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Abstract

The structured representation for seman-
tic parsing in task-oriented assistant sys-
tems is geared towards simple under-
standing of one-turn queries. Due
to the limitations of the representation,
the session-based properties such as co-
reference resolution and context carry-
over are processed downstream in a
pipelined system. In this paper, we
propose a semantic representation for
such task-oriented conversational sys-
tems that can represent concepts such as
co-reference and context carryover, en-
abling comprehensive understanding of
queries in a session. We release a
new session-based, compositional task-
oriented parsing dataset of 20k sessions
consisting of 60k utterances. Unlike
Dialog State Tracking Challenges, the
queries in the dataset have compositional
forms. We propose a new family of
Seq2Seq models for the session-based
parsing above, which achieve better or
comparable performance to the current
state-of-the-art on ATIS, SNIPS, TOP
and DSTC2. Notably, we improve the
best known results on DSTC2 by up to
5 points for slot-carryover.

1 Introduction

At the core of conversational assistants lies
the semantic representation, which provides
a structured description of tasks supported by
the assistant. Traditional dialog systems oper-
ate through a flat representation, usually com-
posed of a single intent and a list of slots with
non-overlapping content from the utterance

(Bapna et al., 2017; Gupta et al., 2018). Al-
though flat representations are trivial to model
with standard intent/slot tagging models, the
semantic representation is fundamentally lim-
iting. Gupta et al. (2018) explored the limi-
tations of flat representations and proposed a
compositional generalization which allowed
slots to contain nested intents while allow-
ing easy modeling through neural shift-reduce
parsers such as RNNG (Dyer et al., 2016).

Our contributions are the following:

• We explore the limitations of this compo-
sitional form and propose an extension
which overcomes these limitations that
we call decoupled representation.

• To parse this more complicated represen-
tation, we propose a family of Seq2Seq
models based off the Pointer-Generator
architecture that set state of the art in mul-
tiple semantic parsing and dialog tasks
(See et al., 2017).

• To further advance session based task ori-
ented semantic parsing, we release a pub-
licly available set with 60k utterances
constituting roughly 20k sessions.

2 Semantic Representation

The compositional extension proposed by
Gupta et al. (2018) overcame the limitation
of classical intent-slot frameworks by allow-
ing nested intents in slots. But to maintain an
easily model-able structure the following con-
straint was introduced: the in-order traversal
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of the compositional semantic representation
must reconstruct the utterance. Following this
constraint it is possible to use discriminative
neural shift reduce parsers such as RNNG to
parse into this form (Dyer et al., 2016).

Although at face value this constraint seems
reasonable, it has non-trivial implications for
both the semantic parsing component (NLU)
and downstream components in conversa-
tional assistants.

2.1 Surpassing Utterance Level
Limitations with Decoupled Form

First we’ll take a look at the space of utter-
ances that can be covered by the composi-
tional representation. One fundamental prob-
lem with the in-order constraint is that it dis-
allows long-distance dependencies within the
semantic representation. For example, the ut-
terance On Monday, set an alarm for 8am.
would optimally have a single date-time slot:
[SL DATETIME 8am on Monday]. But,
because 8am and on Monday are at opposite
ends of the utterance, there is no way to con-
struct a semantic parse tree with a single date-
time slot. Gupta et al. (2018) mentioned this
problem, but had some empirical data showing
that utterances with long-distance dependen-
cies are rare in English. Although this might
be true, having fundamental limitations on
what type of utterances can be supported even
with a complete ontology is concerning.

In English, discontinuities are restricted in
occurrence, despite emerging naturally within
certain patterns, because English is a configu-
rational language, which uses strongly marked
word order to impart some level of semantic
information (Chomsky, 1981). Beyond En-
glish, however, there are numerous world lan-
guages that are non-configurational and have
much freer or potentially completely free word
order. Non-configurational languages may
often present the same semantic information
through the use of Case Markers, Declensions,
or other systems. The relatively free word
order this allows creates much less empha-
sis on the collocation of a semantic unit’s to-

kens. Therefore, as conversational assistants
progress toward multiple languages it’s im-
portant to consider that constraints that are
acceptable if only English is considered will
not analogously scale to other languages.

A simple solution is to convert a standard
compositional intent-slot parse into a logical
form containing two label types (slot and in-
tent), with no constraints over intent spans.
This is trivially accomplished by removing all
text in the compositional semantic parse that
does not appear in a leaf slot. We call this
form of semantic parse the decoupled seman-
tic representation, due to the semantic repre-
sentation not being tightly coupled with the
original utterance.

Figure 1 shows a side by side example of
compositional and decoupled semantic repre-
sentations for the utterance Please remind me
to call John.

2.2 Session Based Limitations

Because traditional conversational systems
historically have had a clear separation be-
tween utterance level semantic parsing and
dialog systems (which stitch together utter-
ance level information into sessions), semantic
representations have not focused on session-
based representations. Integrating session in-
formation into semantic parsers has been lim-
ited to refinement-based approaches.

Figure 2 shows an example of refine-
ment and informationally complete based ap-
proaches to semantic parsing. The refinement
approach delegates responsibility of session-
based semantic parsing to a separate dialog
component. Consequently, refinement ap-
proaches tend to have a very limited ontology
due to the semantic parser operating over a
fixed input (non-session utterances).

Predicting what slot to use for refining
works for flat semantic representations, but
it is non-trivial to extend to compositional or
decoupled. The position of a slot in a flat se-
mantic representation is not meaningful, thus
it is sufficient to only predict the slot with-
out specifying its position in the parse. But
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IN:CREATE REMINDER

SL:TODO

IN:CREATE CALL

SL:CONTACT

John

SL:METHOD

call

toSL:PERSON REMINDED

me

Please remind

(a) Compositional form.

IN:CREATE REMINDER

SL:TODO

IN:CREATE CALL

SL:CONTACT

John

SL:METHOD

call

SL:PERSON REMINDED

me

(b) Decoupled form.

Figure 1: Compositional and decoupled semantic representations for the single utterance “Please remind
me to call John”.

IN:PROVIDE SLOT VALUE

John

(a) Refinement

IN:CREATE CALL

SL:CONTACT

John

SL:METHOD

call

(b) Informationally Complete

Figure 2: Refinement and Complete session
based semantic representations for the utterance
“call”.

both compositional and decoupled extensions
to intent-slot parsing vary semantically by the
position of the slot (or nested intent).

We present an example in Figure 3. Given
the followup utterance remind me to call, a
classical system would need to carry over
the whole CONTACT slot, but the question
is to where? The semantic parse is not
flat. The slot could be carried over to the
CREATE REMINDER intent or the nested
GET CONTACT intent. So, if we were to
extend classical slot carryover, we not only
would need to predict what slot to carry over
from the conversation, but what intent within
the current semantic parse to place it under.
We propose a new paradigm that does joint
classical semantic parsing with co-reference
resolution and slot-carryover.

2.3 Session Based Semantic Parsing

We present a simple extension to the decou-
pled paradigm of intent-slot semantic parsing
by introduction of a new reference (REF) la-
bel type. The REF label type contains two
elements in its set to represent co-references
and slot-carryover as separate operations. Co-
references can be seen as an explicit reference,
namely a reference conditioned on an explicit
word, while slot-carryover is treated as an im-
plicit reference (conditioned by relevant con-
textual information).

As an example, refer to the sample session
with decoupled semantic parses in Figure 4

3 Model

3.1 Sequence-to-Sequence Architecture

The decoupled semantic parsing model is an
extension of the very common sequence-to-
sequence learning approach (Sutskever et al.,
2014), with the source sequence being the
utterance and the target sequence being a
linearized version of the target tree. Trees
are linearized by bracketing them, using
the same approach as Vinyals et al. (2015).
The decoupled tree in Fig. 1b, for example,
would be linearized to the following target
sequence: [IN:CREATE REMINDER,
[SL:PERSON REMINDED, me, ],
[SL:TODO, ..., ]. After tokenization,
an encoder processes the source tokens wi
and produces corresponding encoder hidden
states:
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IN:CREATE REMINDER

SL:TODO

IN:CREATE CALL

SL:CONTACT

IN:GET CONTACT

SL:TYPE RELATION

mom

SL:METHOD CALL

call

SL:PERSON REMINDED

me

Figure 3: Sample session with complex slot-carryover: “Is mom available?” – “Remind me to call”

IN:GET WEATHER

SL:LOCATION

FranciscoSan

(a) “Weather in San Francisco”.

IN:GET TRAFFIC

SL:LOCATION

REF:EXPLICIT

there;FranciscoSan

(b) “Traffic there”.

IN:GET EVENT

SL:LOCATION

REF:IMPLICIT

FranciscoSan

(c) “Any events going on?”

Figure 4: Decoupled semantic representations for a three-utterance session.

e1, ..., eT = Encoder(w1, ..., wT )

where the encoder, in our experiments, is ei-
ther a standard bidirectional LSTM or a trans-
former.

In spite of its drawbacks, the rigid struc-
ture of the compositional semantic trees (Fig.
1a) has the advantage of readily mapping to
the RNNG formalism and its inductive bi-
ases. The decoupled semantic representation,
being more flexible, does not have such an
easily exploitable form – but we can still ex-
ploit whatever structure exists. The tokens of
the linearized decoupled representation (the
target sequence) can always be divided into
two classes: utterance tokens that are already
present in the source sequence – which form
the leaves of the tree – and ontology sym-
bols. Taking again the example tree of Fig.
1b, me, call, and John are all tokens from the
utterance, while [IN:CREATE REMINDER,
[SL:PERSON REMINDED, ], etc., are ontol-
ogy symbols. This partition is reflected in the

structure of the decoder: at every decoding
step, the model can either generate an element
from the ontology, or copy a token from the
source sequence via a mechanism analogous
to the pointer-generator network of See et al.
(2017). At decoding time step t, the decoder
is fed with the encoder’s outputs and produces
a vector of features xt, which is used to com-
pute an ontology generation distribution p

g
t :

xt = Decoder (e1, ..., et;dt−1; st−1) ,

p
g
t = softmax

(
Linearg[xt]

)
,

where dt−1 is the previous output of the
decoder, st−1 is the decoder’s incremental
state, and Linearθ[x] is short-hand for an
affine transformation with parameters θ, i.e.
Wθx + bθ. The decoder’s features are also
used to calculate the attention distribution – us-
ing multi-head attention (Vaswani et al., 2017)
– which then serves to produce the utterance
copy distribution pc

t :

pc
t ,ωt = MhAttention (e1, ..., et; Linearc[xt]) ,

pαt = σ (Linearα [xt‖ωt]) ,
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where σ(x) = 1
1+e−x is the standard sig-

moid function, ‖ indicates concatenation, and
MhAttention indicates multi-head attention
which returns, respectively, the attention dis-
tribution and its weights. Finally, the extended
probability distribution is computed as a mix-
ture of the ontology generation and utterance
copy distributions:

pt = pαt · p
g
t + (1− pαt ) · pc

t .

3.2 Encoder and Decoder
We experiment with two main variants of the
decoupled model: one based on recurrent neu-
ral networks, and one based on the transformer
architecture (Vaswani et al., 2017).

RNN Our base model uses two distinct
stacked bidirectional LSTMs as the encoder
and stacked unidirectional LSTMs as the de-
coder. Both consist of two layers of size 512,
with randomly initialized embeddings of size
300. The base model is optimized with LAMB
while others are optimized with Adam, using
parameters β1 = 0.9, β2 = 0.999, ε = 10−8,
and L2 penalty 10−5 (Kingma and Ba, 2014).
The learning rate is found separately for each
experiment via hyperparameter search. We
also use stochastic weight averaging (Izmailov
et al., 2018), and exponential learning rate de-
cay. For an extended version of this model,
we also try incorporating contextualized word
vectors, by augmenting the input with ELMo
embeddings (Peters et al., 2018).

Transformer We also experiment with two
further variants of the model, that replace en-
coder and decoder with transformers. In the
first variant, the encoder is initialized with
RoBERTa (Liu et al., 2019), a pretrained lan-
guage model. The decoder is a randomly ini-
tialized 3-layer transformer, with hidden size
512 and 4 attention heads. In the second vari-
ant, we initialise both encoder and decoder
with BART (Lewis et al., 2019), a sequence-to-
sequence pretained model. Both encoder and
decoder consist of 12 layers with hidden size
1024. We train these with stochastic weight av-
eraging (Izmailov et al., 2018), and determine

optimal hypermarameters on the validation
sets.

4 Experiments

4.1 Session Based Task Oriented Parsing

To incentivize further research into session
based semantic parsing through the decoupled
intent-slot paradigm we are releasing 20 thou-
sand annotated sessions in 4 domains: calling,
weather, music and reminder. We also allow
for mixtures of domains within a session.

The data was collected in two stages. First
we asked crowdsourced workers to write ses-
sions (both from the users perspective as well
as the Assistant’s output) tied to certain do-
mains. Once we vetted the sessions, we asked
a second group of annotators to annotate the
user input per session. Each session was given
to three separate annotators. We used major-
ity voting to automatically resolve the correct
parse when possible. In the cases where there
was no agreement, we selected the maximum
informative parse which abode by the label-
ing representations semantic constraints. The
annotator agreement rate was 55%, while our
final chosen semantic parses were correct 94%
of the time. The large delta between the two
numbers is due to multiple correct semantic
parses existing for the same session.

We open source SB-TOP in the follow-
ing link: http://www.dl.fbaipublicfiles.
com/sbtop/SBTOP.zip. More information
about the dataset can be found in the Table ??
in the Appendix.

4.2 Semantic Parsing

We evaluate the decoupled model on five se-
mantic parsing datasets, four public and one
internal. All but two are annotated with com-
positional semantic representations and the
other with the standard flat intent-slot repre-
sentation. In order to apply the decoupled
models to them, we follow a mechanical proce-
dure to transform the annotations to decoupled
representations: all utterance tokens which are
not part of a slot are stripped. This procedure
effectively turns the tree of Fig. 1a into the tree

http://www.dl.fbaipublicfiles.com/sbtop/SBTOP.zip
http://www.dl.fbaipublicfiles.com/sbtop/SBTOP.zip
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of Fig. 1b. We note that this procedure for all
compositional and flat intent-slot data avail-
able is reversible, therefore we can convert
from decoupled back to source representation.

The first public dataset is TOP (Gupta et al.,
2018), which consists of over 31k training ut-
terances covering the navigation, events, and
navigation to events domains. The first inter-
nal dataset we use contains over 170k training
utterances annotated with flat representations,
covering over 140 distinct intents from a va-
riety of domains including weather, commu-
nication, music, weather, and device control.
The second internal dataset contains over 67k
training utterances with fully hierarchical rep-
resentations, and covers over 60 intents all in
the communication domain.

The second and third public datasets
are SNIPS Natural Language Understanding
benchmark1 (SNIPS-NLU) and the Airline
Travel Information Systems (ATIS) dataset
(Hemphill et al., 1990). We follow the
same procedure that was mentioned above for
preparing the decoupled data for both of these
datasets.

As can be seen from Table 1b, our proposed
approach outperforms the previous state-of-
the-art results on the ATIS, comparable to
state-of-the-art on SNIPS, and TOP seman-
tic parsing task, which had been obtained with
the Seq2SeqPtr model by Rongali et al. (2020).
Comparing the decoupled model to RNNGs,
we note that a single decoupled model, us-
ing either biLSTMs or transformers (with
RoBERTa or BART pretraining) is able to out-
perform the RNNG. In fact, the decoupled
model even outperforms an ensemble of seven
RNNGs. The decoupled biLSTM extended
with ELMo inputs is able to outperform the
transformer model initialised with RoBERTa
pretraining. However, the best performance is
achieved by using the transformer model with
BART-large pretraining, with the decoupled
model fine-tuned jointly on top of it (Lewis
et al., 2019). In order to understand how much
of these gains are due to the semantic repre-
sentation, we perform an ablation study by

IN:FIND RESTAURANT

SL:FOOD

moroccan

SL:AREA

south

(a) “i want a restaurant in the south part of town that
serves moroccan food”.

IN:FIND RESTAURANT

SL:FOOD

europeanmodern

SL:AREA

south

(b) “how about modern european”

Figure 5: Example DSTC2 session, annotated for
the decoupled model.

evaluating the biLSTM and RoBERTa-based
models on TOP data using the standard logical
form representation, and find a drop in frame
accuracy of 0.32 and 0.55 respectively.

The TOP dataset contains to the order of
30k examples in its training set. In order to
further tease out the differences between the
biLSTM and transformer approaches, and to
see how they compare when more training
data is available, we also evaluate these mod-
els on our two larger internal datasets. Ta-
ble 1c shows that the RoBERTa-based model
does indeed benefit from the extra training
data, being able to outperform the biLSTM-
based model on the two datasets. In both cases,
the decoupled model with BART pretraining
achieves the top performance.

The same procedure was used over our SB-
TOP dataset, with the only variant being we
concatenated SB-TOP and TOP and jointly
trained over both datasets. Table 2 shows the
test results over

4.3 Slot carryover

To evaluate the ability of the decoupled mod-
els to work on session-based data, we eval-
uate them on a task which requires draw-
ing information for multiple utterances. The
DSTC2 dataset (Henderson et al., 2014) con-
tains a number of dialogues annotated with
dialogue state – slightly over 2k sessions in
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Table 1: Frame accuracy of the decoupled models on semantic parsing tasks. † indicates results from
Hakkani-Tür et al. (2016); ‡, from Goo et al. (2018); ∗, from Zhang et al. (2018); ×, from Chen et al.
(2019a).

(a) Accuracy on TOP.

Model Acc.

RNNG 80.86
RNNG + Ensembling 83.84
RNNG + ELMo 83.93

Decoupled biLSTM 79.51
Decoupled transformer 64.50
Decoupled ELMo 84.85
Decoupled RoBERTa 84.52
Decoupled BART 87.10

Best Seq2SeqPtr 86.67

(b) Accuracy on ATIS and SNIPS.

Model ATIS SNIPS

Joint biRNN† 80.7 73.2
Slot gated‡ 82.2 75.5
CapsuleNLU∗ 83.4 80.9
Joint BERT× 88.2 92.8
Joint BERT CRF× 88.6 92.6

Decoupled BART 89.25 91.00

Best Seq2SeqPtr 87.12 87.14

(c) Accuracy on internal datasets.

Model Acc.

Multi-domain (170k)

Decoupled ELMo 86.03
Decoupled RoBERTa 87.32
Decoupled BART 88.29

Single-domain (67k)

Decoupled ELMo 90.52
Decoupled RoBERTa 91.51
Decoupled BART 92.16

Table 2: Decoupled model architecture results over the SB-TOP dataset. FA is exact match between
canonicalized predicted and tree structures. Ref Only FA does not distinguish between implicit/explicit
references. Intent accuracy is accuracy over top level intents while Inner Parse Accuracy is FA not
considering top level intent.

Model Oracle@Beam FA Ref-only FA Intent Acc. Inner Parse Acc.

Humans 1 55.04 57.4 84.32 60.12

Decoupled biLSTM 1 48.48 49.19 78.60 52.74
5 60.24 69.88 93.71 72.01

Decoupled ELMo 1 51.22 52.03 80.93 55.07
5 62.58 70.08 94.73 72.11

Decoupled BART 1 53.45 54.18 82.46 56.84
5 65.19 72.78 96.67 76.45

the training set. They involve users searching
for restaurants, by specifying constraints such
as cuisine type and price range. Given that
users will often take multiple turns to specify
all constraints, determining the correct dia-
logue state requires the model to consider all
past turns too. Consider the example of the
two-turn DSTC2 session shown in Figure 5:
the [SL:AREA south ] slot, introduced
in the first session, is said to carry over to the
second session as it still applies to the dialogue
state, despite not being explicitly mentioned.1

To make previous utterances available to the
model, we use a simple approach: all utter-
ances are concatenated, with a separator token,
and are fed to the encoder.

1The image shows the tree form to which we con-
verted the DSTC2 native state tracking annotations, to
make them easily linearizable and thus treatable by the
decoupled models.

The decoupled models are evaluated on
frame accuracy and slot carryover – the frac-
tion of slots correctly carried over from one
turn to the next. Carryover figures are split
by slot distance: how many turns prior to the
current one the slot under consideration first
appeared. As shown in Table 3, the RoBERTa
decoupled model outperforms the biLSTM
model on frame accuracy, while the biLSTM
model takes the lead in terms of raw slot car-
ryover performance. BART outperforms both,
achieving the best overall performance.

For informative purposes, we also include
results from standard dialogue state tracking
models. The results show that the decou-
pled models, despite not being specifically de-
signed for the task of dialogue state tracking,
compare favorably to other approaches in the
literature. While our models outperform them
on most metrics, it should be noted that they
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Table 3: Performance of the decoupled models on a state tracking task (DSTC2).

Model Accuracy Slot distance
0 1 2 ≥ 3

LSTM-based (Naik et al., 2018) — 92.42 91.11 91.34 87.99
Pointer network decoder (Chen et al., 2019b) — 92.70 92.04 92.90 91.39
Transformer decoder (Chen et al., 2019b) — 93.00 92.69 92.80 89.49
GLAD (Zhong et al., 2018) 74.5 – – – –

Decoupled biLSTM 88.3 93.34 94.73 95.28 95.73
Decoupled RoBERTa 89.8 91.98 92.94 93.58 94.28
Decoupled BART 90.2 94.21 95.47 95.90 97.05

are very different in nature: the decoupled
models attend over all utterances leading up
to and including the current turn, while state
tracking models generally only have access to
the current utterance and the previous system
actions – in the case of Zhong et al. (2018) –
or a fixed length dialogue representation. It is
interesting to note that the decoupled models
perform better on distant slots: this suggests
that the models may be paying more attention
to the beginning of the sentences, which may
be an artifact of their pretraining.

5 Related Work

Traditional work on semantic parsing, either
for the purposes of question answering or task-
oriented request understanding, has focused
on mapping utterances to logical form repre-
sentations (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Kwiatkowksi et al.,
2010; Liang, 2016; van Noord et al., 2018).
Logical forms, while very expressive, are also
complex. Highly trained annotators are re-
quired for the creation of training data, and as
a result there is a lack of large scale datasets
that make use of these formalisms.

Intent-slot representations such as those
used for the ATIS dataset (Price, 1990) or the
datasets released as part of the DSTC chal-
lenges (Henderson et al., 2014; Rastogi et al.,
2019) have less expressive power, but have
the major advantage of being simple enough
to enable the creation of large-scale datasets.
Gupta et al. (2018) introduce a hierarchical

intent-slot representation, and show that it is
expressive enough to capture the majority of
user-generated queries in two domains.

Recent approaches to semantic parsing have
focused on using techniques such as RN-
NGs (Gupta et al., 2018), RNNGs augmented
with ensembling and re-ranking techniques or
contextual embeddings (Einolghozati et al.,
2018), sequence-to-sequence recurrent neu-
ral networks augmented with pointer mecha-
nisms (Jia and Liang, 2016), capsule networks
(Zhang et al., 2019), and Transformer-based
architectures (Rongali et al., 2020).

6 Conclusions

We started this paper by exploring the limi-
tations of compositional intent-slot represen-
tations for semantic parsing. Due to the con-
straints it imposes, it cannot represent certain
utterances with long-term dependencies, and
it is unsuitable for semantic parsing at the
session (multi-utterance) level. To overcome
these limitations we propose an extension of
this representation, the decoupled represen-
tation. We propose a family of sequence-
to-sequence models based on the pointer-
generator architecture – using both recurrent
neural network and transformer architectures
– and show that they achieve top performance
on several semantic parsing tasks. Further, to
advance session-based task-oriented semantic
parsing, we release to the public a new dataset
of roughly 20k sessions (over 60k utterances).
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