
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4451–4464,
November 16–20, 2020. c©2020 Association for Computational Linguistics

4451

Pre-tokenization of Multi-word Expressions
in Cross-lingual Word Embeddings

Naoki Otani1 Satoru Ozaki1 Xingyuan Zhao1

Yucen Li2∗ Micaelah St Johns3∗ Lori Levin1

1Carnegie Mellon University 2Facebook 3Stanford University
1{notani,sozaki,xingyuaz,levin}@andrew.cmu.edu

2yucenli@fb.com 3mstjohns@stanford.edu

Abstract

Cross-lingual word embedding (CWE) algo-
rithms represent words in multiple languages
in a unified vector space. Multi-Word Expres-
sions (MWE) are common in every language.
When training word embeddings, each com-
ponent word of an MWE gets its own sepa-
rate embedding, and thus, MWEs are not trans-
lated by CWEs. We propose a simple method
for word translation of MWEs to and from En-
glish in ten languages: we first compile lists of
MWEs in each language and then tokenize the
MWEs as single tokens before training word
embeddings. CWEs are trained on a word-
translation task using the dictionaries that only
contain single words. In order to evaluate
MWE translation, we created bilingual word
lists from multilingual WordNet that include
single-token words and MWEs, and most im-
portantly, include MWEs that correspond to
single words in another language. We show
that the pre-tokenization of MWEs as single
tokens performs better than averaging the em-
beddings of the individual tokens of the MWE.
We can translate MWEs at a top-10 precision
of 30-60%. The tokenization of MWEs makes
the occurrences of single words in a train-
ing corpus more sparse, but we show that it
does not pose negative impacts on single-word
translations.

1 Introduction

Cross-lingual word embeddings (CWEs) are real-
valued vector representations of words in multiple
languages placed in a shared vector space, with
the intention that words with closer meanings have
closer locations in the vector space. First, mono-
lingual word embeddings are trained based on
the hypothesis of distributional semantics (Harris,
1954) that context approximates meaning. They

∗This work was conducted while YL and MJ were at
Carnegie Mellon University.

are learned from data in a way that words used in
similar contexts have similar vectors. Following
that, the monolingual word embeddings are aligned
to produce CWEs. CWEs are an essential build-
ing block in modern cross-lingual methods and can
also be used to induce bilingual lexicons from a
small seed dictionary (Mikolov et al., 2013).

An important and overlooked fact is that before
CWEs are trained, the corpus is pre-processed by
a word tokenizer. This illustrates a clear limitation
of the state-of-the-art CWEs: they can only align
words that happen to be considered as single tokens
by the word tokenizer.

Multi-word expressions (MWEs) are combina-
tions of orthographic words, whose meaning, form,
use, or distribution is non-compositional or un-
predictable in some way (Sag et al., 2002; Bald-
win and Kim, 2010). They come in diverse forms
such as compound nouns (dance floor), named en-
tities (United States), phrasal verbs (give up), and
connectives (as well as). Word tokenizers do not
recognize MWEs as single units but rather as a se-
quence of their components, a deficiency carried
into CWE construction.

In this position paper, we argue that the token
units of word embeddings should be discussed
more carefully, and, in particular, that MWEs
should be recognized as single units before training
and evaluating word embeddings. In cross-lingual
applications, MWEs are particularly important. A
single token in one language is often translated
into an MWE in another language. So, failure to
tokenize MWEs is a critical flaw of CWEs in the
task of word translation and presumably in other
cross-lingual tasks as well.

Some studies (Iyyer et al., 2015; Shen et al.,
2018) have suggested representing phrase and sen-
tence embeddings by taking the average or sum of
their component word vectors. However, such a
simple approach is not sufficient, as the meaning
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联合

美国 州

average

Figure 1: The effect of MWE tokenization in cross-
lingual alignments (Table 1). English word embed-
dings trained with single-word tokenization (2) do not
have united states in the vocabulary, and we represent
its embedding by the average embedding. Word embed-
dings with MWE tokenization (4) assigns a unique em-
bedding to united states, which is better aligned with
its Chinese translation 美国. Note that the configura-
tion of single-word embeddings also changes by having
MWE embeddings.

of an MWE is often unpredictable from its compo-
nents, as in red tape and hot dog. Instead, MWEs
should be explicitly modeled during CWE training.

To illustrate the advantage of having MWEs in
the CWE vocabulary, we compare the alignments
of English-Chinese CWEs with and without MWE
tokens (Figure 1). Table 1 shows cosine similari-
ties of English and Chinese words united and states.
The numbers on the left side of each arrow (Single)
show the cosine similarities between English and
Chinese embeddings trained with standardly pre-
tokenized corpora. As the English MWE United
States is not in the vocabulary, we made an em-
bedding for it by taking the average of the vectors
of united and states. In contrast, we obtained the
cosine similarities on the right-hand side of each
arrow (+MWE) by combining United States into
one token before training word embeddings.

With MWE-based tokenization, the single to-
ken united states aligns with美国 (United States;
meiguo) with a high cosine similarity of 0.82. The
pre-tokenization of United States into a single to-
ken solves additional problems as well. When we
treat United States as two separate tokens, we dis-
tort the embeddings of united and states. On the
left sides of the arrows in Table 1, both united
and states have a much higher cosine similarity
to 美国 than to their correct translations. Also,
united and state have a higher cosine similarity to
each other than they should. Recognizing United
States as one token before training word embed-
dings makes it possible to translate a single token
to/from an MWE and ameliorates the alignments

Single→ +MWE 联合united 州states 美国U.S.

united .32→ .40 .19→ .10 .57→ .41
states .32→ .24 .16→ .10 .63→ .44
united states .37→ .38 .20→ .18 .69→ .82

Table 1: Cosine similarities between English and
Chinese word embeddings projected in the shared
space. We compare the alignments of embeddings
without MWEs (left) and with MWEs (right) here.

of single tokens.1

In this study, we employ a simple method to
identify MWEs in corpora by using MWE dic-
tionaries instead of automatic detection. Despite
the rich body of work (Constant et al., 2017), in-
cluding methods developed in specialized shared
tasks (Schneider et al., 2014; Savary et al., 2017;
Ramisch et al., 2018), automatic MWE detection is
still a hard problem (Savary et al., 2019). Ramisch
et al. (2012) tested several unsupervised discovery
methods and reported that they performed poorly
in terms of either precision or recall.

A lexicon-based approach to MWE detec-
tion comes with another advantage. Supervised
methods for MWE detection require annotated
texts (Constant et al., 2017), which may not be
available for all languages. On the other hand,
the high availability of lexical resources contain-
ing MWEs in many languages, such as Wiktionary
and WordNet, makes a lexicon-based approach for
MWE detection possible in many languages.

Our focus in this paper is not to study the auto-
matic extraction of MWEs, but rather to establish
that tokenization of MWEs can contribute to im-
provements in CWE. Since MWE lexicons exist for
the languages we are interested in, we have used
those for the time being. Of course, using automat-
ically discovered MWEs would be an interesting
direction for future research.

To explore the effect of pre-tokenization of
MWEs, we evaluate CWEs in the task of word
translation between English and 10 languages, Ara-
bic), Bulgarian, Chinese, German, Hebrew, Hindi,
Japanese, Russian, Spanish, and Turkish, which
span a wide typological variety. We find that our
simple lexicon-based tokenization can align embed-
dings of MWEs at a precision@10 score of 30-60%

1The reason for the lowering of the cosine similarity be-
tween English and Chinese embeddings of states would be
the fact that the English word states is polysemous while the
Chinese word states almost exclusively means regional states.
After the pre-tokenization of MWEs, English states no longer
appears as the component of united states, so its distribution
would be dissimilar to that of regional states.
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without negative impacts on single word translation.
Furthermore, we find some single-token words are
correctly translated into MWEs, which are not at-
tested in the common evaluation practice.

In summary, we argue that CWE studies should
consider MWEs in development and evaluation.
MWEs are pervasive in many languages and should
not be ignored when the alignment of words is
discussed. We present a lexicon-based method to
this end (§3-4) and show its effectiveness in the task
of word translation (§5). We have created a new
word translation dataset that contains MWEs (§3.2).
The dataset is in ten language pairs and contains
MWEs in addition to single orthographic tokens.2

2 Related Work

2.1 Cross-lingual Word Embeddings
In this study, we experiment with one of the ma-
jor approaches of learning CWEs, where mono-
lingual embeddings trained in each language are
mapped using cross-lingual supervision. Early
work by Mikolov et al. (2013) showed that a lin-
ear transformation of word embeddings across lan-
guages can be trained by a bilingual dictionary.
Smith et al. (2017) reported that the linear mapping
becomes more accurate and computationally effi-
cient by setting an orthogonal constraint on a trans-
formation matrix. Recent studies (Artetxe et al.,
2017; Zhang et al., 2017; Conneau et al., 2018)
have further demonstrated that a transformation
matrix can be learned by a very small amount of
seed translations and even without any supervision.

Another stream of studies on CWEs adopts a
joint approach: word embeddings on multiple lan-
guages are trained at one time using parallel cor-
pora (Luong et al., 2015; Gouws et al., 2015). It
is an interesting future direction to explore how
MWEs affect joint detection of CWEs.

2.2 The limitations of CWEs
Besides the problem of word units, several limita-
tions of CWEs have been pointed out in the litera-
ture. The majority of such work focuses on the sta-
tistical characteristics of word embeddings rather
than their linguistic nature. Some studies (Søgaard
et al., 2018; Ormazabal et al., 2019) claim that the
accuracy of cross-lingual alignments depends on
the similarity of word embeddings spaces of differ-
ent languages, and this similarity in turn depends

2Available at https://github.com/llab-cmu/
emnlp2020-mwe-pretokenization.

on the similarity between the training corpora. Ke-
mentchedjhieva et al. (2019), illustrating an issue
related to evaluation of CWEs, argues that proper
nouns constitute a quarter of the MUSE dataset,
rendering it not ideal for word translation.

Using a word translation task for the intrinsic
evaluation of CWEs presupposes a correlation be-
tween its performance with the performance of
CWEs in downstream tasks, which has been ques-
tioned by several studies. Ammar et al. (2016),
Glavaš et al. (2019) and Fujinuma et al. (2019)
show low correlation between word translation ac-
curacy and the performance of downstream tasks
such as document classification, natural language
inference, and dependency parsing. A specific
problem may be that underfitting to the training
data in order to better handle unseen words in the
test set hinders downstream tasks that rely on words
from the training dictionary (Zhang et al., 2020).
In this study, we primarily examine the transferra-
bility of MWEs in a word translation task, although
it is possible that the better treatment of MWEs is
also effective in downstream tasks.

2.3 Multi-word Expressions

MWEs have been studied in the context of syn-
tactic analysis (Rosén et al., 2016; Kahane et al.,
2017) and semantic analysis (Tratz and Hovy, 2010;
Cordeiro et al., 2019). The discovery and identifi-
cation of MWEs in corpora are important problems
in this area (Sag et al., 2002), and much effort has
been devoted to the development of methods (Con-
stant et al., 2017) and annotated resources (Los-
negaard et al., 2016). The universal dependen-
cies (UD) project (Nivre et al., 2016) covers a wide
range of languages but uses just a few dependency
relations to annotate MWEs, namely fixed, flat, and
compound. The DiMSUM shared task (Schnei-
der et al., 2016) aims to detect English MWEs in
texts. The PARSEME project (Savary et al., 2017;
Ramisch et al., 2018) targets verbal MWEs and has
constructed benchmark datasets in several–mostly
European–languages for training automatic MWE
taggers. However, such training resources are avail-
able only in a limited number of languages, and
even with such resources, the automatic analysis of
MWEs is known to be very difficult. Savary et al.
(2019) argues the importance of syntactic MWE
lexicons for further development in this area.

Another line of work analyzes the interpreta-
tion of MWEs such as noun compounds (Tratz

https://github.com/llab-cmu/emnlp2020-mwe-pretokenization
https://github.com/llab-cmu/emnlp2020-mwe-pretokenization
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and Hovy, 2010). Some studies exploit word em-
beddings to build a classifier (e.g., Shwartz and
Waterson, 2018). Several studies tokenize MWEs
before training word embeddings (Baldwin et al.,
2003; Salehi et al., 2015; Cordeiro et al., 2019).
Although the major target of these studies is mono-
lingual, our focus is on the cross-lingual mapping
of MWEs by CWEs.

3 Data Creation

This section describes the methods we used for cre-
ating the data that we are releasing with this paper:
(1) monolingual lists of MWEs in eleven languages
for pre-tokenizing MWEs in corpora and (2) bilin-
gual dictionaries (ten languages each paired with
English) for evaluating the resulting MWE embed-
dings in the word translation task. The languages
are Arabic (ar), Bulgarian (bg), Chinese (zh), En-
glish (en), German (de), Hebrew (he), Hindi (hi),
Japanese (ja), Russian (ru), Spanish (es), and Turk-
ish (tr)

3.1 Monolingual MWE Lists for
Pre-tokenization

For each of the eleven languages, we compiled
a list of MWEs from publicly available resources
listed below. We examined each lexical unit in each
resource and selected those with multiple tokens.
We treat all lexical units that are divided into two
or more tokens as MWEs in our study, assuming
they are fixed semantic units in some way.
eomw: Entries of the Extended Open Multilingual
Wordnet (EOMW; Bond and Foster, 2013) consist
of a WordNet synset identifier, a language identifier,
and a lexical unit in that language. EOMW includes
all WordNet synsets and additional synsets drawn
from Wiktionary and the Unicode Common Locale
Data Repository.3 Most entries are nominals, but
this resource also contains other types of MWEs
like verbal phrases and connectives.

parseme: Parseme is multilingual corpus in which
Verbal MWEs are annotated for the PARSEME
shared task 1.1 (Ramisch et al., 2018). Types of
verbal MWEs include light verb constructions (e.g.,
give a speech), verb-particle constructions (e.g.,
wake up), verbal idioms, etc. They can be com-
monly observed in many languages even though

3We use subsets of Arabic (Elkateb and Black, 2006),
Chinese (Wang and Bond, 2013), English (Fellbaum, 1998),
Japanese (Isahara et al., 2008), Spanish (Gonzalez-Agirre
et al., 2012), Bulgarian, Russian, German, Hebrew, Hindi, and
Turkish (Bond and Foster, 2013).

eomw eomw parseme

ar 1,608 bg 1,022 3,255
ja(i) 5,006 de 1,092 2,705
ja(u) 3,897 en 8,552 8,982

ru 3,887 es 3,079 4,485
zh 6,927 he 934 2,454

hi 454 878
tr 1,959 4,240

Table 2: MWE lists (lemma) used for MWE identi-
fication. eomw=Extended Multilingual Open Wordnet,
i=IPADIC u=UniDic

the category distributions vary from language to
language.

Table 2 shows the sizes of our lexicons. Note
that not all MWEs in our lists are included in our
word embeddings as some of them do not exist in
our training corpora.

3.2 Bilingual Dictionaries for the Word
Translation Task

Next, we built bilingual dictionaries that have
MWEs for each of the pairs between English and
the ten languages. To the best of our knowl-
edge, there is no public benchmark dataset includ-
ing translations between MWEs. We again used
EOMW, linking lexical units in different languages
with the same WordNet synset identifiers. We call
the resulting bilingual dictionaries EOMW-MWE
BENCHMARK, hereafter. In the EOMW-MWE
benchmark, source words are all MWEs, while
target words could be both single words or MWEs.
We limited source words to be MWEs to ensure an
MWE is always involved in translation. The num-
ber of source words varies in different language
pairs. For example, zh-en has the largest number of
source (zh) words, 4,813, while hi-en has 274. We
report the number of source words in Table 4 (§5).

3.2.1 Annotation of MWE types
We annotated the 1.5k English MWEs in our bilin-
gual dictionaries for the purpose of error analysis.4

We manually POS-tagged the English MWEs with
the six tags adj (adjective phrases), adv (verbal
and clausal adverbs), noun (noun phrases), prep
(prepositional phrases), verb (verb phrases) and
misc (anything else). We also classified the English

4NO, SO, XZ and LL annotated English MWEs. LL is a
professor who is a native speaker of English and has exper-
tise in theoretical and computational linguistics. The others
are non-native speakers studying computational linguistics
and NLP in the US. SO also has a background in theoretical
linguistics.
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MWEs into four categories, synphrase (s), proper-
name (pn), compound (c) and flat+fixed+idiom
(ffi). Below we list the definition and a prototypical
example for each of the four categories.

synphrase (s) A semantically compositional
multi-word entry from EOMW , e.g. cease to be.

proper-name (pn) A MWE that non-deictically
refers to a unique or identifiable referent. Most of
these are PER, LOC, GPE, or ORG in a simple
NER annotation scheme. e.g. Pacific Ocean.

compound (c) We included noun-noun com-
pounds as well as adjective-noun pairs, which are
often hard to distinguish from noun-noun com-
pounds. e.g. opera house, nuclear weapon. Most
are syntactically endocentric (headed) and semanti-
cally endocentric (a hyponym of its head).

flat+fixed+idiom (ffi) A MWE that is one of the
following: (1) A fixed grammaticalized expres-
sion that behaves like a function word or adverbial,
e.g. that is to say; (2) A verbal idiom (e.g. let
loose), verb-particle construction (e.g. hang up)
or multi-verb construction (e.g. let go) as defined
by PARSEME, and fixed collocation constructions
like take a step, make a decision; (3) Any other
idiomatic MWE, e.g. bread and butter.

We defined our own categories rather than use an
existing annotation scheme. Synphrase was neces-
sary because our dataset contained certain MWEs
such as other side, cease to be that are frequent
enough to appear in an MWE lexicon but were se-
mantically compositional. We gave proper name
its own category (proper-name) because proper
names are uniquely nouns unlike other unheaded
MWEs, which are dates, complex numerals and
foreign phrases that span a wide variety of POS.

We annotated 1.5k English MWEs containing
61 s, 969 c, 215 pn, and 237 ffi. Of these 1285
are nouns, 98 verbs, 53 adjective, 52 adverb, 6
preposition, and 3 misc.5 We excluded 18 MWEs
that were numbers or contained tokenization errors.

4 Training CWEs: Components

This section describes our pipeline for training
CWEs, including the following three steps (Fig-
ure 2): (1) identifying MWEs in a corpus, (2)
training monolingual word embeddings, and (3)
aligning embeddings across languages.

5Note that some MWEs have multiple possible parts-of-
speech. For example, cross over (noun and verb).

4.1 Monolingual MWE Identification
We first prepare a monolingual corpus for training
word embeddings for each of the eleven languages
included in this study. We take a simple lexicon-
based approach to combine MWEs into one token.
Suppose we have the tokenized sentence below.

(1) freedom fries was a political euphemism
for french fries in the united states .

Using an MWE lexicon which includes french fries
and united states, we combine tokens with under-
scores and obtain the following sentence.

(2) freedom fries was a political euphemism
for french fries in the united states .

With this approach we cannot identify MWEs that
do not exist in the lexicon like freedom fries, but
there is an advantage: we do not need an annotated
corpus of MWEs. Such corpora are difficult to
obtain in more than a few languages.

Based on the lexicons that we compiled for
each language (§3.1), we tokenize MWEs in a cor-
pus with mwetoolkit3 (Ramisch, 2015). To
increase the recall, we use lemmas for string match-
ing.6 We do not consider discontinuous MWEs.

4.2 Monolingual Word Embeddings
We train monolingual embeddings on tokenized
texts with off-the-shelf word embedding algo-
rithms. We adopt fastText with CBOW (Bo-
janowski et al., 2017). MWEs processed in the
previous step are treated as one token and given an
individual vector. For example, french fries has a
different vector from those of french and fries.

4.3 Cross-lingual Mapping of Embeddings
Now we take two sets of word embeddings from
two different languages and align the source em-
beddings to the target embeddings using an exist-
ing supervised method based on a bilingual dictio-
nary. Suppose we have n pairs of source and target
words. We denote the embeddings of those words
X ∈ Rn×d and Y ∈ Rn×d, respectively, where d
is the dimension of the embeddings. We learn a
d× d matrix W so that XW is close to Y in terms
of Frobenius norm (Mikolov et al., 2013).

6In Appendix A, we show our attempt at using unsu-
pervised co-occurrence measures for automatic detection of
MWEs for this study. We found that the vast majority of true
MWEs in our evaluation lexicons had low Dice coefficient
scores, which means that the automatic detection method did
not predict them to have high chances of being MWEs. Thus,
we were unable to find a good threshold for Dice coefficient
at which precision and recall would both be adequate.
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freedom fries was …
for french_fries in …

french 0.1 0.6 0.2 … 0.8

fries 0.5 0.4 0.2 … 0.1

0.4 0.3 0.2 … 0.3french_fries

french 0.4 0.1 0.2 … 0.4

fries 0.1 0.7 0.5 … 0.2

法式 0.4 0.2 0.2 … 0.4

炸薯条 0.1 0.9 0.5 … 0.1

french-法式
fries-炸薯条

…

0.2 0.8 0.5 … 0.1french_fries

Figure 2: Pipeline for training CWEs with MWEs.

min
W
|XW − Y |F

We follow Xing et al. (2015) and impose an or-
thogonality constraint on W , namely W TW = I
as this constraint is known to improve the accuracy
of word translation. We then refine W using an
iterative bootstrapping method proposed by Con-
neau et al. (2018). Specifically, we produce pseudo
translation pairs for training by retrieving nearest
neighbors in terms of cross-domain similarity local
scaling (CSLS). Finally, we translate all embed-
dings in the source language into the vector space
in the target language by W .

5 Experiments

To examine the effect of pre-tokenization of MWEs,
we conduct the task of word translation between
each of the ten languages and English, in both di-
rections. A word embedding in a source language
is projected into the embedding space of a target
language using a trained linear mapping W (§4.3).
The translation candidates of the source word are
retrieved by k-nearest neighbor search in terms of
CSLS. The performance is measured by top-k pre-
cision (Precision@k).7

Our evaluation involves two tasks. In the first
task, we focused on the translation of MWEs us-
ing our new evaluation dictionaries that contain
tokenized MWEs (§3.2). In the second task, we
evaluated the translation of single words on the ex-
isting benchmark, MUSE (Conneau et al., 2018)
to investigate the influence on single word embed-
dings of pre-tokenizing MWEs.

5.1 Corpora
We focus on the translation between en and ten
languages: ar, bg, es, de, he, hi, ja, ru, tr, and

7We used an evaluation script provided with the MUSE
dictionary.

Language Sentence Token Type

ar 1,962,738 91,097,526 1,990,665
bg 2,739,946 56,871,914 1,643,486
de 4,961,118 98,123,008 3,439,237
en 4,174,043 1,00,000,031 1,764,082
es 3,729,100 99,733,231 1,869,469
he 3,292,840 84,853,134 1,366,709
hi 1,016,199 24,179,614 884,272
ja (ipadic) 6,709,065 100,000,005 1,164,777
ja (unidic) 3,888,640 100,000,004 2,656,774
ru 4,735,118 100,000,032 3,516,295
tr 3,055,138 56,576,330 2,011,721
zh 3,688,280 100,000,003 2,411,269

Table 3: Statistics of Wikipedia corpora.

zh. These languages represent both Indo-European
and non-Indo-European languages with a wide
variety of morphological features and have suf-
ficient Wikipedia texts for training embeddings.
We report results using two Japanese segmenta-
tion schemes, IPADIC (Asahara and Matsumoto,
2000) and UniDic (Den et al., 2008). Both of
these break Japanese utterances down into rela-
tively small units, sometimes corresponding to
morphemes. For this reason, the Japanese texts
we trained on have fewer types than the other lan-
guages despite the fact that Japanese is highly ag-
glutinative.

For training monolingual embeddings, we sam-
pled 100M tokens for each language8 from the
publicly available Wikipedia corpora (Ginter et al.,
2017), which were automatically annotated with
UDPipe. Table 3 shows the corpus statistics.
We then used mwetoolkit3 to annotate MWEs.
Note that the PARSEME dataset does not cover
Arabic9, Japanese, Russian, and Chinese.

8Except for bg, he, hi, and tr, whose tokenized Wikipedia
dumps only had 57M, 85M, 24M, and 57M tokens, respec-
tively. We used all the texts in these languages.

9The PARSEME shared task covers Arabic, but the re-
source is not publicly available.
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en→ L2 ar bg de es he hi ja(i) ja(u) ru tr zh

Single 37.10 25.32 35.82 44.32 37.60 43.97 0.00 25.21 18.97 40.20 25.25
MWE (eomw) 40.23 37.69 45.71 56.47 40.60 45.54 44.76 40.01 31.97 44.26 36.29
MWE (+parseme) 36.57 45.09 55.77 40.87 46.43 44.68

Num. of src tokens 1,054 711 867 2,279 734 448 1,637 2,217 2,061 1,184 1,196

en← L2 ar bg de es he hi ja(i) ja(u) ru tr zh

Single 46.99 47.18 56.97 54.06 41.92 59.85 27.25 20.31 40.37 46.08 26.84
MWE (eomw) 55.22 54.90 63.11 64.97 55.39 65.69 34.77 29.79 50.19 53.59 34.20
MWE (+parseme) 54.90 62.09 64.43 55.56 63.14 53.43

Num. of src tokens 1,045 337 488 1,687 594 274 3,526 2,481 1,028 1,211 4,813

Table 4: Precision@10 on EOMW-MWE in Task 1.

5.2 Experimental Settings

Task 1: In the first task, we use our EOMW-MWE
dataset to evaluate the translatability of MWE em-
beddings obtained by lexicon-based tokenization.
For some languages, the EOMW-MWE dataset has
a small number of source words due to the coverage
of multilingual WordNet, leaving not enough data
for both training and testing. Therefore, for all lan-
guages, we used the entire EOMW-MWE dataset
for testing word translation accuracy. For training,
the dictionaries do not contain MWEs. The train-
ing dictionaries consist only of 5k word pairs from
the common word translation benchmark, MUSE.
If the cross-lingual mapping could learn a proper
transformation matrix based on single word dictio-
naries, it should also be able to transform MWE
embeddings to the shared vector space properly.
Task 2: We also study whether the inclusion of
MWEs in cross-lingual embedding space adversely
affects the alignments between single words. We
use MUSE for training and evaluation in Task 2.
For each language pair, we train and test cross-
lingual mappings by the first 5k and next 1.5k
unique source words10 in the bilingual dictionary,
respectively.
Parameters: We trained CBOW fastText models
of 300 dimensions with the parameters suggested
by Grave et al. (2018). We used the implementa-
tion by (Conneau et al., 2018) to align monolingual
embeddings by the method described in §4.11 To
fairly compare between the baseline (tokenization
without MWEs) and the experimental condition
(tokenization with MWEs), we uses the same set
of candidate words from which we are going to
pick the k best. The candidate set does not include

10Source words are sorted by frequencies by Conneau et al.
11We also experimented with VecMap (Artetxe et al., 2018)

and observed a similar result (Appendix E).

MWEs in Task 2. For the baseline in Task 1, MWEs
are represented by the average of the embeddings
of the individual words. We used larger vocabulary
sizes (e.g, 300-600k) for the candidate set than typi-
cal sizes in related studies (e.g. 200k). We describe
the details of implementation and hyperparameters
in Appendix C and D.

5.3 Task 1: MWE Translation

As a baseline method, we tokenize the corpus with-
out MWEs and represent the embedding of each
MWE as the average of the single-word embed-
dings of its components. The baseline and our
MWE embeddings were trained on the same single-
word dictionaries. We report results of a word
translation task on the EOMW-MWE in Table 4.

Despite the absence of MWEs in training dictio-
naries, our CWEs aligned English MWEs with their
correct translation with Precision@10 as high as 30-
60%. Our method clearly outperforms the baseline
method in most language pairs. This fact shows the
importance of learning MWE embeddings directly
from a corpus to establish cross-lingual alignments.

We broke down English–L2 MWEs transla-
tion results based on our annotated 1.5k En-
glish MWEs (§3) in Table 5. In terms of
MWE types, compound (c) was the easiest cat-
egory to translate (success rate of 60.22%), and
flat+fixed+idiom (ffi), which includes various id-
iomatic expressions, was the hardest (25.52%). In
terms of parts-of-speech of MWEs, it turned out
that verbal MWEs were much more difficult to
translate (21.01%) than nominal MWEs (48.06%).
This is consistent with the observation of the
PARSEME shared tasks on verbal MWE identi-
fication. Interestingly, the translation of adverbial
MWEs was very accurate (40.3%). This may in-
dicate that adverbial/adpositional phrases tend to
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MWE type Parts-of-speech

en→ L2 s pn c ffi NOUN VERB ADJ ADV PREP MISC

ar e 10/26 71/197 79/127 7/67 159/358 1/29 1/6 5/20 0/2 1/2

bg e 2/11 45/142 50/72 10/57 96/233 1/16 1/9 8/21 1/3 0/0
bg +p 4/11 41/142 48/72 12/57 92/233 3/16 1/9 8/21 1/3 0/0

de e 23/49 354/758 96/164 48/184 480/1009 13/69 7/31 20/38 1/6 0/2
de +p 20/49 363/758 98/164 54/184 491/1009 14/69 9/31 20/38 1/6 0/2

es e 23/39 334/558 99/141 53/151 453/747 28/70 13/33 15/35 0/2 0/2
es +p 22/39 330/558 99/141 52/151 451/747 25/70 12/33 15/35 0/2 0/2

he e 4/16 57/139 43/73 11/62 107/235 0/33 1/7 7/14 0/1 0/0
he +p 4/16 58/139 45/73 14/62 112/235 0/33 1/7 8/14 0/1 0/0

hi e 1/6 36/68 39/69 5/25 77/145 1/10 0/3 3/9 0/0 0/1
hi +p 1/6 38/71 40/69 4/25 79/148 1/9 0/3 3/10 0/0 0/1

ja(i) e 20/46 242/531 93/161 36/133 360/763 16/52 4/19 11/32 0/3 0/2
ja(u) e 18/45 201/503 83/158 34/132 305/728 14/53 5/20 12/32 0/3 0/2

ru e 16/47 156/451 53/145 38/169 223/662 18/74 7/28 14/41 1/5 0/2

tr e 3/22 132/279 70/103 16/78 209/417 1/26 3/14 7/21 0/2 1/2
tr +p 5/22 131/279 71/103 17/78 212/417 1/26 3/14 7/21 0/2 1/2

zh e 9/31 120/298 46/78 27/101 180/415 9/40 1/20 11/29 1/3 0/1

Correct 38.46% 46.14% 60.22% 25.52% 48.06% 21.01% 24.04% 40.3%

Table 5: Breakdown of MWE translations in Task 1. We present two different breakdowns: (1) based on MWE
categories (synphrase (s), proper-name (pn), compound (c), flat+fixed+idiom (ffi) and (2) based on parts-of-speech.
The second column denotes the MWE list used for pre-tokenization: eomw (e), and eomw+parseme (+p).

en→ L2 ar bg de es hi he ja(i) ja(u) ru tr zh

Single 26.21 35.85 47.97 64.86 32.00 28.12 30.37 31.75 26.09 31.29 33.62
MWE (eomw) 26.01 34.98 48.37 65.13 32.55 29.15 30.16 31.19 26.42 31.96 33.62
MWE (+parseme) 33.98 46.70 65.13 32.00 27.36 32.03

en← L2 ar bg de es hi he ja(i) ja(u) ru tr zh

Single 40.19 49.08 56.67 68.21 46.48 33.29 23.27 22.09 44.91 44.52 26.92
MWE (eomw) 39.16 48.67 55.20 68.61 45.00 33.15 23.81 22.95 45.52 44.02 27.58
MWE (+parseme) 48.87 56.07 67.81 44.78 32.33 44.73

Table 6: Precision@1 on MUSE in Task 2.

En Gold Retrieved MWE

chef シェフ shefu
chef

料理 人 ryori nin
cooking person

detect 検出 kenshutsu
detection [n]

検出 する kenshutsu suru
detection do [v]

Table 7: English-Japanese translation examples.

be used in similar contexts (i.e., words in specific
semantic/grammatical classes) across languages.

In Table 8, we show some correct translations
retrieved by nearest neighbor search. While stop
words such as “in” and “a” are usually not aligned
with significant words, the inclusion of these words
in MWEs (e.g., in vain and a bit) establishes mean-
ingful relationships across languages.

English MWE Retrieved target word

in vain [ar]
that is to say [es] es decir
high school [ja]高校 koko
a bit [tr] biraz
dance floor [zh]舞池 wuchi

Table 8: MWE translations on EOMW-MWE.

5.4 Task 2: Single Word Translation

Table 6 shows the results of single-word translation
on the MUSE benchmark.12 We excluded MWEs
from the embeddings in the target language as the
benchmark only contains single words.

12We also broke down the precision scores in five lan-
guage pairs based on POS of source words annotated by Ke-
mentchedjhieva et al. (2019) but did not observe meaningful
patterns (Appendix E).
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We were concerned that, keeping the amount of
training data unchanged, the inclusion of MWEs
may decrease single-word performance as it makes
the occurrence of single words sparse, and it might
degrade the quality of monolingual word embed-
dings. However, the difference in the performance
of the single word translation in the other language
pairs was not statistically significant.13

Our method might align a single word in one lan-
guage with an MWE in another language, which
is not attested in the common evaluation practice.
To examine this, we included MWE embeddings
in evaluation and observed nearest neighbors. In-
terestingly, our method retrieved MWEs that are
correct translations but absent from the MUSE dic-
tionaries. In particular, we show characteristic ex-
amples in English-Japanese (IPADIC) translations
in Table 7. The first example illustrates a com-
mon construction using -nin (person), which is seg-
mented into two words. The benchmark tends to
contain transcriptions of foreign words like shefu
as they are often single tokens. The second exam-
ple shows verbalization, which is again segmented
into noun + suru (do). These examples exemplify
the limitation of evaluations restricted by single
words, and may explain the difficulty of English-
Japanese word translations reported in a previous
study (Hoshen and Wolf, 2018).

6 Conclusion

We studied the impact of pre-tokenizing MWEs
on cross-lingual alignments of word embeddings.
We found that simple lexicon-based tokenizations
can align embeddings of MWEs at a high precision
without breaking alignments of single-words. We
believe our results will motivate researchers to pay
more attention to the existence of MWEs and how
they are aligned across languages.
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Ivan Vulić. 2019. How to (properly) evaluate cross-
lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
710—-721, Florence, Italy. Association for Compu-
tational Linguistics.

Aitor Gonzalez-Agirre, Egoitz Laparra, and German
Rigau. 2012. Multilingual Central Repository ver-
sion 3.0. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC), pages 2525–2529, Istanbul, Turkey. Euro-
pean Language Resources Association.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. BilBOWA: Fast bilingual distributed repre-
sentations without word alignments. In Proceedings
of the 32nd International Conference on Machine
Learning (ICML), pages 748–756, Lille, France.
PMLR.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC), Miyazaki, Japan.
European Language Resources Association.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Yedid Hoshen and Lior Wolf. 2018. Non-adversarial
unsupervised word translation. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 469–478,
Brussels, Belgium. Association for Computational
Linguistics.

Hitoshi Isahara, Francis Bond, Kiyotaka Uchimoto,
Masao Utiyama, and Kyoko Kanzaki. 2008. De-
velopment of the Japanese WordNet. In Proceed-
ings of the 6th International Conference on Lan-
guage Resources and Evaluation (LREC), pages
2420–2423, Marrakech, Morocco. European Lan-
guage Resources Association.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
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A Automatic MWE Discovery

In this study, we compiled MWE lists from exist-
ing lexical resources. Although MWEs can also be
harvested from corpora without relying on lexical
units, we found in our preliminary experiments that
unsupervised methods cannot distinguish between
MWEs and non-MWE phrases accurately. We
tested word association measures based on word
co-occurrences (Ramisch et al., 2012).

Method: Given tokenized texts, we extract and
filter MWEs as follows:

1. We use syntactic patterns to extract candidates
of MWEs. We define the following patterns
based on part-of-speech (POS) tags.
Nominal compounds:
(Adjective|Noun)+Noun

Verb-particle constructions:
Verb.{0,5}(up|down|on|off|in|out|away)

Here, | denotes an OR condition, . denotes
any POS tags, + denotes 1 or more repetitions,
and {m,n} denotes from m to n repetitions.

2. We count occurrences of MWE candidates
and components of them.

3. We calculate association scores of the compo-
nents of each MWE candidate by Dice coef-
ficients, PMI, and maximum likelihood esti-
mates (Ramisch et al., 2012).

4. We filter MWEs by setting a threshold on the
association score.

Ideally, the real MWEs have higher scores, and
non-MWE phrases have lower scores. Examining
this, however, is not easy. It is very expensive to
manually check all the candidates in Step 1. So,
in our experiments, we aimed to obtain a rough
estimate using the MWE lists we compiled. The
phrases in our lists are true positives and should be
assigned high association scores.

Figure 3 shows the results. The horizontal axis
denotes the Dice coefficients calculated in Step 3,
and the vertical axis shows the number of MWEs
in each bin of Dice coefficients. The orange bars
shows the number of MWEs that exist in our
eomw+parseme lexicon, which are true positives.
This result gives us two important implications.

1. The Dice coefficients are not indicative of
MWE-ness. There are many true MWEs
among the candidates with very low associa-
tion scores. For example, the Dice coefficient
of french fry was only 0.000173.

2. The distribution of the scores is highly skewed,
and it is difficult to set a threshold. If we set
a lower threshold, the results contain many
false MWEs, and if we set a high threshold,
we can only obtain a few MWEs.

We observed very similar results in association
measures other than the Dice coefficients.

B Corpus Preprocessing

We trained word embeddings on the sentences col-
lected and torkenized following UD version 2 (Gin-
ter et al., 2017). We lowercased texts as the to-
kens in MUSE dictionaries are all lowercase. The
used OpenCC14 and simplified Chinese characters.
For Japanese, we tokenized plain texts provided

14https://github.com/BYVoid/OpenCC
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(a) Nominal compounds ((Adjective|Noun)+Noun).
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(b) Verb-particle constructions (Verb.{0,5}(up|down|on|off|in|out|away)).

Figure 3: Distribution of Dice coefficient scores assigned to English MWEs automatically discovered from the
Wikipedia corpus. The vertical axis denotes log frequencies.

with the tokenized Wikipedia dump by MeCab with
IPADIC15. We then sampled sentences with 100M
tokens or extracted full texts. We used GNU Paral-
lel (Tange, 2018) to speed up the preprocessing.

C Monolingual Word Embeddings

We trained CBOW fastText models of 300 dimen-
sions with the parameters suggested by Grave et al.
(2018). Specifically, we set hyperparameters as
follows:
• Dimension of word embeddings (dim): 300

• Minimum length of char N-gram (minn): 5

• Maximum length of char N-gram (maxn): 5

• Number of epochs (epoch): 10

• We set the other parameters to the default values
of the fastText software v0.9.116.
Table 9 shows the vocabulary sizes of monolin-

gual word embeddings. Note that the vocabulary
sizes of Single are smaller than word type counts
listed in Table 3 as we follow the default hyper-
parameters and set the minimal number of word
occurrences for assigning word embeddings to 5.

D Cross-lingual Word Embeddings

We used the supervised algorithms implemented in
the MUSE library17 and VecMap library18 to align
monolingual embeddings.

15https://taku910.github.io/mecab/
16https://github.com/facebookresearch/

fastText/releases/tag/v0.9.1
17https://github.com/facebookresearch/

MUSE
18https://github.com/artetxem/vecmap

Vocab. MWE / Vocab.

Single eomw +parseme

ar 374,852 2,296 / 376,934
bg 315,686 1,254 / 316,697 4,702 / 319,526
de 515,048 1,248 / 516,235 3,059 / 518,036
en 268,278 7,989 / 276,100 8,734 / 276,841
es 300,603 3,310 / 303,795 10,773 / 310,988
he 291,214 1,156 / 292,337 2,112 / 293,274
hi 124,012 1,147 / 125,142 3,344 / 127,328
ja(i) 232,299 4,356 / 236,579
ja(u) 380,605 3,366 / 383,777
ru 634,628 5,570 / 639,565
tr 350,716 7,122 / 357,376 17,451 / 367,302
zh 405,624 4,929 / 410,313

Table 9: Vocabulary sizes of word embedding mod-
els. We report the number of MWEs (the left hand side
of each slash) for the MWE tokenization.

MUSE: We normalized word embeddings into unit
vectors before training. We set the number of re-
finements to 1 as most of the bootstrapped word
pairs were found in the first iteration.
VecMap: We followed the hyperparameter setting
used by Artetxe et al. (2018).

E Experimental Results

Table 10 and Table 11 show the results of Task 1
and Task 2 with supervised VecMap, respectively.
The precision scores are slightly better than those of
the supervised alignment with iterative refinements
by Conneau et al. (2018), but the overall tendency
is very similar to the result in Section 5.

Table 12 shows the result of Task 2 broken down
based on the categorizations made by Kementched-
jhieva et al. (2019). In some languages, the pre-
tokenization of MWEs improved the translation ac-

https://taku910.github.io/mecab/
https://github.com/facebookresearch/fastText/releases/tag/v0.9.1
https://github.com/facebookresearch/fastText/releases/tag/v0.9.1
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
https://github.com/artetxem/vecmap
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en→ L2 ar bg de es he hi ja(i) ja(u) ru tr zh

Single 46.02 29.82 38.92 48.31 41.01 49.78 36.45 29.05 22.90 46.20 32.44
MWE (eomw) 43.64 38.12 46.97 54.80 40.74 45.54 45.50 41.68 33.38 45.95 37.96
MWE (+parseme) 38.68 46.79 54.45 40.74 44.87 45.61

Num. of src tokens 1,054 711 867 2,279 734 448 1,637 2,217 2,061 1,184 1,196

en← L2 ar bg de es he hi ja(i) ja(u) ru tr zh

Single 53.11 48.07 55.33 59.63 45.79 66.42 30.94 22.85 44.07 51.78 31.48
MWE (eomw) 57.42 53.12 61.07 65.26 55.56 67.88 37.69 31.24 53.31 56.73 38.67
MWE (+parseme) 54.30 60.45 65.20 57.41 63.87 56.48

Num. of src tokens 1,045 337 488 1,687 594 274 3,526 2,481 1,028 1,211 4,813

Table 10: Precision@10 of VecMap (supervised) on EOMW-MWE in Task 1.

en→ L2 ar bg de es hi he ja(i) ja(u) ru tr zh

Single 26.81 35.99 51.50 63.86 34.28 30.39 29.53 31.47 25.75 33.72 32.47
MWE (eomw) 25.74 37.73 51.23 65.33 34.00 30.88 29.95 32.39 25.89 34.86 31.04
MWE (+parseme) 36.86 51.77 65.93 34.28 29.77 34.46

en← L2 ar bg de es hi he ja(i) ja(u) ru tr zh

Single 44.46 50.99 53.99 70.96 49.00 34.11 26.73 25.84 48.82 47.84 31.02
MWE (eomw) 43.63 49.62 51.91 70.89 47.22 34.66 25.42 26.15 50.71 48.20 30.58
MWE (+parseme) 48.60 55.06 70.96 46.71 34.11 46.92

Table 11: Precision@1 of VecMap (supervised) on MUSE in Task 2.

curacy of adjective, noun, and verbs (en-de (eomw),
en-hi (eomw), es-en, hi-en (eomw)), but it did not
in other languages. Overall, there is no clear, inter-
pretable tendency from the results. The inclusion
of MWEs in the vocabulary increased the perfor-
mance of MWE translation without a negative im-
pact on single-word translations.

To analyze the statistical significance of results,
we used BOOTS19 and conducted pairwise boot-
strapping tests with 1,000 trials.

19http://research.nii.ac.jp/ntcir/
tools/boots-en.html

en→ L2 MWE a+n+v pn

ar eomw -0.37 0.28

bg eomw -0.71 -1.57
+parseme -1.69 -2.10

de eomw 0.59 -0.78
+parseme -1.01 -1.04

es eomw 0.00 0.43
+parseme 0.00 1.08

hi eomw 0.64 1.39
+parseme -0.46 -1.11

en← L2 MWE a+n+v pn

ar eomw -1.10 0.86

bg eomw -0.53 -0.30
+parseme -0.79 1.52

de eomw -1.53 -1.30
+parseme -0.90 0.00

es eomw 0.44 0.24
+parseme 0.53 -2.89

hi eomw 1.15 -1.53
+parseme -0.21 -3.36

Table 12: Breakdown of the precision@1 scores
on MUSE in Task 2. Values denote the differences
from the scores of the Single tokenization baselines.
a=adjective, n=noun, v=verb, pn=proper noun.

http://research.nii.ac.jp/ntcir/tools/boots-en.html
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