
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4296–4318,
November 16–20, 2020. c©2020 Association for Computational Linguistics

4296

Do sequence-to-sequence VAEs learn global features of sentences?

Tom Bosc
Mila, Université de Montréal
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Abstract

Autoregressive language models are powerful
and relatively easy to train. However, these
models are usually trained without explicit
conditioning labels and do not offer easy ways
to control global aspects such as sentiment
or topic during generation. Bowman et al.
(2016) adapted the Variational Autoencoder
(VAE) for natural language with the sequence-
to-sequence architecture and claimed that the
latent vector was able to capture such global
features in an unsupervised manner. We ques-
tion this claim. We measure which words ben-
efit most from the latent information by de-
composing the reconstruction loss per position
in the sentence. Using this method, we find
that VAEs are prone to memorizing the first
words and the sentence length, producing lo-
cal features of limited usefulness. To alleviate
this, we investigate alternative architectures
based on bag-of-words assumptions and lan-
guage model pretraining. These variants learn
latent variables that are more global, i.e., more
predictive of topic or sentiment labels. More-
over, using reconstructions, we observe that
they decrease memorization: the first word and
the sentence length are not recovered as ac-
curately than with the baselines, consequently
yielding more diverse reconstructions.

1 Introduction

The problem of generating natural language under-
lies many classical NLP tasks such as translation,
summarization, paraphrasing, etc. The problem is
often formulated as learning a probabilistic model
of sentences, then searching for probable sentences
under this model. Expressive language models are
typically built using neural networks (Bengio et al.,
2003; Mikolov et al., 2010).

Whether based on LSTMs (Hochreiter and
Schmidhuber, 1997; Sundermeyer et al., 2012) or
Transformers (Vaswani et al., 2017; Radford et al.,

2019), language models are mostly autoregressive:
the probability of a sentence is the product of the
probability of each word given the previous words.
By contrast, Bowman et al. (2016) built a Varia-
tional Autoencoder (VAE) (Kingma and Welling,
2013; Rezende et al., 2014) out of a sequence-to-
sequence architecture (seq2seq) (Sutskever et al.,
2014). It generates text in a two-step process: first,
a latent vector is sampled from a prior distribu-
tion; then, words are sampled from the probabil-
ity distribution produced by the autoregressive de-
coder, conditionally on the latent vector. The goal
was to encourage a useful information decomposi-
tion, where latent vectors would “explicitly model
holistic properties of sentences such as style, topic,
and high-level syntactic features” (Bowman et al.,
2016), while the more local correlations would be
handled by the recurrent decoder.

In principle, such a decomposition can be the
basis for many applications. For example, using
a single, unannotated corpus, it could enable para-
phrasing (Roy and Grangier, 2019) or style transfer
(Xu et al., 2019). For tasks requiring conditional
generation such as machine translation or dialogue
modeling, we could enforce a level of formality
or impose a certain tone by clamping the latent
vector. Moreover, latent-variable models can rep-
resent multimodal distributions. Thus, for these
conditional tasks, the latent variable can be used
as a source of stochasticity to ensure more diverse
translations (Pagnoni et al., 2018) or answers in a
dialogue (Serban et al., 2017).

Despite its conceptual appeal, Bowman et al.
(2016)’s VAE suffers from the posterior collapse
problem: early on during training, the KL term in
the VAE optimization objective goes to 0, such that
the approximate posterior becomes the prior and
no information is encoded in the latent variable.
Free bits are a popular workaround (Kingma et al.,
2016) to ensure that the KL term is above a cer-
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tain level, thereby enforcing that some information
about the input is encoded. But this information is
not necessarily global. After all, posterior collapse
can be solved trivially, without any learning, using
encoders that copy parts of the inputs in the latent
variable, yielding very local and useless features.

In Section 3, we show that encoders learn to
partially memorize the first few words and the doc-
ument lengths, as was first discovered by Kim et al.
(2018). To do so, we compare the average values
of the reconstruction loss at different positions in
the sentence to that of an unconditional language
model. We elaborate on the negative consequences
of this finding for generative models of texts. In
Section 4, we propose three simple variants of the
model and the training procedure, in order to alle-
viate memorization and to yield more useful global
features. In Section 5, we empirically confirm that
our variants produce more global features, i.e., fea-
tures more predictive of global aspects of docu-
ments such as topic and sentiment. They do so
while memorizing the first word and the sentence
length less often, as shown in Section 6.

2 Model and datasets

Firstly, we describe the VAE based on the
seq2seq architecture of Bowman et al. (2016).
A document, sentence or paragraph, of L words
x = (x1, . . . , xL) is embedded in L vectors
(e1, . . . , eL). An LSTM encoder processes these
embeddings to produce hidden states:

h1, . . . , hL = LSTM(e1, . . . , eL)

In general, the encoder produces a vector r that
represents the entire document. In the original
model, this vector is the hidden state of the last
word r = hL, but we introduce variants later on.
This representation is transformed by linear func-
tions L1 and L2, yielding the variational parame-
ters that are specific to each input document:

µ = L1r

σ2 = exp(L2r)

These two vectors of dimension d fully determine
the approximate posterior, a multivariate normal
with a diagonal covariance matrix, qφ(z|x) =
N (z|µ, diag(σ2)), where φ is the set of all encoder
parameters (the parameters of the LSTM, L1 and
L2). Then, a sample z is drawn from the approx-
imate posterior, and the decoder, another LSTM,

produces a sequence of hidden states:

h′1, . . . , h
′
L = LSTM([eBOS; z], [e1; z], . . . , eL; z])

where BOS is a special token indicating the be-
ginning of the sentence and [·; ·] denotes the con-
catenation of vectors. Finally, each hidden state at
position i is transformed to produce a probability
distribution of the word at position i+ 1:

pθ(xi+1|x1,...,i, z) = softmax(Wh′i + b)

where softmax(vi) = evi/
∑

j e
vj and θ is the set

of parameters of the decoder (the parameters of
the LSTM decoder, W and b). An EOS token
indicating the end of the sentence is appended to
every document.

For each document x, the lower-bound on the
marginal log-likelihood (ELBo) is:

ELBo(x, φ, θ) = −DKL(qφ(z|x)||p(z))+
Eqφ [log pθ(x|z)]

≤ log p(x)

On the entire training set {x(1), ., x(N)}, the ob-
jective is:

arg max
φ,θ

N∑
j=1

ELBo(x(j), φ, θ)

2.1 Dealing with posterior collapse
Following Alemi et al. (2018), we call the average
value of the KL term the rate. It measures how
much information is encoded on average about the
datapoint x by the approximate posterior qφ(z|x).
When the rate goes to 0, the posterior is said to
collapse, meaning that qφ(z|x) ≈ p(z) and that the
latent variable z sampled to train the decoder does
not contain any information about the input x.

To prevent this, we can modify the KL term to
make sure it is above a target rate using a vari-
ety of techniques (see Appendix A.1 for a small
survey). We use the free bits formulation of the
δ-VAE (Razavi et al., 2019). For a desired rate λ,
the modified negative ELBo is:

max(DKL(qφ(z|x)||p(z)), λ)− Eqφ [log pθ(x|z)]

Seq2seq VAEs are prone to posterior collapse,
so in practice, the rates obtained are very close to
the target rates λ.

As observed by Alemi et al. (2018), different
models or sets of hyperparameters for a given
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model can yield very similar values of ELBos de-
spite reaching very different rates. Thus, for our
purposes, the free bits modification is also useful
to compare models with similar capacity.

2.2 Variants
Throughout the paper, we use variants of the origi-
nal architecture and training procedure. In general,
these variants use free bits objectives, but reach
lower perplexities than what free bits alone allow.

Li et al. (2019)’s method is the following: pre-
train an AE, reinitialize the weights of the decoder,
train the entire model again end-to-end with the
VAE objective. The sentence representation r is
also the last hidden state of the LSTM encoder, so
we call this method last-PreAE.

In the second variant, proposed by Long et al.
(2019), the representation of the document r is the
component-wise maximum over hidden states hi,
i.e., rj = maxi h

j
i . We call this model max. In

later experiments, we also consider a hybrid of the
two techniques, max-PreAE.

We chose these two baselines because they are
relatively recent and outperform or perform on par
with other recent methods such that cyclical learn-
ing rates (Fu et al., 2019) or aggressive training
(He et al., 2019). Moreover, the pooling encoder of
Long et al. (2019) is particularly interesting: since
pooling operators aggregate information over sets
of vectors, they might prevent the copying of local
information in the latent variable.

We make slight, beneficial modifications to these
two methods. We remove KL annealing, which is
not only redundant with the free bits technique
but also increases the rate erratically (Pelsmaeker
and Aziz, 2019). Moreover, for Li et al. (2019)’s
method, we use δ-VAE-style free bits instead of
the original free bits to get rid of the unnecessary
constraint that the free bits be balanced across com-
ponents. For more details, see Appendix A. In
summary, all of our experiments use δ-VAE-style
free bits without KL annealing.

Finally, AE denotes the deterministic autoen-
coder trained only with the reconstruction loss.

2.3 Datasets
We train VAEs on four small versions of the AG-
News, Amazon, Yahoo, and Yelp datasets created
by Zhang et al. (2015). Each document is written
in English and consists of one or several sentences.
Each document is labeled manually according to
its main topic or the sentiment it expresses, and

the labels are close to uniformly balanced over all
the datasets. For faster training, we use smaller
datasets. The characteristics of these datasets are
detailed in Table 5 in the Appendix.

3 Encoders partially memorize the first
words and sentence length

The ELBo objective trades off the KL term against
the reconstruction term. To minimize the objective,
it is worth increasing the KL term only if the recon-
struction term is decreased by the same amount or
more. With free bits, the encoder is allowed to store
a fixed amount of information for free. The objec-
tive becomes to minimize the reconstruction cost
using the “free storage” as efficiently as possible.

There are many solutions to this objective that
are undesirable. For instance, we could program an
encoder that would encode the words into the latent
variable losslessly, until all the free bits are used.
However, this model would not be more useful
than a standard, left-to-right autoregressive models.
Therefore, it is necessary to check that such useless,
purely local features are not learned.

In order to visualize what information is stored
in the latents, our method is to look at where gains
are seen in the reconstruction loss. Since the loss
is a sum over documents and positions in these
documents, these gains could be concentrated: i)
on certain documents, for example, on large docu-
ments or documents containing rarer words; ii) at
certain positions in the sentence, for example, in
the beginning or in the middle of the sentence. We
investigate the latter possibility.1

3.1 Visualizing the reconstruction loss
Concretely, we compare the reconstruction loss of
different models at different positions in the sen-
tence. The baseline is a LSTM trained with a lan-
guage model objective (LSTM-LM). It has the same
size as the decoders of the autoencoder models.2

Since the posterior collapse makes VAEs behave ex-
actly like the LSTM-LM, the reconstruction losses
between the VAEs and the LSTM-LM are directly
comparable. Additionally, the deterministic AE
gives us the reconstruction error that is reachable
with a latent space constrained only by its dimen-
sion d, but not by any target rate λ (equivalent to
an infinite target rate).

1PyTorch (Paszke et al., 2019) implementation available at
https://github.com/tombosc/exps-s2svae.

2Only the input dimensions slightly change because in
VAEs, the inputs of the decoder also include the latent vector.

https://github.com/tombosc/exps-s2svae
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Figure 1: Left: Reconstruction loss on Yahoo dataset per each position in the sentence, averaged over sentences
of 15 words (error bars: min, max on 3 runs); Right: Relative improvement compared to baseline LSTM. Seq2seq
autoencoders consistently store information about the first couple of words as well as the sentence length in priority.

In Figure 1, the left-hand side plot shows the
reconstruction losses of different models and differ-
ent target rates λ on the Yahoo dataset. As expected,
for all models, raising the target rate lowers the re-
construction cost. Remarkably, these gains are very
focused around the beginning and the end of doc-
uments. For a clearer picture of the gains at the
end of the sentence, we plot the relative improve-
ment in reconstruction with respect to the baseline
(right-hand side of Figure 1) using:

r̃(i) =
max(rLSTM(i)− r(i), 0)

rLSTM(i)

where rLSTM(i) is the loss of the LSTM.
All the models reconstruct the first couple of

words and the penultimate token better than the
LSTM-LM. On the three other datasets, there are
similar peaks on relative improvements in the be-
ginning and the end of sentences (Appendix B.1).

It is not obvious that a lower reconstruction at a
given position corresponds to information stored
about the word in that position in the latent vec-
tor. Indeed, words are not independently modeled.
However, we argue that it is roughly the case be-
cause the decoder is factorised from left-to-right
and because correlations between words decrease
with their distance in the sentence. The argument
is detailed in the Appendix B.2.

How much do these gains on the reconstruction
loss translate to decoding the first words and the
document lengths more accurately? To find out,
we compare regular VAEs to fixed-encoder, ideal
VAEs that encode the true label perfectly and exclu-
sively (in other words, VAEs whose latent variable
is the ground-truth label). On sentence reconstruc-
tion, we found that regular VAEs decoded the first
word 2 to 5 times more often than the baselines,

indicating memorization of the first word. We also
found similar but less dramatic results for sentence
length (see Appendix B.3 for details).

This phenomenon was already noticed by Kim
et al. (2018), using a different method (saliency
measures, see Appendix D.2 for details).

To sum up, compared to an unconditional LSTM-
LM, the seq2seq VAEs incur a much lower recon-
struction loss on the first tokens and towards the
end of the sentence (around 50% less with λ = 8).
Moreover, if the latent variable of the VAEs did
encode the label perfectly and exclusively, they
would reconstruct the first words or recover sen-
tence length with much lower accuracy than what
is observed. Therefore, we conclude that seq2seq
VAEs are biased towards memorizing the first few
words and the sentence length.

3.2 The problem with memorization

One could argue that this is a superficial problem,
as we can always give the model more free bits and
decrease the loss in intermediary positions. How-
ever, this is not so simple because increasing ca-
pacity leads to a worse model fit, as was noted by
Alemi et al. (2018). More specifically, on text data,
Prokhorov et al. (2019) noted that the coherence of
samples decreases as the target rate increases. Pels-
maeker and Aziz (2019) reported similar findings,
and also, that more complex priors or posteriors
do not help. Therefore, given current techniques,
higher rates come at the cost of worse modeling of
the data and therefore, we should strive for latent-
variable models that store less information, but
more global information.

Secondly, for controllable generation, condition-
ing on memorized information is useless. When
the first words are encoded in the latent variable,
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the factorization of the VAE becomes the same as
that of the usual autoregressive models, which are
naturally able to continue a given beginning of the
sentence (a “prompt”). Similarly, document length
is easily controlled by stopping the sampling after
producing the desired number of words.3 Finally,
even for semi-supervised learning, a classifier that
would only use the first few words and the sentence
length would be suboptimal.

If these arguments are correct, it is doubtful that
common seq2seq VAE architectures and training
procedures in the low-capacity regime would learn
useful representations. This is precisely the third
problem: most of the KL values reported in the lit-
erature are low.4 Therefore, it is not clear whether
the reported gains in performance (however mea-
sured) are significant, and if they are, what exactly
cause these gains.

4 Improving existing models

What architectures could avoid learning to mem-
orize? We investigate simple variants and for a
more thorough comparison with existing models,
we refer to Appendix D.1.

Our first variant uses a simple bag-of-words
(BoW) encoder in place of the LSTM encoder. The
sentence representation is rj = maxi e

j
i , where

the exponents denote components, and the indices
denote positions in the sentence. We call it BoW-
max-LSTM. It is similar to the max-pooling model
of Long et al. (2019) except that the maximum
is taken over embeddings rather than LSTM hid-
den states. As Long et al. (2019) reported, the
max-pooling operator is better than the average
operator, both when the encoder is a LSTM and
BoW (possibly because the maximum introduces
a non-linearity). Therefore, we use the maximum
operator. A priori, we think that since word order
is not provided to the encoder, the encoder should
be unable to memorize the first words.

For our second variant we use a unigram de-
coder (Uni) in place of an LSTM decoder. It
produces a single output probability distribution

3Or by explicitly conditioning on the sentence length. It
can be useful for unsupervised summarization (Schumann,
2018), in flow-based approaches (Ziegler and Rush, 2019), or
more broadly for the decoder to plan sentence construction.

4Most papers do not report the log base (1 bit is ln(2) ≈
0.693 nats). Here are some reported rates of the best models:
Bowman et al. (2015): 2.0 (PTB) ; Long et al. (2019): 3.7
(Yahoo), 3.1 (Yelp); Li et al. (2019): 15.02 (Yahoo), 8.15
(PTB); He et al. (2019): 5.6 (Yahoo), 3.4 (Yelp); Fu et al.
(2019): 1.955 (PTB), ...

for all positions in the sentence i, conditioned
only on the latent variable z. This distribu-
tion is obtained by applying a one-hidden layer
MLP followed by softmax to the latent vector:
pθ(xi|z) = softmax(W2ReLU(W1z) + b), where
ReLU(x) = max(x, 0) (Nair and Hinton, 2010).
We hope that the encoder will learn representations
that do not focus on the first words, because the
decoder should not need this particular information.
We can use any encoder in combination of this de-
coder and if we use a BoW encoder, we obtain the
NVDM model of Miao et al. (2016).

Both the BoW encoders and Uni decoders vari-
ants might benefit from the PreAE pretraining tech-
nique, but we leave this for future work.

Lastly, the pretrained LM (PreLM) variant is
obtained in two training steps. First, we pretrain
a LSTM-LM. Then, it is used as an encoder with
fixed weights. We use average pooling over the
hidden states to get a sentence representation, i.e.,
r = 1

L

∑L
i=1 hi, and learn the transformations L1

andL2 that compute the variational parameters. Ini-
tially, we tried to use max-pooling but the training
was extremely unstable. The LM objective requires
the hidden state to capture both close correlations
between words but also more global information
to predict long-distance correlations. The hope is
that this global information can be retrieved via
pooling and encoded in the variational parameters.
The PreLM variant is nothing more than the use of
a pretrained LM as a feature extractor (Peters et al.,
2018). While Yang et al. (2017) and Kim et al.
(2018) both consider the use of pretrained LMs
as encoders, the weights are not frozen such that
it is hard to disentangle the impact of pretraining
from subsequent training. In contrast, we freeze the
weights so that the effect of pretraining can not be
overridden. To isolate the effect of this training pro-
cedure independently of the architecture, we keep
the same LSTM instead of using more powerful
architectures such as Transformers.

5 Semi-supervised learning evaluation

We turn to the semi-supervised learning (SSL) set-
ting to compare the learned representations of our
variants. For the purpose of controllable text gener-
ation, we assume that the global information that
is desirable to capture is the topic or sentiment.
There are two training phases: first, an unsuper-
vised pretraining phase where VAEs are trained;
second, a supervised learning phase where classi-
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fiers are trained to predict ground-truth labels given
the latent vectors encoded with the encoders of
the VAEs. This is essentially the same setup as
M1 from Kingma et al. (2014).5 The small and
large data-regimes give us complementary informa-
tion: with many labels and complex classifiers, we
quantify how much of the information pertaining to
the labels is encoded; with few labels and simple
classifiers, how accessible the information is.

For each dataset, we subsample g = 5 balanced
labeled datasets for each different data-regimes,
containing 5, 50, 500, and 5000 examples per class.
These labeled datasets are used for training and
validating during the supervised learning phase.6

Each model is trained with s = 3 seeds. The perfor-
mance of the classifiers are measured by the macro
F1-score on the entire test sets.

To select hyperparameters on each subsample,
we use repeated stratified K-fold cross-validation
(Moss et al., 2018) as detailed in the Appendix E.1.
We obtain the test set F1-scores Fij , where i is the
subsample seed and j is the parameter initialisation
seed, and report F̄··, the average F1-score over i and
j. We note F̄·j the empirical average F1-score for
a given parameter initialisation j and decompose
the variance into:

• σinit = ( 1
s−1

∑s
j=1 g(F̄·j − F̄··)

2)
1
2 , which

quantifies the variability due to the initialisa-
tion of the model,

• σ = (1g
∑g

i=1
1
s−1

∑s
j=1(Fij − F̄·j)

2)
1
2 ,

which quantifies the remaining variability.

In the context of ANOVA with a linear model
and a single factor, these quantities are the square
roots of MST and MSE (see Appendix E.2).

Finally, we also add a data-regime where the en-
tire labeled training set is used in the supervised
learning phase. In this setting, we use more expres-
sive one-hidden-layer MLP classifiers, with early
stopping on the validation set. Thus, we can check
that our conclusions in the large data-regime do not
depend on the model selection procedure and the
choice of the classifier.

5We could integrate the labels into the generative model as
a random variable that is either observed or missing to obtain
better results (Kingma et al., 2014). Still, our goal is to study
the inductive bias of the seq2seq VAE as an unsupervised
learning method, so we do not train the encoder using the
labels.

6It is especially important to use several subsamples in the
low data-regimes where subsamples containing unrepresenta-
tive texts or noisy labels are not unlikely.

For each class of model, we perform a grid
search over target rates and latent vector sizes. We
search for target rates λ in {2, 8}: large enough to
capture label information but small enough to avoid
underfitting, as explained above. The size of latent
vectors d are chosen in {4, 16}. They should be
small enough for extremely low-data regimes. For
instance, on Yelp, the smallest data regime (5 per
class) uses only 8 examples to train the classifier
and 2 to do cross-validation. A thorough explana-
tion is presented in Appendix C, along with the
values of hyperparameters held constant.

What representation should be used as inputs
to the classifiers? Kingma et al. (2016) use sam-
ples from the approximate posterior qφ(z|x) =
N (z|µ, diag(σ2)), but in the NLP literature, most
evaluations focus on µ without mention or justifi-
cation. To evaluate the VAE as a generative model,
we claim that only noisy samples z should be used.
In fact, using a model with a rate close to 0 on
Yelp, we can recover the label with a high F1-score
of 81.5% by using µ, whereas, as expected, noisy
samples z do not do better than random (50%).
The information contained in µ is misleading be-
cause it is not transmitted to the decoder and not
used directly during generation. Therefore, we use
samples z (cf. Appendix E.3 for details).

5.1 Results

Table 1 contains the results of the SSL experiments
in the smallest and largest data-regimes. The re-
sults for intermediary data-regimes as well as for
baseline models without pretraining, which under-
perform, are presented in the Appendix, Table 8.
The proposed variants are either on par or improve
significantly over the baselines. In the large data-
regime, BoW-max-LSTM and LSTM-avg-LSTM-
PreLM perform best on average while LSTM-last-
Uni performs the worst and suffers from unstable
training on AGNews. In the small data-regime, the
picture is less clear because there is more variance.

On AGNews and Yelp, in the large data-regime,
our variants do not seem to improve over the base-
lines. However, on Amazon and Yahoo, in the large
data-regime, the variants seem to improve by 5 in
F1-score. Why do the gains vary so widely de-
pending on the datasets? We posit that, on some
datasets, the first words are enough to predict the
labels correctly. We train bag-of-words classifiers
7 using either i) only the first three words or ii) all

7fastText classifiers (Joulin et al., 2017) with embedding
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0.7

LSTM avg LSTM LM 21.9 2.3
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BoW max LSTM - 67.1 10.1
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5.4 84.4 −

0.5

Table 1: Using BoW encoders, Uni decoders or PreLM
pretraining, the learned representations are more pre-
dictive of the labels (sentiment or topic).

the words as features on the entire datasets. If the
three-words classifiers are as good as the all-words
classifiers, we expect that the original VAE variants
will perform well: in that case, encoding informa-
tion about the first words is not harmful, it could
be a rather useful inductive bias. Conversely, if the
first three words are not predictive of the label, the
original VAEs will perform badly.

As reported in the Appendix, Table 9, on AG-
News and Yelp, classifiers trained on the first three
words have a performance somewhat close to the
classifier trained on all the words, reaching 80.8%
and 85.4% of its scores respectively. For instance,
on AGNews, the first words are often nouns that
directly gives the topic of the news item: country
names for the politics category, firm names for the
technology category, athlete or team names for the
sports category, etc. On the two other datasets,
the performance decays a lot if we only use the

dimension of 200 and the default parameters.

Enc. r Pre. Agree. 1st (%) Len (%) ≈PPL

LSTM last AE 80.2±1.0 29.6±1.1 3.6±0.1 34.8±0.4

LSTM max AE 79.5±0.9 31.7±1.1 3.7±0.5 34.7±0.4

BoW max - 78.0±1.3 18.9±1.2 2.7±0.3 36.1±0.6

BoW max Uni 81.3±0.1 13.9±0.3 3.1±0.1 36.3±0.7

LSTM max Uni 82.0±0.4 13.9±0.2 3.3±0.4 36.0±0.4

LSTM avg LM 79.2±0.4 22.2±0.8 3.2±0.2 35.0±0.3

LSTM last AE 24.5±0.4 42.4±2.3 13.0±1.6 44.5±0.2

LSTM max AE 30.8±1.1 41.7±0.8 11.5±1.0 44.4±0.3

BoW max - 34.2±0.5 33.3±0.7 9.9±0.7 45.3±0.5

BoW max Uni 33.3±0.4 21.5±0.3 11.8±0.5 45.3±0.4

LSTM max Uni 34.1±0.5 22.1±0.1 11.7±0.6 45.4±0.6

LSTM avg LM 35.8±0.4 38.3±0.9 11.5±1.0 44.2±0.4

LSTM last AE 23.8±0.2 56.6±1.0 17.1±1.1 48.8±0.2

LSTM max AE 22.9±0.8 58.7±1.7 18.4±0.8 48.6±0.1

BoW max - 26.9±0.5 49.3±1.2 11.8±0.3 49.7±0.4

BoW max Uni 26.8±0.6 37.6±0.9 10.6±0.4 49.8±0.1

LSTM max Uni 27.1±1.0 37.7±1.6 11.0±0.3 50.0±0.4

LSTM avg LM 26.7±0.2 51.9±0.5 16.7±1.8 48.5±0.1

LSTM last AE 81.7±1.3 53.0±0.5 33.7±1.7 31.7±0.3

LSTM max AE 81.3±0.7 52.4±0.5 29.5±2.5 31.8±0.1

BoW max - 82.2±0.5 36.4±0.3 22.4±0.5 32.3±0.4

BoW max Uni 80.4±0.4 30.6±0.5 15.4±0.4 32.8±0.1

LSTM max Uni 80.9±0.4 32.0±0.4 17.2±0.7 33.1±0.3

LSTM avg LM 82.3±0.7 47.7±0.4 24.1±0.4 31.9±0.2

Table 2: Our variants reconstruct inputs with higher
agreement, less memorization of the 1st words and
lengths and a negligible loss in likelihood. Best score
and scores within one standard deviation are bolded.

first three words: three-words F1-scores make up
for 60.7% and 30.3% of all-words F1-scores on
Amazon and Yahoo. This explains why the origi-
nal VAE can perform on par or slightly better than
our variants on certain datasets for which the first
words are very predictive of the labels. This also
proves that using several datasets is necessary to
draw robust conclusions.

Despite similar asymptotic performance on AG-
News and Yelp, our variants clearly improve over
the baselines in the small data-regime, which sug-
gests that the encoded information is quantitatively
different. This is confirmed in the next section.

It might be surprising that LSTM-max-LSTM
models are inferior to BoW-max-LSTM models.
In Appendix E.4, we show that with recurrent en-
coders, some components of the hidden states are
consistently maximized at certain early positions
in the sentence. This explains why the power of
LSTMs can be undesirable, and why the simpler
BoW encoders perform better.

6 Text generation evaluation

How do these different variants perform during
generation? We expect that the SSL classification
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performances would correlate with the abilities of
the decoders to reconstruct documents that exhibit a
similar global aspect than the encoded documents.

To measure the agreement in label between the
source document and its reconstruction, we adapt
the evaluation procedure used by Ficler and Gold-
berg (2017) so that no human annotators or heuris-
tics are required (see Appendix D.2). First, a clas-
sifier is trained to predict the label on the source
dataset. Then, for each model, we encode the doc-
uments, reconstruct them, and classify these recon-
structions using the classifier. The agreement is the
F1-scores between the original labels and the labels
given by the classifiers on the generated samples.

To quantify memorization, we measure the re-
construction accuracy of the first word and the ratio
of identical sentence length between sources and
reconstructions. Finally, to verify that our bag-of-
words assumptions do not hurt the overall fit to the
data, we estimate the negative log-likelihood via
the importance-weighted lower bound (Burda et al.,
2015) (500 samples) to compute an approximate
perplexity per word (≈PPL).

We use two decoding schemes: beam search
with a beam of size 5 and greedy decoding. We fix
λ = 8, d = 16 on all models, with three seeds. For
the Uni decoder, we drop LSTM-last-Uni which un-
derperformed by a large margin in the SSL setting,
and for the other Uni models, we freeze the en-
coder, L1 and L2 and train a new recurrent decoder
using the reconstruction loss only. Essentially, the
Uni decoder is an auxiliary decoder, as described
by De Fauw et al. (2019) (see Appendix D.1 for
details) and we denote this technique by PreUni.

Table 2 show the results for beam search decod-
ing.8 There is a close correspondence between
agreement and performance on the SSL tasks in the
large data-regime. Our variants have a higher agree-
ment than the baselines, especially on Amazon and
Yahoo datasets for which the memorization of the
first words is especially harmful.

The baselines reconstruct the first words with
very high accuracy (more than 50% of the time
on Yahoo and Yelp) while our variants mitigate
this memorization. For instance, PreUni models
recover the first word around 2 or 1.5 times less
often.

Let us focus on AGNews and Yelp, where the
first words are very predictive of the labels. Both

8Similar results were obtained using greedy decoding, al-
beit sometimes consistently shifted.

baselines and variants have roughly similarly high
agreement. However, our variants produce more di-
verse beginnings, while still managing to reproduce
the topic or sentiment of the original document. On
the other hand, the reconstructions of the baselines
exhibit the same labels as the sources mostly as a
side-effect of starting with the same words. This
also explains that in the SSL setting, despite simi-
lar performances asymptotically, our variants were
much more efficient using five examples per class.
Memorization of the first words does not abstract
away from the particular words and therefore, the
amount of data required to learn a good classifier
will be high, compared to a model which truly infer
unobserved characteristics of documents.

Both BoW encoders and Uni decoders lower
memorization, so bag-of-words assumptions are
efficient for dealing with the memorization prob-
lem. Still, BoW-Max and LSTM-Max with PreUni
pretraining yield very close performance despite
having a different encoder, showing that the de-
coder has a far greater influence than the encoder.
This is consistent with McCoy et al. (2019)’s find-
ings (see Section D.2 in Appendix for details).

Finally, there seems to be a trade-off between
the global character of the latent information and
the fit of the model to the data. BoW and Uni
variants have perplexity roughly one unit above the
baselines, a significant but small difference.

In Appendix F, we perform a qualitative analysis
of reconstruction samples to illustrate these conclu-
sions. It also sheds light on the inherent difficulty
of the Yahoo dataset.

To recapitulate, the bag-of-words assumptions
decrease the memorization of the first word and
of the sentence length in the latent variable while
increasing the agreement between the labels of the
source and of the reconstruction. This is achieved
at the cost of a small increase in perplexity.

7 Conclusion

Eliminating posterior collapse is necessary to get
useful VAE models, but not sufficient. Although
recent incarnations of the seq2seq VAE fix the pos-
terior collapse, they partially memorize the first
few words and the document lengths. Depending
on the data, these local features are sometimes not
very correlated with global aspects like topic or
sentiment. Therefore, they are of limited use for
controllable and diverse text generation.

To learn to infer more global features, we ex-
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plored alternative architectures based on bag-of-
word assumptions on the encoder or decoder side,
as well as a pretraining procedure. These variants
are all effective, in particular, the unigram decoder
used as an auxiliary decoder (De Fauw et al., 2019).
The latent variable is more predictive of global
features and memorisation of the first words and
sentence length is decreased. Thus, these mod-
els are more suitable for diverse and controllable
generation.

Methodologically, we introduced a simple way
to examine the content of latent variables by look-
ing at the reconstruction loss per position. We
also presented a reliable way to perform semi-
supervised learning experiments to analyze the con-
tent of the variable, free of the problems that one
can find in past work (incorrect model selection
for small data-regimes, use of samples instead of
variational parameters as inputs). We showed that
there are particularly difficult datasets for which
the first words are not very predictive of their labels,
and therefore, these datasets should be systemati-
cally used in evaluations. Moreover, the agreement
metric is another complementary evaluation that
is automatic and focused on generation. We hope
that these methods will see widespread adoption
for measuring progress more reliably.

A promising research direction is to investigate
the root cause behind memorization. A simple rea-
son for the memorization of the first few words
could be that, in the beginning of training, the
reconstruction loss is higher on these words (see
LSTM-LM in Figures 1, 2, 3, 4). These early er-
rors should therefore account for a proportionally
large part of the gradients and pressure the encoder
to store information about the first words. If that
is correct, the left-to-right factorization of the de-
coder could be at fault, which would explain the
successes of the unigram decoders. More power-
ful decoders with alternative factorizations could
avoid this issue, for example, non-autoregressive
Transformers (Gu et al., 2017) or Transformers
with flexible word orders (Gu et al., 2019).

VAEs operate on uncorrupted inputs and learn a
corruption process in the latent space. In contrast,
models in the BERT family (Devlin et al., 2018)
are given corrupted inputs and are penalized only
on these corrupted inputs, thereby avoid memoriza-
tion altogether. Therefore, another research avenue
would be to blend the two frameworks (Im et al.,
2017).
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating Sentences from a Continuous
Space. In Proceedings of The 20th SIGNLL Con-
ference on Computational Natural Language Learn-
ing, pages 10–21, Berlin, Germany. Association for
Computational Linguistics.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov.
2015. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519.

Gavin C Cawley and Nicola LC Talbot. 2010. On over-
fitting in model selection and subsequent selection
bias in performance evaluation. Journal of Machine
Learning Research, 11(Jul):2079–2107.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan,
Prafulla Dhariwal, John Schulman, Ilya Sutskever,
and Pieter Abbeel. 2016. Variational lossy autoen-
coder. arXiv preprint arXiv:1611.02731.

Jeffrey De Fauw, Sander Dieleman, and Karen Si-
monyan. 2019. Hierarchical autoregressive image
models with auxiliary decoders. arXiv preprint
arXiv:1903.04933.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
Linguistic Style Aspects in Neural Language Gener-
ation. In Proceedings of the Workshop on Stylistic
Variation, pages 94–104.

https://doi.org/10.18653/v1/K16-1002
https://doi.org/10.18653/v1/K16-1002


4305

Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao,
Asli Celikyilmaz, and Lawrence Carin. 2019. Cycli-
cal Annealing Schedule: A Simple Approach to Mit-
igating KL Vanishing. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 240–250, Minneapolis, Minnesota.
Association for Computational Linguistics.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019.
Insertion-based decoding with automatically in-
ferred generation order. Transactions of the Asso-
ciation for Computational Linguistics, 7:661–676.

Junxian He, Daniel Spokoyny, Graham Neubig, and
Taylor Berg-Kirkpatrick. 2019. Lagging Inference
Networks and Posterior Collapse in Variational Au-
toencoders. In International Conference on Learn-
ing Representations.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780.

Daniel Im Jiwoong Im, Sungjin Ahn, Roland Memise-
vic, and Yoshua Bengio. 2017. Denoising criterion
for variational auto-encoding framework. In Thirty-
First AAAI Conference on Artificial Intelligence.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of Tricks for Efficient
Text Classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Yoon Kim, Sam Wiseman, Andrew Miller, David Son-
tag, and Alexander Rush. 2018. Semi-Amortized
Variational Autoencoders. In International Confer-
ence on Machine Learning, pages 2683–2692.

Diederik P. Kingma, Danilo Jimenez Rezende, Shakir
Mohamed, and Max Welling. 2014. Semi-
Supervised Learning with Deep Generative Models.
CoRR, abs/1406.5298.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz,
Xi Chen, Ilya Sutskever, and Max Welling. 2016.
Improved variational inference with inverse autore-
gressive flow. In Advances in neural information
processing systems, pages 4743–4751.

Bohan Li, Junxian He, Graham Neubig, Taylor Berg-
Kirkpatrick, and Yiming Yang. 2019. A Surpris-
ingly Effective Fix for Deep Latent Variable Mod-
eling of Text. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3601–3612, Hong Kong, China. As-
sociation for Computational Linguistics.

Teng Long, Yanshuai Cao, and Jackie Chi Kit Cheung.
2019. Preventing Posterior Collapse in Sequence
VAEs with Pooling. arXiv:1911.03976 [cs, stat].
ArXiv: 1911.03976.

R. Thomas McCoy, Tal Linzen, Ewan Dunbar, and
Paul Smolensky. 2019. RNNs implicitly imple-
ment tensor-product representations. In Interna-
tional Conference on Learning Representations.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neu-
ral Variational Inference for Text Processing. In In-
ternational Conference on Machine Learning, pages
1727–1736.
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Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

Henry B Moss, David S Leslie, and Paul Rayson.
2018. Using JK fold Cross Validation to Reduce
Variance When Tuning NLP Models. arXiv preprint
arXiv:1806.07139.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807–814.

Gary W Oehlert. 2010. A first course in design and
analysis of experiments.

Artidoro Pagnoni, Kevin Liu, and Shangyan Li. 2018.
Conditional variational autoencoder for neural ma-
chine translation. arXiv preprint arXiv:1812.04405.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. Asso-
ciation for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,

https://doi.org/10.18653/v1/N19-1021
https://doi.org/10.18653/v1/N19-1021
https://doi.org/10.18653/v1/N19-1021
https://openreview.net/forum?id=rylDfnCqF7
https://openreview.net/forum?id=rylDfnCqF7
https://openreview.net/forum?id=rylDfnCqF7
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/E17-2068
https://www.aclweb.org/anthology/E17-2068
http://arxiv.org/abs/1406.5298
http://arxiv.org/abs/1406.5298
https://doi.org/10.18653/v1/D19-1370
https://doi.org/10.18653/v1/D19-1370
https://doi.org/10.18653/v1/D19-1370
http://arxiv.org/abs/1911.03976
http://arxiv.org/abs/1911.03976
https://openreview.net/forum?id=BJx0sjC5FX
https://openreview.net/forum?id=BJx0sjC5FX
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


4306

A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Gar-
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A On the use of KL annealing, the choice
of the free bits flavor and resetting the
decoder

Li et al. (2019) evaluated their models in the SSL
setting (Section 3.3 of their paper). However, their
experimental setting is not very rigorous. In the
case of the 100 labeled examples, hyperparame-
ter selection is done on a very large validation set
of 10000 examples. However, the validation set
here should be seen as nothing more than a split
of the training data dedicated to optimising hyper-
parameters. In the words of Cawley and Talbot
(2010), “model selection should be viewed as an in-
tegral part of the model fitting procedure”. Besides
methodological issues, we run our own hyperpa-
rameter search on the Yelp dataset to properly dis-
entangle the effects of KL annealing, the free bits
method and verify the importance of resetting the
decoder. We use the semi-supervised learning set-
ting presented in Section 5 to evaluate the learned
encoders.

A.1 The free bits technique and variants
The original free bits objective (Kingma et al.,
2016) is the following modification to the KL term:

K∑
j

max(
λ

K
,KL(qj(zj |x)||pj(zj)))

where indices denote components. In this formu-
lation, each component of the multivariate normal
is allowed to deviate from the prior by a small
amount. Instead, in the δ-VAE formulation, one
component can use of all the λ free bits and the rest
of the components can collapse to the prior. This is
the variant called δ, used throughout the paper:

max(λ,KL(q(z|x)||p(z)))

Other modifications of the free bits technique in-
clude the use of a variable coefficient in front of the
KL term (Chen et al., 2016), the target rate objec-
tive in Alemi et al. (2018), minimum desired rate
(Pelsmaeker and Aziz, 2019), etc. A comparison of
all these methods is out of the scope of this paper
and the δ variant satisfies our only requirement: the
rate should be close to the desired rate.

A.2 KL annealing and the original free bits
method higher the rate

Our hypotheses are:

• KL annealing aims at fixing the posterior col-
lapse and is therefore redundant with the free
bits,

• KL annealing performs this role by increasing
capacity inconsistently across models, making
them harder to compare,

• the original free bits formulation impose
the unnecessary constraint that the free bits
should be balanced over all components.

To study the influence of the free bits variant as
well as of KL annealing, we use the same experi-
mental protocol as described in Section 5. To save
computations, we fix d = 16. We do not perform
model selection on the desired rate λ in order to
see which methods yield the rates that are closest
to the desired rate. Table 3 shows these hypotheses
are correct. Therefore, all the experiments in the
paper use the δ variant without annealing.

In Li et al. (2019)’s work, the original, per-
component variant of the free bits might have been
chosen because it trivially maximizes a metric
called active units (AU). However, to our knowl-
edge, there is no evidence that this metric should
be maximized, neither theoretical nor empirical.

A.3 On the importance of resetting the
decoder after pretraining

Li et al. (2019) proposed to pretrain an AE with a
reconstruction loss only. Then, the parameters of
the decoder are re-initialised and the (modified) KL
term is added to the objective. Since it is not very
clear why it would be useful, we studied the impact
of this choice. Table 4 shows that it is is crucial.

B Further evidence for memorization

B.1 Plots on other datasets

Figures 2, 3, and 4 show the reconstruction loss
and the relative improvement on other datasets.

On the Yelp dataset, the penultimate token is a
punctuation mark which is always followed by the
end-of-sentence token, so predicting its position is
equivalent to predicting the sentence length. That
is why the peak at the end occurs before the last
token. Moreover, on Yelp, the situation is worse
with λ = 2: between positions 6 and 13, not only
is there no improvement, but the reconstruction is
higher than that of the baseline.
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Figure 2: Reconstruction loss as a function of word position on the AGNews dataset. See Figure 1.
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Figure 3: Reconstruction loss as a function of word position on the Amazon dataset. See Figure 1.
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Figure 4: Reconstruction loss as a function of word position on the Yelp dataset. See Figure 1.
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FB λ ANN. F1(5) F1(50) F1(500) F1(5000) F1(ALL) KL

O 2 10 53.3±5.5
3.3 69.8±1.8

1.3 73.6±0.2
1.7 74.0±0.1

1.8 73.6±1.1 5.27±0.47

O 2 0 51.8±4.8
6.7 62.7±2.5

3.8 67.0±0.4
5.6 67.5±0.1

5.8 66.9±2.7 2.58±0.46

δ 2 10 51.7±4.6
4.7 64.5±1.9

6.7 68.3±0.4
7.3 69.1±0.2

6.7 68.4±3.3 2.5±0.24

δ 2 0 58.7±5.5
3.2 74.0±2.7

4.4 78.1±0.3
4.1 78.6±0.1

4.3 78.6±1.9 2.27±0.02

O 8 10 60.0±6.0
8.7 77.5±1.2

2.2 80.8±0.3
4.1 81.2±0.1

4.2 81.2±2.1 10.67±0.44

O 8 0 60.2±7.3
4.7 77.7±2.0

2.6 81.4±0.3
2.2 81.7±0.1

2.2 81.5±0.9 9.48±0.08

δ 8 10 57.6±7.6
4.2 76.3±1.4

1.1 80.3±0.3
3.0 80.8±0.1

2.9 80.3±1.0 8.21±0.07

δ 8 0 60.4±4.1
3.6 80.0±1.3

3.0 82.7±1.0
0.9 83.3±0.1

2.3 83.5±0.8 8.12±0.02

Table 3: δ-VAE-style free bits with no KL annealing delivers the best SSL performance and the KL value closest
to the desired rate. Ann.: 0: no annealing, 10: anneal for 10 epochs; FB: free bits type; F1(n): F1-score in the n
data-regime; KL: rate obtained after training.

RESET. λ F1(5) F1(50) F1(500) F1(5000) F1(ALL) KL

N 2 51.0±4.2
5.6 61.3±2.0

9.2 65.6±0.5
9.2 66.2±0.1

9.5 65.2±4.9 2.36±0.15

Y 2 58.7±5.5
3.2 74.0±2.7

4.4 78.1±0.3
4.1 78.6±0.1

4.3 78.6±1.9 2.27±0.02

N 8 57.4±5.6
2.4 73.4±1.5

7.3 77.2±0.3
6.6 77.5±0.1

6.7 77.4±2.6 8.23±0.08

Y 8 60.4±4.1
3.6 80.0±1.3

3.0 82.7±1.0
0.9 83.3±0.1

2.3 83.5±0.8 8.12±0.02

Table 4: Resetting the decoder brings very noticeable gains on all data-regimes and with different rates. Yelp
dataset, δ-VAE free bits, no KL annealing. For columns interpretations, see Table 3.

Dataset Splits size Label |Y| H[Y ] NLL

AGNews 110/10/10 Topic 4 1.39 128.77±0.21

Amazon 100/10/10 Sent. 5 1.61 82.90±0.10

Yahoo 100/10/10 Topic 10 2.30 81.91±0.36

Yelp 100/10/10 Sent. 2 0.67 34.60±0.28

Table 5: Datasets characteristics. |Y|: number of differ-
ent labels. H[Y ]: entropy of labels. NLL: mean nega-
tive log-likelihood of LSTM baseline models (std. over
3 runs). Splits size: train/valid/test sizes in thousands.

B.2 Tracing back reconstruction gains to
words

If words in a document were independently mod-
eled, any improvement in reconstruction at a certain
position would indicate that information about the
word in that position were encoded in the latent
variable. However, words are far from being inde-
pendently predicted, so how can we trace back the
information to the encoder?

First, any latent information related to the first
word should not yield any improvements on the
prediction of the second word, because the decoder
is recurrent and trained using teacher forcing, i.e.,
conditioned on the true first word, so that informa-
tion would be redundant. However, information
related to the second word in the latent variable
can help the decoder predict the first word. There-
fore, gains in position i can only be attributed to
information pertaining to the words in positions

≥ i.
Second, the correlation between words in two

positions decreases as the distance between these
words grow. In effect, information pertaining to the
second word yields more gains on the second word
than on the first word. From these two facts, we
conclude that gains for a position i mostly comes
from information about the word in position i itself.

B.3 Reconstruction and memorization

To study the concrete impact of this observation for
generation, we encode and decode test documents
using the last-PreAE variant.9 Then, we compute
the ratio of documents for which the first word in
the sources and in the reconstructions match and
similarly, how often the sources and their recon-
structions have the same number of words.

We compare these with scores obtained by a
baseline model that outputs the most frequent first
word given the label and the most common docu-
ment length given the label. This baseline mimicks
the behavior of a hypothetical VAE which would
encode the labels of the documents (topic or senti-
ment) perfectly and nothing more.

Results in Table 6 show that with the last-PreAE
the first words are reconstructed with much higher
accuracy than if the latent vector only encoded the
label. On the last two datasets, it recovers the first

9λ = 8, d = 16, beam search with beam size of 5.
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last-PreAE Clf. given label
Dataset 1st (%) Len. (%) 1st (%) Len. (%)

AGNews 29.6±1.1 3.6±0.1 12.9 4.8
Amazon 42.4±2.3 13.0±1.6 14.0 0
Yahoo 56.6±1.0 17.1±1.1 11.3 4.9
Yelp 53.0±0.5 33.7±1.7 14.1 9.7

Table 6: The latent variables encode more information
than the label alone, in particular, information that al-
lows to retrieve the first word and the document length
with high accuracy.

words on more than half of the documents whereas
the baseline only recovers the first words between
11.3 and 14.1% of the time. Accurate encoding of
the number of words seems less systematic than
the encoding of the first few words. For example,
on AGNews, the sentence length is recovered less
often than our baselines. The encoding of the sen-
tence length is more pronounced on datasets with
small documents like Yahoo and Yelp.

C Training procedure

C.1 Grid search

The target rates λ are chosen to be higher than the
entropy of the labels of the documents (Table 5) as
we assume that the latent variable should at least
capture the annotated label. Indeed, λ = 2 nats is
enough to store the labels of all datasets without
any loss, except Yahoo which has an entropy of
2.3 whereas λ = 8 nats suffices to capture much
more information than needed to store the labels
on all datasets. Moreover, these rates are chosen
to be much smaller than the reconstruction loss
of the baselines because of the technical difficulty
of increasing the rate without degrading the log-
likelihood explained above.

The latent vector dimension d is either 4 or 16.
Recall that our representations are evaluated on
downstream tasks with very limited data in some
cases (as little as 5 examples per class), so we need
a small enough dimension of latent vector to be able
to learn. We suppose that d = 4 will be favored
for the 5 or 50 examples per class regime while
d = 16 could be more efficient above this, but we
leave this choice to the model selection procedure.

C.2 Constant hyperparameters

All the runs are trained using SGD with a learning
rate of 0.5 and gradients are clipped when their
norms are higher than 5. We use the following

early stopping scheme: at every epoch, if there has
not been improvements on the validation error for
two epochs in a row, the learning rate is halved.
Once it has been halved four times, the training
stops.

All the LSTMs have hidden state size of 512 and
use a batch size of 64. No dropout is applied to the
encoders. The LSTM decoders use dropout (p =
0.5) both on embeddings and on the hidden states
(before the linear transformation that gives logits).
Similarly, dropout is applied to the representation
before the linear transformation that gives the logits
for the Unigram decoder. Word embeddings are
initialized randomly and learned.

C.3 Computing infrastructure and average
runtime

We performed training and evaluations of the mod-
els on a cluster containing a hundred of GPUs with
various specifications (NVIDIA Tesla k80, Titan
X, Titan Xp, etc.). Given that all the datasets have
roughly 100000 training examples (cf. Table 5) and
that neural networks are trained with BPTT (Wer-
bos, 1990), the training time mostly depends on the
average sentence length and the vocabulary size.
Pretraining schemes (PreAE, PreUni and PreLM)
require the training of two models. Roughly, the
training time of a single model (pretraining or final)
varied between 1 hour and 6 hours.

To be more specific, the best baselines and our
best variants use pretraining phases (PreAE from
Li et al. (2019) and PreUni, respectively). PreUni
is faster because the first training phase uses a non-
recurrent decoder, and the second training phase
does not backpropagate and does not update the
encoder. However, PreAE does not require pre-
training for each desired target rate λ, unlike our
approach. Overall, the approaches have compara-
ble runtimes.

Some of our models offer an interesting com-
promise: BoW-max-LSTM with no pretraining and
a simpler architecture is probably the fastest, yet
outperform the PreAE baselines.

D Related work

D.1 Related models

The models that we use are similar to already pro-
posed models.

The NVDM model of Miao et al. (2016) is pre-
cisely BoW-max-Uni.
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Zhao et al. (2017) proposed to use two recon-
struction losses: the regular reconstruction loss
given by the recurrent decoder and an auxiliary
loss computed from a unigram decoder. In compar-
ison, our Uni models are trained in two steps: the
encoder is trained jointly with the unigram decoder,
then the decoder is thrown away and we train a re-
current decoder using the fixed encoder. This way,
one decoder cannot dominate the other and we do
not have to deal with an additional hyperparameter
to weight the two losses.

Instead of using an auxiliary loss, we have an
auxiliary decoder that is only used for the purpose
of training the encoder. This method was presented
by De Fauw et al. (2019) for training generative
models of image. There is a slight difference: they
use a feedforward auxiliary decoder to produce dif-
ferent probability distributions for all the pixels,
whereas our unigram probability distribution is the
same for all words of a document. This modifi-
cation allows us to deal with varying lengths of
documents.

Finally, the PreLM training procedure is related
to large LM pretraining in the spirit of contextual-
ized embeddings (Peters et al., 2018) and its succes-
sors. Note, however, two differences. Firstly, we
do not use external data and stick to each individ-
ual training set, because the goal is not to evaluate
transfer learning abilities. Secondly, we do not
fine-tune the entire encoder, but only learn the lin-
ear transformations L1 and L2 that produce the
variational parameters, to make sure that the VAE
objective will have no impact on the extraction of
features.

D.2 Methods and evaluations

In their analysis of the semi-amortized VAE, Kim
et al. (2018) use several saliency measures (de-
fined as expectations of gradients) to determine
which words influence the latent variable, or are
influenced by it. Using these measures, they no-
ticed that the beginning of the sentence and the
end-of-sentence token have a large influence on the
variable. Our method is very similar, but slightly
simpler and directly interpretable in terms of quan-
tity of information (in nats).

Ficler and Goldberg (2017) learn LSTM-LMs
conditioned on labels that describe high-level prop-
erties of texts. Among others, they want to verify
that generated texts exhibit the same properties as
the conditioning labels. For instance, when the

LSTM-LM is conditioned on positive sentiment
value, the generated texts should also exhibit a
positive sentiment. To check that the condition-
ing variables and the generated texts are consistent,
they use the following procedure. First, they ex-
tract information about the various documents us-
ing heuristics or with the help of annotators. Then,
they learn LSTM-LMs conditioned on these labels.
Finally, they quantify the ratio of generated sam-
ples which have the same labels than the condition-
ing labels, either by applying the same heuristics
again to the generated samples or by asking human
annotators once more. Our evaluation in Section
6 is similar; we simply replace the heuristics and
the human annotators with classifiers learned on
ground-truth data.

McCoy et al. (2019) trained autoencoders with
different combinations of encoders and decoders
(unidirectional, bidirectional or tree-structured)
and decomposed the representations learned by
the encoders using tensor product representations
(Smolensky, 1990). They find that decoders
“largely dictate” the way information is encoded.
This is in line with our own conclusions. An im-
portant difference between our works is that they
study how information is encoded in sequence-
to-sequence models without capacity limitations,
whereas in our study, the VAE objective puts severe
constraints on the capacity.

E Semi-supervised learning experiments

E.1 Model selection

For a given dataset in a given data-regime, we want
a measure of the performance of our models that ab-
stracts away from i) hyperparameters for the VAEs,
ii) hyperparameters for the downstream task classi-
fiers, iii) subsampling of the dataset and iv) param-
eter initialisation of the VAEs. As is usually done
by practitioners, we optimize over the hyperparam-
eters of the VAEs and the classifiers, eliminating
i) and ii) as sources of variance. We can study the
robustness of the models by looking at the variance
induced by the choice of the subsample and the
initialisation of the parameters.

On a given dataset and in a given data-regime,
for a given model, we note FHM ,HCij the F1-score
obtained on the test set on the subsample using seed
i, the parameter initialisation using seed j, VAE
hyperparameters HM and classifier hyperparame-
ters HC . We use repeated stratified K-fold cross-
validation (Moss et al., 2018) to compute a valida-
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tion error ̂
FHM ,HCij . For all training folds, we train

logistic regression classifiers withL2 regularisation
and a grid-search on HC ∈ {0.01, 0.1, 1, 10, 100}.
We select the best classifier hyperparameter:

H∗C = arg max
HC

̂
FHM ,HCij

Then, the best VAE hyperparameter is chosen by
averaging over the s = 3 random seeds and picking
the best classifier hyperparameter,

H∗M = arg max
HM

1

s

s∑
i=1

̂
F
HM ,H

∗
C

ij

Having optimised the hyperparameters, we com-
pute the test set F1-score:

Fij = F
H∗
M ,H

∗
C

ij

E.2 Decomposing the variances of the scores
For a given model, dataset and data-regime, after
optimisation of the hyperparameters of the VAE
and the classifier, we collect several F1-scores Fij
which depend on the seed used to subsample the
dataset i and the seed used to initialise the model
parameters j. We posit a linear model with one
random-effect factor, the initialisation seed, and
where replicates are obtained by varying the sub-
sampling seed:

Fij = µ+ αj + εij

Assuming that αj and εij are independent random
variables with null expectations, we can decompose
the variance as

Var(Fij) = E[(Fij − µ)2]

= E[(αi + εij)
2]

= E[α2
i ] + E[ε2ij ]

= Var(αi) + Var(εij)

This is the basis of the method of analysis of vari-
ance (ANOVA) and is often used to test hypotheses
(for instance, that the effect E[αi] is significant)
(Oehlert, 2010). The two estimates of σ2init and σ2

are usually denoted MST and MSE .
In our case, we are only interested in estimating

roughly what variability is due to the model initial-
isation and what is due to the subsampling of the
dataset.

Note that we could treat the two sources of vari-
ance i and j symmetrically by adding add a term βi,

but we would need to report 3 standard deviations
(that of αj , βi and εij) to get the full picture. The
most important estimate is σinit. It quantifies the
inherent robustness of the model to different initial-
isations. The effect of the subsampling is specific
to the dataset, therefore, it is less relevant to our
analysis.

E.3 What is the representation of a
document?

VAEs are mostly used for generating samples but
are also sometimes used as feature extractors for
SSL. In the latter case, it is not clear what the
representation of a datapoint is: the mean of the
approximate posterior µ or the noisy samples Z ∼
N (µ, Iσ2)? Kingma et al. (2014) feed noisy sam-
ples z in the classifiers but in the literature of VAEs
applied to language modeling, it is more common
to use µ without explanation or even mention.10

If we are interested purely in downstream task
performance, the mean should perform best, as
the samples are just noisy versions of the mean
vector (it is still not completely straightforward as
the noise could play a regularizing role). How-
ever, in order to evaluate what information is ef-
fectively transmitted to the decoder, we should use
the samples. The performance of downstream task
classifiers using the mean does not tell us at all
whether the latent variable is used by the decoder
to reconstruct the input. The following experiment
illustrates this fact.

We train the original VAE architecture on the
Yelp dataset, both with and without the PreAE,
using the original ELBo objective (λ = 0). As ex-
pected, the KL term collapses to 0. Then, we train
a classifier using the procedure explained above
using 5000 examples per class. We expect that its
performance will be close to random chance, re-
gardless of whether samples or the mean parameter
are used as inputs. However, Table 7 shows that this
is not the case. Using samples, we do get random
chance predictions from the classifiers, whereas us-
ing means, the performance is remarkably high (as
high as 81.5 of F1 using pretraining). The reason
is that the KL term never completely collapses to 0.
Therefore, µ can be almost zero while still encod-
ing a lot of information about its inputs. However,
when the KL term is close to 0, the variance of the

10For instance, Li et al. (2019) and Fu et al. (2019) do not
mention what representation they use but their code uses the
mean; Long et al. (2019) report using a concatenation of the
mean and the variance vectors.
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PreAE
F1

KL
z µ

No 49.5 64.7 1e−4

Yes 49.6 81.5 2e−4

Table 7: When the KL collapses, the performances of
classifiers trained on the mean µ vs on samples z ∼
N (µ, Iσ2) are very different, especially for pretrained
models. z does not contain any information while µ is
very predictive of the label.

samples is close to 1, so no information is transmit-
ted to the decoder. This tendency is exacerbated
with the PreAE runs, for which the means encode
remnants of the pretraining phase.

This experiment shows that it is crucial to re-
port what representation (z or µ) is analyzed and
to cautiously interpret the results. Therefore, for
the purpose of analysing representations for text
generation, we feed z as inputs to the classifiers.

E.4 Recurrent and BoW encoders work
around max-pooling

It is counter-intuitive that BoW-max-LSTM im-
proves over LSTM-max-LSTM (with or without
PreAE). Indeed, taking into account word order
should allow the LSTM encoder to do better in-
ference than the BoW encoder, for example, by
handling negation or parsing more complicated dis-
course structure (Pang et al., 2002).

LSTM encoders are more powerful, but it can
lead them to learn undesirable behaviors. We no-
ticed that some components of the hidden states
consistently reach their maximum values at fixed
positions, regardless of the inputs (i.e., for some
components j∗, arg maxi h

j∗

i ≈ K). These posi-
tions K are often early positions in the sentence.
For instance, with λ = 8, d = 16, LSTM-max-
LSTM-PreAE has 70 components out of 512 that
are selected on 80% of the documents on the same
position on Yelp (68 on the first word, 2 on the sec-
ond) and 78 on Amazon (57 on the first word, 21 on
the second). In other words, some components of
r act like memory slots assigned to fixed positions
in the sentence. This is probably achieved through
counting mechanisms (Shi et al., 2016; Suzgun
et al., 2019). The decoder is also an LSTM and
can count, so it can also extract the relevant compo-
nents at each position to retrieve the corresponding
words.

For BoW encoders, it is less clear. It is possi-

ble that on some datasets, capitalized words could
take especially high values on some components,
in order to be consistently represented after max
pooling. However, we have not explored the issue
further.

F Qualitative analysis

For our qualitative analysis, we take a look at the
reconstruction samples (which were also used in
Section 6). We focus on the PreUni models which
lower memorization the most with the LSTM-max
and BoW-max encoders, and compare them to the
two best baselines. We use only one seed and one z
sample per model and per source sentence, but use
two decoding strategies (beam search and greedy
decoding).

In general, and for the reasons explained above,
the rate λ = 8 is chosen too small to recover ex-
actly the source. Indeed, this rate is an order of
magnitude less than the negative log-likelihood of
LSTM-LM baselines: above 80 for all datasets ex-
cept on Yelp where it is around 34.60 nats (cf. Ta-
ble 5). Since the NLL is an upper-bound on the
entropy of the data, it gives a crude over estimate
of the information content of the average docu-
ment. On Yelp, where the NLL is much smaller
(around 34.60 nats), we hope to obtain good para-
phrases for simple and frequent sentences. On the
other datasets, we can not hope to reconstruct the
sentences correctly but merely to control the gener-
ation by producing sentences which have the same
labels as the source sentences. For this reason,
we cherry-pick source sentences that look quite
generic, because they are more probable and there-
fore, should be easy to reconstruct correctly.

Results are presented in Tables 10, 11, 12 and
13. Overall, we do observe less memorization of
the first words and more correct sentiment or topic.
Between our two models, on Amazon and Yelp
(sentiment labels), it seems that LSTM-max-LSTM-
PreUni might perform better than BoW-max-LSTM-
PreUni because of its ability to handle negation,
probably thanks to the recurrent encoder. It also
seem more on topic on AGNews. On Yelp, it is able
to paraphrase generic, small sentences. Therefore,
we recommend this model as a future baseline.

We have already seen that it is very hard to clas-
sify sentences based on their first three words on
the Amazon and Yahoo dataset, and that the base-
line methods will learn representations that are not
predictive of labels. However, the Yahoo dataset is
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5 50 500 5000 All
r Dec. Pre. F1±σσinit

A
G
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ew

s

last LSTM - 59.6±5.1
11.9 71.7±1.0

12.1 73.6±0.1
11.8 73.7±0.1

11.9 73.6±−
5.4

last LSTM AE 65.8±3.3
3.3 81.0±0.7

1.1 82.8±0.3
0.6 83.1±0.1

0.7 83.4±−
0.3

max LSTM - 27.3±2.4
1.2 30.8±3.4

5.4 33.1±0.9
10.5 33.8±0.4

8.6 34.6±−
2.4

max LSTM AE 55.7±4.5
18.7 75.1±1.3

2.6 81.9±0.3
0.0 82.5±0.1

0.4 83.3±−
0.4

max LSTM - 72.7±2.0
5.9 81.2±0.6

0.8 82.2±0.2
0.8 82.3±0.1

1.0 83.1±−
0.3

max Uni - 71.6±5.5
0.1 80.4±0.8

0.7 81.8±0.5
0.5 82.4±0.1

0.4 83.9±−
0.3

last Uni - 54.8±5.2
57.1 61.7±0.8

71.4 62.9±0.4
71.0 63.0±0.3

71.1 59.3±−
40.9

max Uni - 71.8±4.5
1.8 81.4±0.5

0.6 82.5±0.1
0.5 82.5±0.1

0.6 83.1±−
0.5

avg LSTM LM 70.8±4.8
4.3 81.2±0.9

1.2 82.6±0.2
1.3 82.8±0.1

0.9 83.5±−
0.1

A
m

az
on

last LSTM - 18.9±1.7
0.5 20.9±1.2

0.9 22.5±0.7
0.7 23.3±0.4

1.1 22.9±−
1.5

last LSTM AE 20.0±2.2
0.9 24.7±0.7

2.8 27.2±0.4
3.1 27.7±0.3

3.8 28.1±−
1.0

max LSTM - 19.8±0.7
0.5 20.4±1.1

0.9 22.2±0.6
2.1 23.0±0.3

1.9 23.7±−
0.5

max LSTM AE 22.3±2.6
0.7 30.5±0.9

3.0 33.4±0.4
4.1 34.1±0.3

4.8 34.0±−
1.6

max LSTM - 21.0±2.6
1.1 34.6±0.7

1.1 38.3±0.4
1.0 39.0±0.1

0.6 38.9±−
0.7

max Uni - 21.8±3.1
1.6 32.8±0.8

1.7 36.9±0.4
0.9 38.0±0.2

0.6 38.2±−
0.5

last Uni - 24.0±3.0
1.0 31.2±0.6

1.4 35.1±0.4
2.2 36.1±0.2

2.4 36.8±−
0.9

max Uni - 25.4±3.2
0.2 32.8±1.0

1.3 36.1±0.4
0.7 36.9±0.2

0.8 37.9±−
0.2

avg LSTM LM 21.8±3.8
0.6 35.3±0.8

0.4 40.2±0.4
0.4 41.1±0.2

0.4 40.0±−
0.4

Y
ah

oo

last LSTM - 10.9±0.9
0.5 12.1±0.6

0.6 13.9±0.4
2.1 14.1±0.2

2.8 14.9±−
1.0

last LSTM AE 20.7±0.7
0.5 32.2±0.8

0.6 36.1±0.2
0.1 36.7±0.1

0.5 37.2±−
0.7

max LSTM - 9.9±1.0
1.3 13.0±0.6

2.1 14.6±0.3
2.8 14.9±0.1

3.1 15.7±−
0.5

max LSTM AE 20.8±1.3
2.3 31.3±0.7

1.4 35.6±0.3
1.2 36.3±0.1

1.1 36.6±−
0.7

max LSTM - 23.4±2.1
2.9 36.7±1.1

0.5 41.1±0.2
0.8 41.6±0.1

0.9 42.6±−
0.2

max Uni - 24.9±1.3
2.2 33.2±0.7

3.6 37.3±0.1
3.1 37.9±0.1

3.1 38.9±−
1.7

last Uni - 24.5±3.8
1.7 30.8±1.7

0.6 34.4±0.3
5.0 35.1±0.1

4.7 37.1±−
2.3

max Uni - 24.1±2.9
2.7 35.0±0.9

1.2 39.1±0.1
1.8 39.5±0.1

1.7 40.1±−
0.7

avg LSTM LM 21.9±2.3
1.3 36.1±0.8

0.7 39.9±0.2
0.6 40.4±0.1

0.4 41.7±−
0.3

Y
el

p

last LSTM - 49.9±4.5
2.7 55.6±2.3

2.9 57.9±1.1
2.5 59.5±0.2

2.7 61.9±−
2.5

last LSTM AE 59.3±5.4
2.9 80.0±1.3

3.0 82.7±1.0
0.9 83.3±0.1

2.3 67.9±−
0.1

max LSTM - 61.6±8.2
8.8 71.4±2.3

6.3 76.0±0.2
2.3 76.5±0.1

2.0 78.0±−
1.7

max LSTM AE 59.9±10.4
7.9 78.7±2.4

1.5 82.9±0.3
2.7 83.3±0.1

2.7 84.1±−
0.7

max LSTM - 67.1±10.1
15.7 79.3±2.8

4.5 83.4±0.3
0.9 83.9±0.1

0.9 85.0±−
0.2

max Uni - 62.3±4.6
3.8 76.7±1.7

3.6 80.4±0.2
3.2 80.9±0.1

3.1 83.1±−
0.5

last Uni - 65.0±8.0
4.4 74.1±2.0

1.4 78.5±0.3
3.0 79.1±0.1

3.1 81.6±−
0.5

max Uni - 59.9±7.2
3.7 77.3±1.2

0.9 81.1±0.3
0.5 81.5±0.1

0.5 83.3±−
0.4

avg LSTM LM 63.6±7.4
5.4 81.0±1.6

2.3 83.2±0.7
0.8 83.8±0.1

0.8 84.4±−
0.5

Table 8: Using BoW encoders, Uni decoders or PreLM pretraining, the learned representations are more predictive
of the labels (sentiment or topic) of the documents.

Dataset F1(All) F1(3) Ratio

AGNews 89.0 71.9 0.808
Amazon 48.9 29.7 0.607
Yahoo 63.0 19.1 0.303
Yelp 96.5 82.4 0.854

Table 9: Performance of bag-of-word classifiers when
using all words as features versus only the first three
words. Ratios of performance vary a lot across datasets.

especially challenging and our methods also strug-
gle on it. We hypothesize that it is because only
a few words per sentences are correlated with the
labels. Indeed, there are many sentences of the

form “what do you think about X?” or “what is the
difference between X and Y?” where only X and
Y are correlated with the label and moreover often
out-of-vocabulary. There might be no benefits for
the model to diminish the reconstruction loss in
priority on these words. By comparison, the other
“hard” dataset (Amazon) is “easier”, because the
sentiment is often indicated by frequent adjectives
like “horrible” or “good” and other frequent verbs.
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Model/“source” Dec. Sample

source Michael Owen heads England ’s winner in the World Cup qualifier against Azerbaijan .

LSTM-last-LSTM-PreAE beam Michael Owen will be sidelined for the rest of the season with a knee injury .
LSTM-last-LSTM-PreAE greedy Michael Owen has been charged with a rib injury and a new team for the first time in

the last two weeks .
LSTM-max-LSTM-PreAE beam American Bode Miller won the World Cup super @-@ G with a 6 @-@ 3 victory over

the United States in the World Cup of Hockey .
LSTM-max-LSTM-PreAE greedy American Bode Miller won the World Cup of Hockey on Sunday , beating the United

States by a record @-@ setting victory over the United States .
BoW-max-LSTM-PreUni beam England coach Sven @-@ Goran Eriksson says he will not be able to win the World

Cup qualifier against Wales .
BoW-max-LSTM-PreUni greedy England captain David Beckham has been named the England captain for the 2006

World Cup qualifiers against Wales .
LSTM-max-LSTM-PreUni beam England coach Sven @-@ Goran Eriksson says he will be fit for the World Cup qualifier

against Wales next month .
LSTM-max-LSTM-PreUni greedy England captain David Beckham has been named the first World Cup qualifier in the

World Cup qualifier against Wales .

source New Athlon 64 processors will compete with Intel ’s Pentium 4 Extreme Edition .

LSTM-last-LSTM-PreAE beam IBM ’ s dual @-@ core Opteron processor will be available in the next three years .
LSTM-last-LSTM-PreAE greedy A new chipset for mobile phones will be available in the next three years .
LSTM-max-LSTM-PreAE beam New version of Windows Server 2003 .
LSTM-max-LSTM-PreAE greedy New version of the Linux operating system is designed to integrate Linux and Linux .
BoW-max-LSTM-PreUni beam Hewlett @-@ Packard Co . , the world ’s largest computer maker , has unveiled a new

version of its iPod digital music player , the company said .
BoW-max-LSTM-PreUni greedy Hewlett @-@ Packard Co . , the world ’s largest maker of digital music player , on

Tuesday unveiled a new version of its popular PlayStation 2 game console , which will
be available in the next few years .

LSTM-max-LSTM-PreUni beam Intel has unveiled a new version of its Pentium 4 Extreme Edition processor , which
will be available for the first time .

LSTM-max-LSTM-PreUni greedy Intel has unveiled a new version of its Pentium M processor , which is designed to help
the company ’s new processor @-@ based processors .

source Nortel said it expects revenue for the third quarter to fall short of expectations .

LSTM-last-LSTM-PreAE beam Coca @-@ Cola Co .
LSTM-last-LSTM-PreAE greedy research ) is expected to announce a new deal with the company to buy the company .
LSTM-max-LSTM-PreAE beam Nortel Networks Corp.
LSTM-max-LSTM-PreAE greedy General Electric Co. said on Thursday it will buy the company for $ 500 million in cash

and stock .
BoW-max-LSTM-PreUni beam Ford Motor Co . , the world ’s largest maker of photographic film , said on Thursday it

expects to cut its full @-@ year earnings forecast , citing strong demand for its flagship
database products .

BoW-max-LSTM-PreUni greedy Coca @-@ Cola Co. on Thursday said third @-@ quarter earnings rose 29 percent ,
helped by strong sales of its soft drinks and business software .

LSTM-max-LSTM-PreUni beam Nortel Networks Corp. , the world ’s largest maker of equipment , said on Thursday
that its third @-@ quarter profit rose 12 percent , helped by a rebound in the value of its
assets .

LSTM-max-LSTM-PreUni greedy Shares of Nortel Networks Corp. fell nearly 8 percent on Thursday after the company
said it expects its earnings for the third quarter , citing a decline in its third @-@ quarter
earnings .

Table 10: Cherry-picked AGNews samples. Baselines are the first two models, our models are the two last. In the
first example, the first baseline copies “Michael Owen” and complete with generic suffixes; the second baseline is
about Hockey instead of soccer. Our baselines do not copy the beginning while correctly identifying the topic of
England and the World Cup’s qualifier. Similar comments can be made on the two other examples.
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Model/“source” Dec. Sample

source I loved the book , but was a little bit UNK with the ending .

LSTM-last-LSTM-PreAE beam I enjoyed the book , but the story line was not as good as the first one .
LSTM-last-LSTM-PreAE greedy I enjoyed the book and the story line . I was very disappointed in the book .
LSTM-max-LSTM-PreAE beam I was very disappointed in the quality of the book , and the content of the book is very

poor .
LSTM-max-LSTM-PreAE greedy I was disappointed in the quality of the book , but the book is not as good as the original

.
BoW-max-LSTM-PreUni beam I liked the story and the story line . It was a little slow at times but overall a good read .
BoW-max-LSTM-PreUni greedy I liked the story and the story line . It was a little slow but the ending was a little

predictable .
LSTM-max-LSTM-PreUni beam The book was a little slow , but the story line was good . I enjoyed it .
LSTM-max-LSTM-PreUni greedy The book was a little slow and the story line was very good . I was very disappointed .

source This movie wasn ’t as good as the original but I still enjoy watching it .

LSTM-last-LSTM-PreAE beam This movie was a little slow at times , but it was a good movie .
LSTM-last-LSTM-PreAE greedy This movie was a little slow and the plot was not good . I would not recommend it to

anyone .
LSTM-max-LSTM-PreAE beam This movie was not as good as I thought it would be . I was very disappointed .
LSTM-max-LSTM-PreAE greedy The movie was not as good as the first one . I was disappointed in the quality of the

movie .
BoW-max-LSTM-PreUni beam Not as good as I thought it would be . I wouldn ’t watch it again .
BoW-max-LSTM-PreUni greedy I didn ’t like this movie . I thought it was going to be a good movie but I wouldn ’t

watch it again .
LSTM-max-LSTM-PreUni beam I was expecting a little more from this movie . It was a little slow and boring .
LSTM-max-LSTM-PreUni greedy The movie was good , but the acting was not very good . I was expecting a little more

from the movie .

source This movie is horrible . The story , the acting , the directing . Just horrible .

LSTM-last-LSTM-PreAE beam This is a great movie . I love it . It is a great family movie .
LSTM-last-LSTM-PreAE greedy This movie is great . It is a great movie and I love it .
LSTM-max-LSTM-PreAE beam This is the worst movie I have ever seen . It was not worth the time to watch .
LSTM-max-LSTM-PreAE greedy This was a good movie . The acting was good , but the story line was not very good .
BoW-max-LSTM-PreUni beam This movie is not worth the money . The acting is poor and the acting is poor .
BoW-max-LSTM-PreUni greedy The movie is very poor , the acting is poor . The acting is poor .
LSTM-max-LSTM-PreUni beam This movie is a waste of time and money . It was a waste of time and money .
LSTM-max-LSTM-PreUni greedy This movie is a waste of time . It was a waste of time and money .

source This book is very bad and does not give a real idea of the sport of UNK

LSTM-last-LSTM-PreAE beam this is a great book for those who want to learn a little more about the history of the
history of the history

LSTM-last-LSTM-PreAE greedy this book is a great book for the price , but the book is a little too short for my taste
LSTM-max-LSTM-PreAE beam This book is a must have for anyone who is interested in the history of the Catholic

Church
LSTM-max-LSTM-PreAE greedy This book is a must have for anyone who is interested in the field of the world of the

New Testament
BoW-max-LSTM-PreUni beam This is a good book , but it does not have a lot of information in it .
BoW-max-LSTM-PreUni greedy This book is a good book for the beginner , but it does not have a lot of information in it

.
LSTM-max-LSTM-PreUni beam This is a good book , but it does not have enough information on how to build your own

.
LSTM-max-LSTM-PreUni greedy This is a good book , but the book is not a good book for the money .

Table 11: Cherry-picked Amazon samples. The first two examples are moderately positive reviews. LSTM-max-
LSTM-PreUNI recreate roughly the same sentiment overall with different beginnings of sentences. On the third
example, our models do copy the beginning of the source sentence but do not make mistakes on the sentiment
as the baselines do. On the last, all models fail to capture the very negative sentiment, but our models at least
moderate the positivity.
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Model/“source” Dec. Sample

source What is your favorite book ?

LSTM-last-LSTM-PreAE beam what is a good name for a girl ?
LSTM-last-LSTM-PreAE greedy what is a good name for a girl ?
LSTM-max-LSTM-PreAE beam What is your favorite book ?
LSTM-max-LSTM-PreAE greedy What is your favorite book ?
BoW-max-LSTM-PreUni beam What is your favorite sport ?
BoW-max-LSTM-PreUni greedy What is your favorite movie ?
LSTM-max-LSTM-PreUni beam What is your favorite book ?
LSTM-max-LSTM-PreUni greedy What is your favorite Christmas movie ?

source how can i get money ?

LSTM-last-LSTM-PreAE beam i want to know ?
LSTM-last-LSTM-PreAE greedy i want to know ?
LSTM-max-LSTM-PreAE beam how do i get money ?
LSTM-max-LSTM-PreAE greedy do you have any money ?
BoW-max-LSTM-PreUni beam where can i go to watch free online ?
BoW-max-LSTM-PreUni greedy where can i get free online games ?
LSTM-max-LSTM-PreUni beam where can i get a job ?
LSTM-max-LSTM-PreUni greedy how do i get a job in USA ?

source What countries have nuclear weapons ?

LSTM-last-LSTM-PreAE beam What are the pros and cons ?
LSTM-last-LSTM-PreAE greedy What are the pros and cons of smoking ?
LSTM-max-LSTM-PreAE beam which countries in the world ?
LSTM-max-LSTM-PreAE greedy which country has the highest world cup ?
BoW-max-LSTM-PreUni beam how many countries are there in the world ?
BoW-max-LSTM-PreUni greedy what are the countries that will be able to be the most effective government in the world

?
LSTM-max-LSTM-PreUni beam Why are the colors of the Earth ?
LSTM-max-LSTM-PreUni greedy what are the three different countries in the U.S. ?

source how to print all webpage content ?

LSTM-last-LSTM-PreAE beam how to create a website ?
LSTM-last-LSTM-PreAE greedy how to find a website ?
LSTM-max-LSTM-PreAE beam how can i learn english language ?
LSTM-max-LSTM-PreAE greedy how can i watch free online online ?
BoW-max-LSTM-PreUni beam how do you get a free copy of the internet ?
BoW-max-LSTM-PreUni greedy how to get the free internet explorer ?
LSTM-max-LSTM-PreUni beam how do i get a copy of my computer in the internet ?
LSTM-max-LSTM-PreUni greedy how do i get the power to open a computer in the internet ?

Table 12: Cherry-picked Yahoo samples. There isn’t a model that clearly stands out, but we can rule out LSTM-
last-LSTM-PreAE. This dataset is more difficult (see main text).
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Model/“source” Dec. Sample

source amazing place .

LSTM-last-LSTM-PreAE beam amazing customer service .
LSTM-last-LSTM-PreAE greedy amazing customer service .
LSTM-max-LSTM-PreAE beam amazing food .
LSTM-max-LSTM-PreAE greedy amazing food .
BoW-max-LSTM-PreUni beam this place is amazing .
BoW-max-LSTM-PreUni greedy this place is amazing .
LSTM-max-LSTM-PreUni beam this place is amazing .
LSTM-max-LSTM-PreUni greedy this place is amazing .

source definitely going back soon !

LSTM-last-LSTM-PreAE beam definitely coming back !
LSTM-last-LSTM-PreAE greedy definitely recommend to anyone !
LSTM-max-LSTM-PreAE beam definitely coming back again !
LSTM-max-LSTM-PreAE greedy highly recommend them to anyone !
BoW-max-LSTM-PreUni beam i will definitely be back !
BoW-max-LSTM-PreUni greedy i will definitely be back !
LSTM-max-LSTM-PreUni beam i will be back !
LSTM-max-LSTM-PreUni greedy i will be back !

source not worth the risk .

LSTM-last-LSTM-PreAE beam not the best .
LSTM-last-LSTM-PreAE greedy not the best .
LSTM-max-LSTM-PreAE beam not worth the money .
LSTM-max-LSTM-PreAE greedy not worth the money .
BoW-max-LSTM-PreUni beam worth the wait .
BoW-max-LSTM-PreUni greedy it was worth the wait .
LSTM-max-LSTM-PreUni beam not worth the hassle .
LSTM-max-LSTM-PreUni greedy it ’s not worth the money .

source overall , a huge disappointment .

LSTM-last-LSTM-PreAE beam pizza was good too .
LSTM-last-LSTM-PreAE greedy pizza was good too .
LSTM-max-LSTM-PreAE beam ok , nothing special .
LSTM-max-LSTM-PreAE greedy nothing special , but the food was bland .
BoW-max-LSTM-PreUni beam wow .
BoW-max-LSTM-PreUni greedy great experience .
LSTM-max-LSTM-PreUni beam what a disappointment .
LSTM-max-LSTM-PreUni greedy what a disappointment .

Table 13: Cherry-picked Yelp samples. On small and typical sentences, our last variant LSTM-max-LSTM-PreUni
can produce paraphrases. On the other hand, BoW-max-LSTM-PreUni fails on the two negative examples, proba-
bly because it lacks the ability to deal with negation. The baseline models also fail to capture the sentiment on the
last example, and copy the beginning on the first three examples.


