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Abstract

Iterative Language-Based Image Editing (IL-
BIE) tasks follow iterative instructions to edit
images step by step. Data scarcity is a sig-
nificant issue for ILBIE as it is challenging
to collect large-scale examples of images be-
fore and after instruction-based changes. How-
ever, humans still accomplish these editing
tasks even when presented with an unfamil-
iar image-instruction pair. Such ability results
from counterfactual thinking and the ability to
think about alternatives to events that have hap-
pened already. In this paper, we introduce
a Self-Supervised Counterfactual Reasoning
(SSCR) framework that incorporates counter-
factual thinking to overcome data scarcity.
SSCR allows the model to consider out-of-
distribution instructions paired with previous
images. With the help of cross-task consis-
tency (CTC), we train these counterfactual in-
structions in a self-supervised scenario. Ex-
tensive results show that SSCR improves the
correctness of ILBIE in terms of both object
identity and position, establishing a new state
of the art (SOTA) on two IBLIE datasets (i-
CLEVR and CoDraw). Even with only 50%
of the training data, SSCR achieves a compa-
rable result to using complete data.

1 Introduction

Digital design tools like Illustrator or Photoshop
are widely used nowadays. Though having consid-
erable user demand, they require prior knowledge
and multiple steps to use successfully. These appli-
cations would significantly improve the accessibil-
ity if they can automatically perform corresponding
editing actions based on the language instructions
given by users for each step.

Iterative language-based image editing (ILBIE)
task follows iterative instructions to edit images
step by step, as illustrated in Fig. 1. To accomplish
ILBIE, models are required not only to modify im-
ages but also to understand the visual differences
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Figure 1: An example of the iterative language-based
image editing (ILBIE) task. During each turn, the
model edits the image from the previous turn based on
the current instruction. Eventually, a desired image is
accomplished after iterative editing. Note that the gen-
eration is at the pixel level.

between the previous and resulting image, based
on the given instructions. One of the primary limi-
tations of ILBIE is data scarcity. Since collecting
large-scale previous-resulting images with instruc-
tions is difficult, it makes learning the association
between vision and language challenging.

A GAN-based (Goodfellow et al., 2015) model,
GeNeVA (El-Nouby et al., 2019), is proposed
to perform ILBIE, where a conditional genera-
tor serves as the image editor, and a discrimina-
tor provides the training loss by discriminating a
resulting image. Though it yields promising re-
sults, GeNeVA neglects the data scarcity issue of
ILBIE. As a binary classifier, the discriminator eas-
ily suffers from data scarcity given the shortage of
ground-truth instruction-and-resulting-image pairs
and thus limits the model’s generalization ability
to new instructions.

Despite lacking prior experiences with images

or instructions, humans can still accomplish editing
under unfamiliar image-instruction pairs. For ex-
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ample, for a given instruction “add a purple cube in
front of the blue cylinder”, humans can think about
the resulting image if the instruction changed to
“adding a blue square” or “on the right of”. This pro-
cess is known as counterfactual thinking (Roese,
1997), which allows humans to operate in data-
scarce scenarios by considering alternative instruc-
tions from the seen examples.

In this paper, we introduce self-supervised coun-
terfactual reasoning (SSCR) that incorporates coun-
terfactual thinking to deal with the data scarcity
issue. SSCR allows the model to think about ex-
pected, resulting images under unseen instructions.
Since there are no ground-truth resulting images,
we propose cross-task consistency (CTC), which
adopts an iterative explainer to reconstruct the in-
struction of each step. With CTC, we can supply
detailed token-level training loss (e.g., wrong ob-
jects or wrong positions), which is better than only
using the discriminator, and consider these counter-
factual instructions in a self-supervised scenario.

The experimental results on i-CLEVR (EI-
Nouby et al., 2019) and CoDraw (Kim et al., 2019)
show that our SSCR can improve the correctness
of the ILBIE task in both aspects of object identity
and position. In summary, our contributions are
three-fold:

e We introduce SSCR that incorporates coun-
terfactual thinking into the ILBIE task to deal
with the data scarcity issue.

e The proposed cross-task consistency (CTC)
and counterfactual reasoning methods help
train the generator better, improve the gener-
alizability, and achieve the SOTA results on
i-CLEVR and CoDraw.

e Extensive ablation studies show that SSCR is
effective even with only partial training data.

2 Related Work

Text-to-Image (T2I) generates an image that
matches the given instruction. T2I is challenging
yet important that has a vast potential in practical
applications like art generation or automatic design
(Nguyen et al., 2017; Reed et al., 2017; Tan et al.,
2019). With the success of a generative adversarial
network (Goodfellow et al., 2015) on the image
generation task, several works (Reed et al., 2016;
Zhang et al., 2017; Xu et al., 2018) introduce dif-
ferent GAN-based models to synthesize an image
from a text description. Unlike T2I, we focus on
image editing, where a model needs to understand

the visual differences between two images rather
than generating an image from scratch.
Language-based Image Editing (LBIE) tasks a
model to edit an image based on the guided text
description. PixelTone (Laput et al., 2013) and
Image Spirit (Cheng et al., 2013) are both rule-
based, which accept only pre-defined instructions
and semantic labels that can significantly decrease
the practicality of LBIE. Some studies (Chen et al.,
2018; Shinagawa et al., 2017) adopt the conditional
GAN model to attend on the instruction and per-
form LBIE as image colorization. However, image
colorization is not truly an editing task since it only
supports fixed object templates, and the objects and
the scene of the image remain the same after edit-
ing. In contrast, the editing processes of Photoshop
or Illustrator are not accomplished in a single pass.
GeNeVA (El-Nouby et al., 2019) proposes an itera-
tive GAN-based generator to accomplish iterative
language-based image editing (ILBIE) but neglects
the data scarcity issue.

Counterfactual Thinking (Roese, 1997) is a con-
cept that refers to the human propensity to consider
possible alternatives to events that have happened
already. People can consider different outcomes
from a wide range of conditions and engage in
causal reasoning by asking questions like “What if
...7” or “If I had only....” Previous works (Kusner
et al., 2017; Garg et al., 2019) have shown how
counterfactual fairness improves the robustness of
the model and makes it more explainable. Further-
more, counterfactual thinking has also been applied
to augment training targets (Zmigrod et al., 2019;
Fu et al., 2020). In this paper, we incorporate coun-
terfactual thinking into that ILBIE task that consid-
ers counterfactual instructions to deal with the data
scarcity issue and improve the generalizability.

3 Self-Supervised Counterfactual
Reasoning (SSCR)

3.1 Task Definition

During each turn ¢, an editor edits the image from
the previous turn V;_1 into the current turn V; based
on instruction [;. After a final turn 7', we get the
predicted final image V7 and evaluate the outcome
with the ground truth resulting image Op. Note
that the editing process is at a pixel level where the
model has to generate each pixel of the image:

Vi = Editor(V;—1, I;),

1
eval = Compare(Vr, Or). W
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Figure 2: An overview of our self-supervised counterfactual reasoning (SSCR). The iterative editor modifies an
image based on current instruction and editing history. Counterfactual reasoning allows the model to think about
various counterfactual instructions that can improve the generalizability and deal with data scarcity. Since there
are no ground-truth images, we propose cross-task consistency (CTC) to not only provide explicit training signal
but also train these counterfactual instructions self-supervisedly.

3.2 Overview

To overcome data scarcity, we introduce self-
supervised counterfactual reasoning (SSCR). The
overall framework is illustrated in Fig, 2. The itera-
tive editor is a conditional generator that modifies
an image based on current instruction and editing
history.

Counterfactual reasoning allows the model to
think about the expected, resulting images under
various counterfactual instructions. In this way,
the editor can consider more diverse instructions
than the original data to improve the generalizabil-
ity, even if under data scarcity. Since there are
no ground-truth resulting images for these coun-
terfactual instructions, we propose cross-task con-
sistency (CTC). CTC adopts an iterative explainer
to reconstruct the given instruction of each editing
step. With the help of this cross-task matching, we
can not only provide a detailed token-level train-
ing signal to train the editor better but also supply
training loss for counterfactual reasoning in a self-
supervised scenario.

3.3 Iterative Editor

Similar to GeNeVA (EI-Nouby et al., 2019), the it-
erative editor is a GAN-based architecture that con-
tains a conditional generator (& and a discriminator
D. We first apply a bidirectional GRU (Chung
et al., 2014) to encode the instruction I; as d; for
each turn ¢. And another GRU is used to encode
the history of instructions h; as following:

he = GRU(dy, hy_1). 2)

Then, to perform the editing for turn ¢, we adopt
a convolutional neural network (CNN) (Miyato and

Koyama, 2018) to extract image features f;_; from
the previous image V;_1, concatenate with the in-
struction history h;, and feed into G to predict the
resulting image V;:

Vi = G([ft-1,M]). 3)

After all iterations, there is the final image V7 after
the final turn 7'.

For each turn, D provides a binary training sig-
nal by discriminating a resulting image that is gen-
erated from either G or the ground-truth data ac-
cording to the instruction history h;:

T
Lo = ZEWNPQ [log(D([Vt, ht]))]v €]
t=1

where L is the binary loss from D.

For training D, similar to T2I (Reed et al., 2016),
we add additional [real image, wrong instruction]
pairs as false examples:

T
1
LD = Z LDrealt + i(LDfulset + LDWrongt )7 (5)
t=1

where
LDrealt = Eot’vpdala [log(D([Ot’ h’t]))]?
LDfalset = EWNPGt [log(l - D([W7 ht]))]’
LDwmngt = EOtNPdala [log(l - D([Ot’ h;]))]’
with ground-truth data distribution Pgy, and hj
being the wrong instruction history by randomly
selecting another instruction.

Then G and D are optimized through an alter-
nating minmax game:

(6)

maxmin Lg + Lp.
G D G b

)
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Figure 3: The architecture of our iterative explainer.
We consider the previous-resulting image pair and the
encoded instruction history as input to reconstruct the
editing instruction by an attention-based GRU decoder.

3.4 Cross-Task Consistency (CTC)

Though we can train the iterative editor for ILBIE,
D only supports a binary training loss, which is
not explicit enough to express the complex asso-
ciation between the visual difference and the text
description. To supply a more explicit training loss,
we propose cross-task consistency (CTC). Despite
being image generation, we consider instruction
generation, which explains the visual difference
between previous-resulting image pairs, to do rea-
soning for the editing process in a cross-task sce-
nario. During CTC, an iterative explainer provides
a token-level training signal that encourages the
matching between the predicted image and the orig-
inal instruction.

Viq
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Add a red sphere in front of it on
the left and in front of the —~
purple sphere on the left Tesa

s
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Iterative Explainer Our iterative exaplainer E
is an instruction decoder which considers previous-
resulting image pair and the instruction history as
input, as shown in Fig. 3:

Iy = E(Vi, Vi1, hi1). (8)

Similar to the iterative editor, we apply CNN
to extract visual feature f for both previous and
predicted resulting image:

fie1 = CNN(Vi_1), fy = CNN(V;).  (9)

Then, a GRU serves as an attention-based lan-
guage decoder (Xu et al., 2015) which reconstructs
the instruction ft according to the feature differ-
ence and instruction history h;_; of previous turn:

g0 = [fa, he—1],

Wi, i = GRU(w;—1, gi—1), (10)

Iy = {1, by, ..., W},

where f; = fi — fi—1 represents the visual dif-
ference by subtracting previous and result feature,
g; is the decoding history, and w; is the predicted
word token of the instruction. All w; are combined
as the reconstruction where L is the length of the in-
struction. The iterative explainer considers not only

Dataset Token Type Example
color blue, purple
i-CLEVR object cylinder, cube
relation at the center, in front of
size small, meidum
CoDraw object sun, boy
relation in the middle, on the left

Table 1: Types of token on i-CLEVR and CoDraw.

the visual difference but also instruction history so
that we can reconstruct the instruction, which ex-
plains the editing of the resulting image following
by the editing history.

Finally, we provide an explicit token-level train-
ing signal Ly by computing the teacher-forcing
loss (Williams and Zipser, 1989) between the orig-
inal instruction I; and the reconstructed one ft:

L
Lp = ZCELoss(wi,wi),
=1

(1)

where w; is the 7th token of I; and CELoss means
the cross-entropy loss.

By minimizing L, GG learns to match the orig-
inal instruction with this cross-task consistency.
Different from L, which only supplies binary but
vague loss, L provides token-level loss about the
information of the wrong object or wrong position
(by comparing w; with w;) that can train G better
for each editing turn. In the experiments, F is pre-
trained by the ground-truth image pairs and is fixed
during the following training.

3.5 Counterfactual Reasoning

We assume that I/ is the available training data.
Because of the practical challenge of collecting
large-scale previous-resulting images with instruc-
tions, U suffers from data scarcity. To deal with
this issue, we propose counterfactual reasoning to
allow the model to consider various instructions out
of the distribution of /. For instance, an instruction
I' ~ U’ from the intervention data I/’ replaces the
original instruction, and we edit the image based
on the counterfactual instruction I’.

Instruction Intervention To get the intervention
data U’ that provides diverse instructions, we do
interventions on the original instructions I:

1,0=U,
I’ = intervention(I), (12)
U ={r,o},

where O is the image in the original /.
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Algorithm 1 Iterative Editor with CTC

Algorithm 2 Counterfactual Reasoning

1: G the generator model

2: D: the discriminator model

3: H: the instruction history encoder
4: E: our iterative explainer in CTC

5: U: the original training set
6.
7
8
9

: Pre-train RE with U
. Initialize G, D

10; while TRAIN_EDITOR do
11: fort < 1to 1 do

12: 1,0, < U

13: ht(*H(htfl,It)

14: Vi < G(ht, Ot—1) > teacher-forcing training
15: ft<—E(Vt,Ot_1,hz_1)

16:

17: Lg <+ binary loss from D > Eq. 4
18: L g < explicit loss from E > Eq. 11
19: Update G by maximizing Lg — Lg

20:

21: Lp < loss for D > Eq. 5
22: Update D by minimizing Lp

23: end for

24: end while

First, we apply NLTK (Bird and Loper, 2004)
to parse out tokens in the original /. The types
of token on i-CLEVR and CoDraw are shown in
Table 1.

We then replace these tokens with randomly sam-
pled tokens of the same type to get the counter-
factual I’. Finally, I’ combines with the original
image G as the intervention data U’. Our exper-
iments show that this simple yet effective inter-
vention makes the training data more diverse and
deals with data scarcity during our counterfactual
reasoning.

For each turn ¢, with I] from U’, we predict the
counterfactual resulting image V'

Vi = G([fi-1, 1)), (13)

where h; is the counterfactual instruction history
encoded from I’

Since there is no ground-truth image for the
counterfactual instruction I7, we adopt the itera-
tive explainer F to provide counterfactual training
loss L, in a self-supervised scenario:

IA{ - E(V,t/a ‘/t—lv ht—l)v

L
R (14)
5= Z CELoss(w}, w;),
i=1

where uA)g and w;, are the ith word token.
By minimizing L', the model has an opportunity
to access U’, which is different from the original

1: while COUNTERFACTUAL_REASONING do

2: fort < 1to 7T do

3: U’ < intervention(If)

4: — Ot —~U

5: I, <« Uu > counterfactual instruction
6:

7: he < H(ht—1, I+) > real history
8: hi < H(hi—1, 1) > counterfactual history
9: Vi + G(h'+,04—1) b counterfactual editing
10: It/ (—E(V,hOtfl,htfl)
11:
12: L’ = counterfactual loss from E > Eq. 14
13: Update G by minimizing L' g
14: end for

15: end while

training data. With the help of our iterative ex-
plainer, SSCR improves the generalizability by rea-
soning diverse counterfactual instructions I’ even
if under data scarcity.

3.6 Learning of SSCR

Alg. 1 presents the learning process of training the
iterative editor with CTC. Since ILBIE is also a
sequential generation process, we apply the widely
used teacher-forcing where we feed in the ground-
truth resulting image (O;_1) from the previous turn
instead of our predicted one (V;_1) to make the
training more robust. When training the iterative
editor, for each turn ¢, we adopt G to perform image
editing. We maximize the binary loss from D (Lg)
with minimizing the explicit token-level loss from
E (Lg) to train G. We also update D by minimize
L D-
mgxr%nLg—i—LD—LE. (15)
During counterfactual reasoning, as shown in
Alg. 2, we first perform an intervention on I/ to get
the counterfactual instructions (I’). Then, we edit
the image based on I’. Since there is no ground-
truth resulting image for the counterfactual editing,
we adopt CTC to compute the cycle-consistency
loss (L'y) self-supervisedly. Similar to the itera-
tive editor, we also apply teacher-forcing training
(feeding in O;_1 and h;_1) to further update G. In
this way, GG can improve the generalizability by
considering the counterfactual U’, which is more
diverse than U.

4 Experiments
4.1 Experimental Setup

Datasets We evaluate our counterfactual frame-
work on two ILBIE datasets, i-CLEVR (El-Nouby
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i-CLEVR CoDraw
Method Precision  Recall F1 RelSim Precision  Recall F1 RelSim
GeNeVA 71.01 42,61 53.26 30.66 54.38 5442  54.40 38.93
w/ CTC only 72.24 45.51 55.84 33.67 57.69 55.60 56.62 38.68
w/ SSCR 73.75 46.39 56.96 34.54 58.17 56.61 57.38 39.11

Table 2: The testing results of the baseline (GeNeVA!), with only cross-task consistency (CTC only), and with
whole self-supervised counterfactual reasoning (SSCR) for both i-CLEVR and CoDraw.

et al., 2019) and CoDraw (Kim et al., 2019). Each
example in i-CLEVR consists of a sequence of
5 (image, instruction) pairs. The instruction de-
scribes where the object should be placed relative
to existing objects. In i-CLEVR, there are 6,000,
2,000, and 2,000 examples for training, validation,
and testing, respectively.

CoDraw is a more difficult art-like dataset of
children playing in a park. There are 58 objects
and children with different poses. We use the same
split as in CoDraw where 7,988, 1,002, and 1,002
are for training, validation, and testing.

Evaluation Metrics Standard metrics like Incep-
tion Score (Salimans et al., 2016) or Frechet In-
ception Distance (FID) (Heusel et al., 2017) can-
not detect whether the editing is correct based on
the instruction (EI-Nouby et al., 2019). Following
GeNeVA (El-Nouby et al., 2019), we adopt F1 and
RelSim to evaluate the editing result.

The F1 score is based on a pre-trained object
detector (Szegedy et al., 2016) ("99% accuracy on
both i-CLEVR and CoDraw), which detects the ob-
jects in the predicted images that meet the ground-
truth resulting images. To evaluate not only object
type but also object position, we build the scene
graph according to the object detector. The edges
are given by the left-right and front-back relations
between the vertices (objects). Then, RelSim deter-
mines how many of the ground-truth relations are
in the predicted images:

‘Epd n Egt|

RelSim(Egy, Epq) = recall x
| Egil

, (16)

where Fg and Epq are relational edges for ground-
truth resulting images and predicted image. Note
that we only evaluate the final predicted image of
each example for both F1 and RelSim.

Baseline We use the SOTA model GeNeVA! as
our baseline: it shares the same model architecture

"We reproduce the result for GeNeVA by their official
GitHub repo (https://github.com/Maluuba/GeNeVA). We ap-
ply the default hyperparameters as them, and issue #2 can
support that the results are comparable.

as our iterative editor and is trained with the GAN
objective but without the cross-task consistency
(CTC) and our counterfactual reasoning.

Implementation Detail We apply the ResBlocks
(Miyato and Koyama, 2018) into G and D where
the visual feature size is 1024. For our F, we add
self-attention (Zhang et al., 2019) for the concate-
nation of the visual difference and the encoded in-
struction history. We adopt Adam (Kingma and Ba,
2015) to optimize the iterative editor with learning
rate le-4 for L and Ly, 4e-4 for L. The learn-
ing rate of L', during the counterfactual reasoning
is Se-5.

4.2 Quantitative Results

Table 2 presents the testing F1 and RelSim results.
First, with our cross-task consistency (CTC only),
which provides a more explicit training signal, we
can improve the baseline on the i-CLEVR dataset
in terms of all metrics. In particular, CTC improves
1.2% on precision, 2.9% on recall, and 2.6% on F1.
Additionally, for whole self-supervised counterfac-
tual reasoning (SSCR), which allows the model to
consider out-of-distribution instructions, it brings
more improvements and achieves new SOTA re-
sults, e.g., 56.9% on F1 and 34.5% on RelSim.
Similar trends can be found on CoDraw. Since
the instructions under CoDraw are more complex,
the improvement of relation correctness (RelSim)
is not as high as i-CLEVR. But for object correct-
ness, CTC still improves baseline with 2.2% F1,
and SSCR further achieves the new SOTA on all
metrics, e.g., 57.4% F1 and 39.1% RelSim.

4.3 Ablation Study

Under Data Scarcity To examine the frame-
work’s effectiveness under the data scarcity sce-
nario, we compare models trained using 100%,
80%, and 50% data. Note that our E is also pre-
trained using the same 100%, 80%, and 50% data.
The results are shown in Fig. 4.

We can observe that on both i-CLEVR and Co-
Draw datasets, the baseline performance drops dras-
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Figure 4: Result comparison among baseline, with only cross-task
consistency (CTC only), and with whole self-supervised counterfac-
tual reasoning (SSCR) under different ratios of training data. Note
that the iterative explainer is also pre-trained using the same avail-

able data for each result.

tically as the training data decreases, and our SSCR
consistently outperforms the baseline. More impor-
tantly, the baseline severely suffers from the data
scarcity issue, while SSCR is relatively resilient to
data decrease and only drops 4.34 F1 score and 2.51
RelSim score (vs. 8.73 and 6.78 reduced by the
baseline) on iCLEVR when there is only 50% data.
Similar results can be observed on CoDraw. Fur-
thermore, comparing SSCR with 50% data and the
baseline with 100%, we can notice that our method
can achieve comparable results to the baseline with
only half the data used for training. Therefore,
incorporating counterfactual thinking to explore
out-of-distribution instructions indeed makes the
model better capable of generalization and avoid-
ing performances drops from data scarcity.

Table 3 presents the performance of our iterative
explainer E with different ratios of training exam-
ples. Perplexity (PPL) and BLEU (Papineni et al.,
2002) are calculated between the reconstructed in-
structions and the original ones. We can see that
the PPL and BLEU under 50% are similar to 100%.
It shows that F still supplies meaningful training
loss for SSCR even if only using 50% data.

Zero-shot Generalization To further demon-
strate the effectiveness of SSCR under severe data
scarcity, we conduct a zero-shot experiment for the
i-CLEVR dataset. The zero-shot setting is as fol-
lowing. There are 3 shapes (cube, sphere, cylinder)
and 8 colors (gray, red, blue, green, brown, purple,
cyan, yellow), which lead to 24 different objects

Table 3: The PPL and BLEU of our itera-
tive explainer with different ratios of training
data on i-CLEVR.

100% 50%
Method F1 RelSim F1 RelSim
GeNeVA 53.26 30.66 44.53 23.88
w/ SSCR (D) 54.05 30.87 43.31 22.99
w/SSCR (E) 56.95 34.54 52.62  32.03

Table 4: Results of discriminator (D) or iterative
explainer (F£) used for the counterfactual reasoning
(SSCR) on i-CLEVR.

Method F1 RelSim
GeNeVA 42.23 23.70
w/ CTC Only 4391 25.26
w/ SSCR 48.30 29.09

Table 5: Results of zero-shot generalization.

on the i-CLEVR dataset. We remove examples
containing “gray cube, red cube, green sphere, or
purple cylinder” in the training set but still evaluate
the full testing set with all kinds of objects.

The result is shown in Table 5. Since there is no
example like “gray cube” in the training set, CTC
can only consider those seen objects and improves
marginally. However, the iterative explainer (F)
can disentangle color and shape information from
“gray sphere” and “green cube,” and generalize
to the unseen object “gray cude”. During SSCR,
when we intervene the counterfactual instructions
to contain “gray cube,’ the iterative explainer can
still provide self-supervised loss to make the model
consider unseen objects. Hence, SSCR can bring
out obvious improvements on both F1 and RelSim,
even if under the zero-shot setting.
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Iterative Explainer vs. Discriminator Fig. 5
shows the learning curve of the training losses
of the discriminator D (L) and our iterative ex-
plainer E' (Lg). We can see that the relative de-
crease of L over time is very little, which means
that D can barely provide extra training signal after
100 epochs. In contrast, since F can supply explicit
token-level loss instead of vague binary loss, Lg
keeps decreasing much and training the model.
Table 4 shows the comparison when using D
and our F to provide the training loss during the
counterfactual reasoning. If using D, since there
are not ground-truth resulting images of those coun-
terfactual instructions, we cannot feed them into
D as true examples. It can only provide training
loss by discriminating predicted images as false.
Therefore, using D during SSCR cannot improve

Add a red sphere behind
it on the right I,

-~

Add a cyan sphere in front .
of it on the left I,

Figure 8: Example of counterfactual reasoning.

the model much, and may even hurt the generaliz-
ability under data scarcity, e.g., 23.9 drops to 23.0
on RelSim for 50%.

In comparison, since our E' does not suffer from
data scarcity, it supports SSCR by providing mean-
ingful training loss to perform counterfactual rea-
soning, and thus improves the generalizability, e.g.,
23.9 increases to 32.0 on RelSim for 50%.

Counterfactual Reasoning: The More The Bet-
ter? Despite allowing the model to explore vari-
ous instructions and become more generalized, ex-
cessive counterfactual reasoning may result in over-
fitting to existing images and degrade the perfor-
mance. Fig. 7 presents the validation performance
under different iterations. It shows a trade-off be-
tween the model’s generalizability and the itera-
tions of the counterfactual reasoning. The perfor-
mance keeps improving until the best 700 iteration
and then drops down, possibly due to overfitting to
existing images and the imperfect cost function for
instruction prediction.

Qualitative Results Fig. 8 present an example
of counterfactual instructions and the predicted re-
sulting image. We replace color token “red” with
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“cyan””, color token “behind” with “in front of”,
and “right” with “left.” By considering counterfac-
tual instructions, SSCR allows the model to explore
diverse instruction-image pairs, that deals with the
data scarcity issue.

Fig. 6 demonstrates an example of the iterative
editing on CoDraw. For baseline GeNeVA, since
there is only a discriminator to provide vague loss
that the pixels of those generated objects are al-
most broken, it makes the predicted images low
quality. In contrast, for our SSCR, CTC can help
train the generator better, which leads to defined ob-
jects. Furthermore, counterfactual reasoning also
makes the predicted images more aligned to the
instructions.

5 Conclusion and Future Work

We present a self-supervised counterfactual rea-
soning (SSCR) framework that introduces coun-
terfactual thinking to cope with the data scarcity
limitation for iterative language-based image edit-
ing. SSCR allows the model to consider new
instruction-image pairs. Despite without ground-
truth resulting images, we propose cross-task con-
sistency (CTC) to provide a more explicit training
signal and train these counterfactual instructions
in a self-supervised scenario. Experimental results
show that our counterfactual framework not only
trains the image editor better but also improves the
generalizability, even under data scarcity.

For the real world, both visual and linguistic will
be more complicated. To accomplish real-world
image editing, large-scale pre-trained language
encoders and image generators should be applied
to understand the diverse instructions and model
the interaction for editing. From a theoretical
perspective, our SSCR is a model-agnostic
framework that can incorporate with any image
generator, for GAN or non-GAN architecture,
to perform real-world image editing. Currently,
the interactive explainer and counterfactual
intervention in SSCR both improve the editing
quality in the token-level. To make it more suitable
for real-world images, semantic-level intervention
for the diverse natural instructions can support
better counterfactual reasoning. Also, a stronger
explainer that explains not only token-level
error but also global editing operation between
two images can provide robust self-supervised loss.
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