pose Generation with Multi-Hop Reasoning
Flow (GRF) that enables pre-trained models
with dynamic multi-hop reasoning on multi-
relational paths extracted from the external
commonsense knowledge graph. We empiri-
cally show that our model outperforms exist-
ing baselines on three text generation tasks that
require reasoning over commonsense knowl-
edge. We also demonstrate the effectiveness of
the dynamic multi-hop reasoning module with
reasoning paths inferred by the model that pro-
vide rationale to the generation.1

1 Introduction

Despite the recent success of pre-trained language
models such as GPT-2 (Radford et al., 2019) on
various language generation tasks, these models
are still struggling on generation tasks that require
reasoning over commonsense knowledge that is
not explicitly stated in the context. For example,
Figure 1 illustrates an example in the story end-
ing generation task, where external commonsense
knowledge in the form of relational paths can guide
the generation of the key concepts “substance” and

∗ Corresponding author
1The source code is available at https://github.

com/cdjhz/multigen.

eruptionMr. Egg was presenting a
volcanic eruption to the science class.

He has a diagram of a volcano that
looked like it was made of tinfoil.

He then took out a huge thing of
vinegar and started to pour it in!
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Figure 1: An example of using structural relational
knowledge as commonsense grounding in story ending
generation. Blue nodes correspond to the concepts in
the context, orange nodes correspond to those in the
story ending and gree nodes are intermediate concepts
that connect the evidence chain.

“lava” in the story ending by providing background
knowledge such as (volcano,MadeOf,lava)
besides the story context. Although pre-trained
models have been demonstrated to possess com-
monsense reasoning ability (Trinh and Le, 2018)
by implicitly learning some relational patterns from
large-scale corpora, they do not fully utilize the
commonsense knowledge bases that provide more
explicit knowledge grounding.

To address this defect, incorporating external
commonsense knowledge to enhance models’ rea-
soning ability has been widely explored (Lin et al.,
2019; Ye et al., 2019; Lv et al., 2019). In lan-
guage generation, previous work (Bhagavatula
et al., 2020; Guan et al., 2020) transfers common-
sense knowledge into pre-trained language mod-
els by utilizing triple information in commonsense
knowledge bases such as ConceptNet (Speer and
Havasi, 2012) and ATOMIC (Sap et al., 2019).

However, this approach has two drawbacks.

https://github.com/cdjhz/multigen
https://github.com/cdjhz/multigen
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First, recovering knowledge triples at the post-
training stage (Guan et al., 2020) hardly enables
the model to utilize the encoded knowledge in
fine-tuning generation tasks which requires rea-
soning over underlying commonsense knowledge.
Second, it ignores the abundant structural rela-
tional relevance of the concepts in the knowledge
graph (Guan et al., 2020; Bhagavatula et al., 2020)
that may provide multiple plausible evidence for
complex reasoning. Thus a richer and more explicit
way of utilizing external commonsense knowledge
is to exploit both structural and semantic informa-
tion of the knowledge graph and reason over multi-
hop relational paths where multiple connected
triples provide chains of evidence for grounded
text generation.

In this paper, we propose Generation with Multi-
Hop Reasoning Flow (GRF), a generation model
that performs multi-hop reasoning on the external
knowledge graph for knowledge-enriched language
generation. The model operates on the sub-graph
extended from the concepts in the input text as com-
monsense knowledge grounding. It first encodes
the multi-relational graph with compositional op-
eration to obtain graph-aware representations for
the concepts and the relations (§3.2.1). Then, the
multi-hop reasoning module performs dynamic rea-
soning via aggregating triple evidence along multi-
ple relational paths to generate the salient concept
under the context (§3.2.3). Finally, the generation
distribution combines the probability of copying
concepts from the knowledge graph and that of
choosing a word from the standard vocabulary with
a gate control (§3.2.4). The overall model architec-
ture is shown in Figure 2. We conduct experiments
on three commonsense-aware text generation tasks
including story ending generation (Mostafazadeh
et al., 2016), abductive natural language genera-
tion (Bhagavatula et al., 2020), and explanation
generation for sense making (Wang et al., 2019).
Results show that our model outperforms strong
baselines on these tasks, thereby demonstrating the
benefit of multi-hop commonsense reasoning in
language generation.

Our contributions can be summarized as follows:
1) We propose GRF, a novel generation model that
utilizes external structural commonsense knowl-
edge to facilitate explicit commonsense reasoning
in text generation. 2) We propose the dynamic
multi-hop reasoning module that aggregates evi-
dence along relational paths for grounded gener-

ation of some critical concepts. 3) We conduct
extensive experiments including automatic and hu-
man evaluation on three commonsense-aware text
generation tasks and show that our model outper-
forms various selective baselines. We also visualize
reasoning paths inferred by the model to demon-
strate the effectiveness of the multi-hop reasoning
module.

2 Related Work

2.1 Commonsense-Aware Neural Text
Generation

Incorporating commonsense knowledge is essential
for text generation to augment the limited textual
information. In dialogue generation, Zhou et al.
(2018) enriched the context representations of the
post with neighbouring concepts on ConceptNet
using graph attention. In story ending generation,
Guan et al. (2019) proposed incremental encoding
with multi-source attention to incorporate one-hop
knowledge graph for concepts in the story context.
In topic-to-essay generation, Yang et al. (2019) aug-
mented the generator with a concept memory that
updated dynamically with gate mechanism. Re-
cently, some work also attempted to integrate exter-
nal commonsense knowledge into generative pre-
trained language models such as GPT-2 (Radford
et al., 2019). Guan et al. (2020) conducted post-
training on sythetic data constructed from com-
monsense knowledge bases by translating triplets
into natural language texts using templates. Bha-
gavatula et al. (2020) transferred embeddings of
COMeT (Bosselut et al., 2019), a GPT-2 model
fine-tuned to generate the tail entity of a triple
in commonsense knowledge graph, into another
GPT-2 model for text generation. In comparison,
our model utilizes both structural and semantic in-
formation of the commonsense knowledge graph
during generation and does not suffers from the
catastrophic forgetting problem (Kirkpatrick et al.,
2016) caused by implicit knowledge transferring.

2.2 Multi-Hop Reasoning on Graph
Structure

Performing explicit multi-hop reasoning on graph
structure has been demonstrated to be an effec-
tive approach for query answering over incom-
plete knowledge graphs (Das et al., 2018; Chen
et al., 2018; Lin et al., 2018), multi-hop question
answering (Bauer et al., 2018; Cao et al., 2019; Qiu
et al., 2019) and dialogue generation (Tuan et al.,
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Figure 2: Model architecture. (a) Context modeling with pre-trained transformer (§3.2.2). (b) The model encodes
the multi-relational graph with non-parametric operation φ(·) to combine relations and concepts (§3.2.1). (c) The
multi-hop reasoning module aggregates evidence from source concepts Cx along structural paths to all nodes
where shade indicates the node score (§3.2.3). (d) The final generation distribution with gate control (§3.2.4).

2019; Moon et al., 2019; Liu et al., 2019). Partic-
ularly, reasoning on knowledge graphs to answer
relational query typically adopts REINFORCE to
learn concrete policies to search for entities or re-
lations. In multi-hop question answering tasks,
the reasoning process is augmented with entity
graph (Cao et al., 2019; Qiu et al., 2019) or concept
paths (Bauer et al., 2018) to enhance semantic con-
nections among document segments. In dialogue
generation, Tuan et al. (2019) modeled multiple
hops on relationship graphs with a Markov tran-
sition matrix. Liu et al. (2019) proposed a two-
stage architecture that selected information from
a knowledge graph for further generating the re-
sponse. Compared with these generation models
that operate on knowledge graphs within a specific
domain, our focus is to utilize general common-
sense knowledge to supply evidence for text gener-
ation.

3 Methodology

3.1 Problem Formulation

In this paper, we focus on text generation tasks
where reasoning over external commonsense
knowledge is required. Without loss of gener-
ality, the input source is a text sequence x =
(x1, x2, · · · , xN ) which may consist of several sen-
tences. The output target is another text sequence
y = (y1, y2, · · · , yM ). To facilitate the reason-
ing process, we resort to an external commonsense
knowledge graph G = (V, E) where V denotes the
concept set and E denotes the relations connecting
these concepts. Since direct reasoning on the com-

plete graph is intractable, we extract a sub-graph
G = (V,E) given the input text where V ⊂ V and
E ⊂ E . The sub-graph consists of inter-connected
H-hop paths starting from the source concepts Cx

extracted from the input text. We only consider
concepts with 1-gram surface texts. The task is
then formulated as generating the best hypothesis
ŷ which maximizes the following conditional prob-
ability:

ŷ = argmaxyP (y|x, G). (1)

We leave the detailed sub-graph extraction pro-
cess in §4.2 and describe our proposed model in
the next section.

3.2 Generation with Multi-Hop Reasoning
Flow

3.2.1 Static Multi-Relational Graph
Encoding

Graph Neural Network (GNN) frameworks, such
as graph convolution network (GCN) (Kipf and
Welling, 2017) and graph attention network
(GAT) (Velickovic et al., 2018), have been shown
effective at encoding graph-structured data by
aggregating node information from local neigh-
bours. To model the relational information
in the knowledge graph, R-GCN (Schlichtkrull
et al., 2018) generalizes GCN with relation-
specific weight matrices but is reported to be
over-parameterized (Marcheggiani and Titov, 2017;
Schlichtkrull et al., 2018). We follow Vashishth
et al. (2020) and use a non-parametric compo-
sitional operation φ(·) to combine the node em-
bedding and the relation embedding. Specifically,
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given the input graph G = (V,E) and a GCN with
LG layer, for each node v ∈ V we update the node
embedding at the l + 1-th layer by aggregating in-
formation from its local neighbours N (v) which
consist of pairs of node u and the connected rela-
tion r.

ol
v =

1

|N (v)|
∑

(u,r)∈N (v)

Wl
Nφ(h

l
u,h

l
r), (2)

hl+1
v = ReLU

(
ol
v +Wl

Sh
l
v

)
, (3)

where h0
v is initialized by looking up the word em-

bedding and h0
r by the relation-type embedding.

Wl
N and Wl

S are two learnable weight matrices
specific to the l-th layer. We define the composi-
tional operation as φ(hu,hr) = hu − hr inspired
by the TransE model (Bordes et al., 2013).

The relation embedding is also updated via an-
other linear transformation.

hl+1
r = Wl

Rh
l
r. (4)

Finally, we obtain node embeddings hLG
v and re-

lation embeddings hLG
r that encode the static graph

context for dynamic reasoning during decoding.

3.2.2 Context Modeling with Pre-Trained
Transformer

We adopt the GPT-2 model (Radford et al., 2019),
a pre-trained multi-layer transformer decoder to
model the contextual dependency of the text se-
quence. The input to the model is the concatena-
tion of the source and the target sequence: s =
(x1, · · · , xN , [bos], y1, · · · , yM ).

h0
t = et + pt, (5)

hl
t = T block(Hl−1

≤t ), l ∈ [1, LD] (6)

P (st|s<t) = softmax(WLMhLD
t + b) (7)

where et and pt are the token embedding vector
and the positional embedding vector. T block is
the transformer block with masked self-attention.
The final hidden state at the t-th time step hLD

t

which encodes the context information is used as
the input to the multi-hop reasoning module.

3.2.3 Dynamic Multi-Hop Reasoning Flow
To perform explicit reasoning on the graph struc-
ture during generation, we devise a dynamic rea-
soning module that utilizes both structural patterns
of the knowledge graph and contextual information
to propagate evidence along relational paths at each
decoding step.

Specifically, the module broadcasts information
onG by updating the score of outer nodes with their
visited neighbours for multiple hops until all the
nodes on G are visited. Initially, nodes correspond
to the concepts in Cx are given a score of 1 while
other unvisited nodes are assigned with 0.

For the unvisited node v ∈ V , its node score
ns(v) is computed by aggregating evidence from
Nin(v) which denotes the set of visited node u and
its edge r that directly connects v.

ns(v) = f
(u,r)∈Nin(v)

(
γ ·ns(u)+R(u, r, v)

)
, (8)

where γ is a discount factor that controls the in-
tensity of the information flow from the previous
hops. f(·) is the aggregator that assembles scores
from connected nodes. We consider two forms of
aggregators: max(·) and mean(·). We use max(·)
for the main results and present the results with
mean(·) in the ablation study.
R(u, r, v) is the triple relevance that reflects

the relevancy of the evidence given by the triplet
(u, r, v) under the current context. We compute the
triple relevance as follows:

R(u, r, v) = σ(hT
u,r,vWsimhLD

t ), (9)

hu,r,v = [hLG
u ;hLG

r ;hLG
v ]. (10)

After H hops, the final distribution over the
nodes is obtained by a normalization.

P (ct|s<t, G) = softmaxv∈V (ns(v)), (11)

where ct is the concept of the selected node at the
t-th time step.

Intuitively, the reasoning module learns to dy-
namically distribute along the paths by considering
the triple evidence according to the current decoder
state.

3.2.4 Generation Distribution with Gate
Control

The final generation distribution combines the dis-
tribution over the concepts (Eq. 11) and the distri-
bution over the standard vocabulary (Eq. 7). We
use a soft gate probability gt which denotes whether
to copy a concept in the generation to control the
weight of the two distributions similar to the copy
mechanism (Gu et al., 2016; See et al., 2017).

gt = σ
(
Wgateh

LD
t

)
. (12)



729

The final output distribution is the linear combina-
tion of the two distributions weighted by gt and
1− gt respectively.

P (yt|y<t,x, G) = gt+N · P (ct+N |s<t+N , G)

+ (1− gt+N ) · P (st+N |s<t+N ),
(13)

where N is the length of the input text sequence.

3.3 Training and Inference

To train the proposed model, we minimize the neg-
ative log-likelihood of generating the ground truth
target sequence ygold = (y1, y2 · · · , yM , [eos]).

Lgen =

M+1∑
t=1

− logP (y
gold
t |ygold

<t ,x, G). (14)

We add an auxiliary gate loss Lgate to supervise
the probability of selecting a concept or a generic
word. We additionally introduce a weak supervi-
sion Lweak to induce the predicted triple relevances
to match the heuristic labels of edges obtained by
breadth-first search from the source concepts to the
concepts in ygold on the graph. Both loss functions
take the form of binary cross-entropy. We observe
that both loss terms encourage the model to learn
multi-hop reasoning on the graph more effectively.

The final loss to be optimized is the linear com-
bination Lgen + αLgate + βLweak.

During the inference stage, the input to the
model is (x1, · · · , xN , [bos]). The model gener-
ates a token at a time and concatenates it to the
input sequence to generate the next token. The gen-
eration process terminates when the special ending
symbol [eos] is generated.

4 Experiments

4.1 Datasets and Metrics

The statistics of the datasets are shown in Table 1.
Story Ending Generation (SEG) is to generate
a reasonable ending given a four-sentence story
context. The stories come from ROCStories cor-
pus (Mostafazadeh et al., 2016). We use the same
data split as Guan et al. (2019).
Abductive NLG (αNLG) is to generate an explana-
tory hypothesis given two observations: O1 as the
cause and O2 as the consequence. We use the offi-
cial data split2 from Bhagavatula et al. (2020).

2https://github.com/allenai/
abductive-commonsense-reasoning

Explanation Generation (EG) is to generate an
explanation given a counter-factual statement for
sense-making (Wang et al., 2019). We randomly
split 85% of the data as the training set, 10% as the
test set, and the latter as the development set.

For automatic evaluation, we use metrics includ-
ing BLEU-4 (Papineni et al., 2002), CIDEr (Vedan-
tam et al., 2015), ROUGE-L (Lin, 2004) and ME-
TEOR (Banerjee and Lavie, 2005) to evaluate the
abductive NLG and the explanation generation
tasks. We follow common practice in story genera-
tion (Guan et al., 2019, 2020) and use BLEU-1/2
to evaluate the generated endings. We also adopt
Distinct-n (Li et al., 2016) to measure the diversity
of the generated endings.

4.2 Extracting Sub-Graphs as Knowledge
Grounding

To supply knowledge grounding for language gen-
eration, we use ConceptNet (Speer and Havasi,
2012) as the commonsense knowledge base. Each
triple (h, r, t) in ConceptNet denotes that the head
concept h has a relation r with the tail concept
t. To condense the knowledge graph G = (V, E)
we group the original 42 relation types into 17 fol-
lowing Lin et al. (2019) and add reversed links
(t, r−1, h) to the graph (Lin et al., 2018; Das et al.,
2018).

We extract a sub-graph G = (V,E) from G
which consists of multiple inter-connected paths
starting from the source conceptsCx in the input se-
quence. To recognize concepts from the input text
sequence, we perform fuzzy matching with the lem-
matized form of the surface texts using Spacy3 and
filter out stop words. Following Guan et al. (2019),
we only consider verbs and nouns as our candidate
concepts since we find the extracted graph is much
noisier with all the matched concepts.

Specifically, we iterate the following process for
H hops: starting from the nodes in the current
sub-graph (initialized by Cx) and search for the
direct neighbours of each node and preserve top-
B nodes with the connected edges to enlarge the
sub-graph. For each candidate node, the selection
is based on its incoming degree of this node. The
incoming degree of a candidate node v is defined
as the number of nodes in the current sub-graph
that directly connect v. Intuitively, we keep those
salient concepts that are commonly visited nodes
and support information flow on the graph.

3https://spacy.io/

https://github.com/allenai/abductive-commonsense-reasoning
https://github.com/allenai/abductive-commonsense-reasoning
https://spacy.io/
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Tasks Train Dev Test

SEG* 90,000 4,081 4,081
αNLG 50,481 7,252 14,313
EG* 25,596 1,428 2,976

Table 1: Statistics of the datasets used in this paper.
*:Examples with multiple references are counted sep-
arately.

4.3 Implementation Details

Graph statistics EG αNLG SEG

Avg. # Concepts 193.1 201.6 208.5
Avg. # Triples 1094.3 1324.6 1148.6

Table 2: Statistics of the extracted subgraphs on the
training sets of three datasets, including the average
number of concepts and triples for each subgraph.

Our model employs the small version of GPT-
2 model4 with 12 layers, 768-dimensional hid-
den states, and 12 attention heads for contextual
modeling and a 2-layer GCN model. We choose
the max(·) aggregator for the main results since
it yields better performance. During sub-graph
extraction, we set the maximum number of hops
H = 2 and preserve top-B = 100 nodes per
hop. We find this setting balances the coverage
and noise of the knowledge graph. Detailed statis-
tics of the extracted sub-graphs are presented in
Table 2. To train the model, we use the Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9, β2 =
0.999, ε = 1×10−8 and linearly decrease the learn-
ing rate to zero with no warmup. We search the
best hyper-parameters according to BLEU-4 on the
development set of each task. At the inference
stage, we adopt beam search decoding with a beam
size of 3 for our model and all the baselines we
produce. We conduct all the experiments using the
PyTorch framework (Paszke et al., 2017).

4.4 Compared Baselines

We produce the following baselines on three gener-
ation tasks to compare with our model:
Seq2Seq is a sequence-to-sequence model based
on gated recurrent unit (GRU) with attention mech-
anism. We also utilize the copying mechanism (Gu
et al., 2016) for the model to generate out-of-
vocabulary words.

4https://github.com/huggingface/
transformers

GPT2-FT is a GPT-2 model fine-tuned on the task-
specific dataset with its model initialization from
Radford et al. (2019).
GPT2-OMCS-FT is a commonsense-enhanced
GPT-2 model first post-trained on the Open Mind
Common Sense (OMCS) corpus5 from which the
ConceptNet is constructed. The model is then fine-
tuned on the task-specific dataset.

We also compare our model with baseline mod-
els designated to each specific task. For story
ending generation, we compare to IE+GA which
is based on incremental encoding and graph at-
tention (Guan et al., 2019) and WriterForcing
that forces the attention to focus on important
keyphrases and avoid generating generic words.

For abductive NLG, we compare with two base-
lines introduced by Bhagavatula et al. (2020):
COMeT-Txt-GPT2 which uses the output texts
generated by COMeT as prefix texts to the GPT-
2 model while fine-tuning, and COMeT-Emb-
GPT2 which integrates the embeddings of the out-
puts generated by COMeT into the GPT-2 model
during fine-tuning.

4.5 Automatic Evaluation

We present the automatic evaluation results on the
test sets of the explanation generation and the ab-
ductive NLG tasks in Table 3. We have the follow-
ing observations:

I. Our model outperforms all the baselines that
utilize pre-trained language models or incorporate
external commonsense knowledge in terms of all
evaluation metrics indicating that incorporating
rich structural information of commonsense knowl-
edge graphs can enhance the overall generation
quality.

II. Simply post-training on commonsense knowl-
edge source degrades the performance on these
two tasks. This is possibly due to the fact that the
triple-level post-trained corpus cannot provide rich
semantics for the model to generalize on tasks that
emphasize reasoning and explaining.

For story ending generation, we present the eval-
uation results in Table 4. Our model outperforms
all the baselines in BLEU and distinct metrics. We
also observe that post-training on external com-
monsense data improves the generation diversity
of the pre-trained language model, which accords
with the findings of Guan et al. (2020). We suspect
that post-training on the commonsense data enables

5http://openmind.media.mit.edu

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
http://openmind.media.mit.edu


731

Models EG αNLG

BLEU-4 METEOR ROUGE-L CIDEr BLEU-4 METEOR ROUGE-L CIDEr

Seq2Seq 6.09 24.94 26.37 32.37 2.37 14.76 22.03 29.09
COMeT-Txt-GPT2 N/A N/A N/A N/A 2.73† 18.32† 24.39† 32.78†

COMeT-Emb-GPT2 N/A N/A N/A N/A 3.66† 19.53† 24.92† 32.67†

GPT2-FT 15.63 38.76 37.32 77.09 9.80 25.82 32.90 57.52
GPT2-OMCS-FT 15.55 38.28 37.53 75.60 9.62 25.83 32.88 57.50

GRF 17.19 39.15 38.10 81.71 11.62 27.76 34.62 63.76

Table 3: Automatic evaluation results on the test set of EG and αNLG. Entries with N/A mean the baseline is not
designated for this task. †: we use the generation results from Bhagavatula et al. (2020).

Models BLEU-1/2 Distinct-2/3

Seq2Seq 19.1 / 5.5 0.181 / 0.360
IE+GA 20.8 / 6.4 0.140 / 0.280
WriterForcing 16.5 / 3.7 0.335 / 0.584
GPT2-FT 25.5 / 10.2 0.304 / 0.505
GPT2-OMCS-FT 25.5 / 10.4 0.352 / 0.589

GRF 26.1 / 11.0 0.378 / 0.622

Table 4: Automatic evaluation on the test set of SEG.

Models BLEU-4 ROUGE-L

GRF 11.62 34.62
w/ mean(·) aggregator 11.32 34.46
w/o DMRF 10.67 33.75
w/o SMGE 11.10 34.36

Table 5: Ablation study on the test set of αNLG.
SMGE denotes static multi-relational graph encoding
(see §3.2.1) and DMRF denotes dynamic multi-hop rea-
soning flow (see §3.2.3).

the model to generate concepts related to the story
context, which improves the text diversity.

4.6 Human Evaluation

To evaluate the fluency and the reasonability of
the generated texts under the specific task settings,
we conduct pair-wise comparison with COMeT-
Emb-GPT2 on αNLG, IE+GA on SEG, and with
two fine-tuned GPT-2 models on all the three tasks.
For human evaluation, we randomly sample 100
sentences from the test set for each pair of mod-
els and obtain 1,100 sentences from five models.
We recruit three annotators to make a preference
among win, tie and lose given the input context and
two outputs generated by our model and a baseline
respectively according to two criteria: fluency and
reasonability.

For fluency, we require the annotators to focus
only on the grammatical correctness and readabil-
ity of the generated results disregarding the input

context. When evaluating reasonability, the anno-
tators are required to assess whether the generated
sentence is reasonable under the given context in
each task. In SEG and αNLG, annotators are asked
to focus on evaluating the causal and temporal rel-
evance of the generated results and the contexts.
While on EG, annotators are mainly asked to check
whether the generated results explain the counter-
factual points in the statements properly.

The human evaluation results are presented in
Table 6 where our model significantly outperforms
compared baselines in terms of both criteria on
all the datasets. Specifically, incorporating struc-
tural commonsense knowledge yields significant
improvement in generating reasonable texts given
the context. Table 7 shows the inter-rater agreement
where five out of six annotations show moderate
(0.4 ≤ κ < 0.6) or good agreement (0.6 ≤ κ <
0.8). We check the annotation results and find that
the GPT-2 baselines also generate story endings
with good grammar, which makes it hard for the an-
notators to reach a high consensus when evaluating
the fluency criterion of the story ending generation
task (κ = 0.315).

4.7 Ablation Study

We conduct ablation study to verify the effect of
different model components. As shown in Table
5, all the components contribute to the final perfor-
mance. Removing the dynamic reasoning module
(w/o DMRF) results in the largest performance
drop, thereby indicating that dynamic multi-hop
reasoning plays a major role in this task. Ablat-
ing the graph representation module (w/o SMGE)
also degrades the performance since it encodes the
graph structure with relational information that ben-
efits concept selection. We also show the results
of our reasoning module with mean(·) aggregator
and observe some performance drop comparing
with max(·).
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Models

EG αNLG SEG

Fluency Reasonability Fluency Reasonability Fluency Reasonability

W L W L W L W L W L W L

vs. IE+GA N/A N/A N/A N/A N/A N/A N/A N/A 0.62** 0.07 0.72** 0.11
vs. COMeT-Emb-GPT2 N/A N/A N/A N/A 0.31** 0.14 0.55** 0.25** N/A N/A N/A N/A
vs. GPT2-FT 0.24** 0.09 0.54** 0.21 0.15* 0.10 0.56** 0.20 0.21** 0.12 0.45** 0.19
vs. GPT2-OMCS-FT 0.18** 0.09 0.58** 0.18 0.12 0.09 0.50** 0.20 0.17* 0.11 0.40** 0.15

Table 6: Human evaluation results on three datasets. Scores indicate the percentage of Win (W) and Lose (L)
when comparing our model with a baseline in terms of fluency and reasonability. Scores marked with * mean
p-value < 0.05 and ** indicates p-value < 0.01 in sign test. Entries with N/A mean the baseline is not designated
for this task.

Criteria EG αNLG SEG

Fluency 0.615 0.543 0.315
Reasonability 0.551 0.677 0.595

Table 7: Annotator agreement. Scores denotes Fleiss’
kappa (Fleiss, 1971) which evaluates the agreement
from multiple annotators in terms of fluency and rea-
sonability.
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Figure 3: Performance with different amount of train-
ing data on the test set of αNLG.

4.8 Impact of the Size of Training Data

To demonstrate the complementary performance
gain of utilizing relational paths besides textual
modeling, we sample different fractions of train-
ing data of αNLG for training and evaluate on
the original test set. We compare our method
with knowledge-agnostic finetuning of the GPT-2
model and the commonsense-enhanced GPT-2 post-
trained on OMCS. As shown in Figure 3, our model
achieves consistent performance gains against the
chosen baselines with different amount of training
data, which demonstrates the generalization ability
of the proposed model with the aid of structural
relation knowledge.

4.9 Effectiveness of Dynamic Multi-Hop
Reasoning

We demonstrate the effectiveness of the multi-hop
reasoning module through both quantitative and
qualitative analysis.

We investigate the impact of the hyper-parameter

10.80.60.40.20
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γ
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Figure 4: Effect of γ in DMRF. Performance with
different value of discount factor γ on the test set of
αNLG.

γ that controls the information flow in the multi-
hop reasoning module. As shown in Figure 4,
the maximum performance is obtained when γ is
around 0.4 and 0.6. When γ → 0, the multi-hop
reasoning module reduces to local scoring of each
concept and ignores evidence accumulated on the
paths. While γ → 1, the node score increases
monotonically along the paths which also hinders
the model’s ability to select the correct concept.
Therefore, we set γ = 0.5 for all the main results
of our model.

To qualitatively assess the ability of the dynamic
reasoning module, we visualize a test case on
αNLG with top-ranked concepts and scored reason-
ing paths. As shown in Figure 5, at the first hop the
reasoning module starts from the source concepts
“adopt” and “puppy” and assigns higher scores to
neighbouring concepts which are verbs consider-
ing the generated context. At the second hop the
module utilizes more plausible evidences along 2-
hop reasoning paths and selects “play” (gt = 0.64)
which is more reasonable given both the observa-
tions.

4.10 Case Study

We provide some test cases on three datasets in Ta-
ble 8 and observe that: I. Baseline models tend to
generate general cases while the GRF is able to gen-
erate more specific concepts by exploring the plau-
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Figure 5: Visualization of a test case with inferred rea-
soning paths by our model. We highlight top-3 con-
cepts with reasoning paths at 1-Hop and 2-Hop reason-
ing step respectively.

sible relations between concepts. For example in
the first case, the GRF generates “expensive” which
is the antonym of “cheap” under the story context.
II. Baseline models sometimes fail to identify the
transition of the narrative as shown in the third
case where the GRF generates “seasick” as a plau-
sible explanation for the transition from “cruise” to
“beach”. III. The GRF generates proper attributes
of the source concepts in the input context with the
aid of external commonsense knowledge as shown
in the last two cases of explanation generation.

5 Conclusion

We present Generation with Multi-Hop Reasoning
Flow that reasons over structured commonsense
knowledge during text generation. The proposed
method leverages both the structural and seman-
tic information of the external knowledge base by
performing dynamic multi-hop reasoning on the
relational paths. We conduct extensive experiments
and empirically show that our method outperforms
existing approaches that integrate commonsense
knowledge to pre-trained language models on three
text generation tasks. We also demonstrate the in-
terpretability of our method with inferred reasoning
paths that provide rationale to the generated results.

Story Ending Generation

Story Context

I wanted a simple bike for commuting.
So I bought a cheap one on sale.
But it didn’t fit me properly.
And it was uncomfortable to ride.

IE+GA So I decided to buy a new one.
GPT2-FT So I decided to buy a new bike.
GPT2-OMCS-FT So I decided to buy a bike from a bike shop instead.
GRF So I decided to get a more expensive bike.

Story Context

Ava made shakes for her kids on a hot summer day.
She called them in from play, but they dallied.
By time they came in, the shakes were almost melted.
Ava blended in more ice cubes and refreshed them.

IE+GA Then she went home and ate them.
GPT2-FT Ava was proud of her kids for being so good at

cooking.
GPT2-OMCS-FT She was proud of her kids for being so thoughtful!
GRF Her kids thanked her profusely for helping them

cool off.

Abductive NLG

Observation 1 The Smith family went on a cruise for their summer
vacation.

Observation 2 From then on, the Smiths went to the beach each
summer instead.

GPT2-FT The Smith family had a great time on the beach.
GPT2-OMCS-FT The Smith family went to the beach.
COMeT-Emb-GPT2 They didn’t have a nice vacation.
GRF The Smith family got seasick on the cruise.

Observation 1 Nancy bought her dog a squeaky stuffed animal.
Observation 2 The dog had ripped the toy to shreds.

GPT2-FT Nancy found a toy that looked like a toy.
GPT2-OMCS-FT Nancy found a toy that looked like a toy.
COMeT-Emb-GPT2 The squeaky stuffed animal was the first to come in.
GRF Nancy’s dog scratched the stuffed animal.

Explanation Generation

Statement Coke is made of alcohol.

GPT2-FT Coke is a drink.
GPT2-OMCS-FT Coke is not a liquid.
GRF Coke is made from corn.

Statement She cut up a blanket.

GPT2-FT A blanket is not sharp enough to cut.
GPT2-OMCS-FT A blanket is too small to be cut.
GRF Blankets are too soft to be cut.

Table 8: Case study on the test set of three datasets.
Words in blue denote source concepts in the input con-
texts while words in orange are the associated concepts
generated by the GRF.
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