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Abstract
We study semantic collisions: texts that are
semantically unrelated but judged as similar
by NLP models. We develop gradient-based
approaches for generating semantic collisions
and demonstrate that state-of-the-art models
for many tasks which rely on analyzing the
meaning and similarity of texts—including
paraphrase identification, document retrieval,
response suggestion, and extractive summa-
rization—are vulnerable to semantic colli-
sions. For example, given a target query, insert-
ing a crafted collision into an irrelevant doc-
ument can shift its retrieval rank from 1000
to top 3. We show how to generate semantic
collisions that evade perplexity-based filtering
and discuss other potential mitigations. Our
code is available at https://github.com/
csong27/collision-bert.

1 Introduction

Deep neural networks are vulnerable to adversar-
ial examples (Szegedy et al., 2014; Goodfellow
et al., 2015), i.e., imperceptibly perturbed inputs
that cause models to make wrong predictions. Ad-
versarial examples based on inserting or modifying
characters and words have been demonstrated for
text classification (Liang et al., 2018; Ebrahimi
et al., 2018; Pal and Tople, 2020), question answer-
ing (Jia and Liang, 2017; Wallace et al., 2019), and
machine translation (Belinkov and Bisk, 2018; Wal-
lace et al., 2020). These attacks aim to minimally
perturb the input so as it to preserve its semantics
while changing the output of the model.

In this work, we introduce and study a different
class of vulnerabilities in NLP models for analyz-
ing the meaning and similarity of texts. Given an
input (query), we demonstrate how to generate a
semantic collision: an unrelated text that is judged
semantically equivalent by the target model. Se-
mantic collisions are the “inverse” of adversarial
examples. Whereas adversarial examples are sim-
ilar inputs that produce dissimilar model outputs,

semantic collisions are dissimilar inputs that pro-
duce similar model outputs.

We develop gradient-based approaches for gener-
ating collisions given white-box access to a model
and deploy them against several NLP tasks. For
paraphrase identification, the adversary crafts col-
lisions that are judged as a valid paraphrase of the
input query; downstream applications such as re-
moving duplicates or merging similar content will
thus erroneously merge the adversary’s inputs with
the victim’s inputs. For document retrieval, the ad-
versary inserts collisions into one of the documents
that cause it to be ranked very high even though
it is irrelevant to the query. For response sugges-
tion, the adversary’s irrelevant text is ranked as the
top suggestion and can also carry spam or advertis-
ing. For extractive summarization, the adversary
inserts a collision into the input text, causing it to
be picked as the most relevant content.

Our first technique generates collisions aggres-
sively, without regard to potential defenses. We
then develop two techniques, “regularized aggres-
sive” and “natural,” that constrain generated col-
lisions using a language model so as to evade
perplexity-based filtering. We evaluate all tech-
niques against state-of-the-art models and bench-
mark datasets on all four tasks. For paraphrase
identification on Quora question pairs, our colli-
sions are (mis)identified as paraphrases of inputs
with 97% confidence on average. For document
retrieval, our collisions shift the median rank of ir-
relevant documents from 1000 to around 10. For re-
sponse suggestion in dialogue (sentence retrieval),
our collisions are ranked as the top response 99%
and 86% of the time with the aggressive and natural
techniques, respectively. For extractive summariza-
tion, our collisions are chosen by the model as the
summary 100% of the time. We conclude by dis-
cussing potential defenses against these attacks.

https://github.com/csong27/collision-bert
https://github.com/csong27/collision-bert
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Task Target inputs and collisions Model output

Paraphrase
Identification

Input (x): Does cannabis oil cure cancer? Or are the sellers hoaxing?
≥ 99%

confidence
of paraphrase

Aggressive (c): Pay 0ff your mortgage der Seller chem Wad marijuana scarcity prince
Regularized aggressive (c): caches users remedies paved Sell Medical hey untold Caval
OR and of of of of of of of of of of of of of of a a a of a
Natural (c): he might actually work when those in

Document
Retrieval

Query (x): Health and Computer Terminals

Irrelevant
articles’

ranks ≤ 3

Aggressive (c): chesapeake oval mayo knuckles crowded double transmitter gig after
nixon, tipped incumbent physician kai joshi astonished northwestern documents | obliged
dumont determines philadelphia consultative oracle keyboards dominates tel node
Regularized aggressive (c): and acc near floors : panicked ; its employment became
impossible, the – of cn magazine usa, in which ” ”’panic over unexpected noise, noise of
and a of the of the of the of a of of the of the of of of of the of of of of the of of the of.
Natural (c): the ansb and other buildings to carry people : three at the mall, an infirmary,
an auditorium, and a library, as well as a clinic, pharmacy, and restaurant

Response
Suggestion

Context (x): ...i went to school to be a vet , but i didn’t like it.

c’s rank = 1
Aggressive (c): buy v1agra in canadian pharmacy to breath as four ranger color
Regularized aggressive (c): kill veterans and oxygen snarled clearly you were a a to to
and a a to to to to to to to to to to
Natural (c): then not have been an animal, or a human or a soldier but should

Extractive
Summarization

Truth: on average, britons manage just six and a half hours ’ sleep a night , which is far
less than the recommended eight hours.

c’s rank = 1Aggressive (c): iec cu franks believe carbon chat fix pay carbon targets co2 8 iec cu mb
Regularized aggressive (c): the second mercury project carbon b mercury is a will
produce 38 million 202 carbon a a to to to to to to to to to to to to to
Natural (c): 1 million men died during world war ii; over 40 percent were women

Table 1: Four tasks in our study. Given an input x and white-box access to a victim model, the adversary produces a collision c
resulting in a deceptive output. Collisions can be nonsensical or natural-looking and also carry spam messages (shown in red).

2 Related Work

Adversarial examples in NLP. Most of the previ-
ously studied adversarial attacks in NLP aim to
minimally modify or perturb inputs while chang-
ing the model’s output. Hosseini et al. (2017)
showed that perturbations, such as inserting dots or
spaces between characters, can deceive a toxic com-
ment classifier. HotFlip used gradients to find such
perturbations given white-box access to the target
model (Ebrahimi et al., 2018). Wallace et al. (2019)
extended HotFlip by inserting a short crafted “trig-
ger” text to any input as perturbation; the trigger
words are often highly associated with the target
class label. Other approaches are based on rules,
heuristics or generative models (Mahler et al., 2017;
Ribeiro et al., 2018; Iyyer et al., 2018; Zhao et al.,
2018). As explained in Section 1, our goal is the
inverse of adversarial examples: we aim to gener-
ate inputs with drastically different semantics that
are perceived as similar by the model.

Several works studied attacks that change the
semantics of inputs. Jia and Liang (2017) showed
that inserting a heuristically crafted sentence into
a paragraph can trick a question answering (QA)
system into picking the answer from the inserted
sentence. Aggressively perturbed texts based on

HotFlip are nonsensical and can be translated into
meaningful and malicious outputs by black-box
translation systems (Wallace et al., 2020). Our
semantic collisions extend the idea of changing
input semantics to a different class of NLP models;
we design new gradient-based approaches that are
not perturbation-based and are more effective than
HotFlip attacks; and, in addition to nonsensical
adversarial texts, we show how to generate “natural”
collisions that evade perplexity-based defenses.

Feature collisions in computer vision. Feature
collisions have been studied in image analysis mod-
els. Jacobsen et al. (2019a) showed that images
from different classes can end up with identical
representations due to excessive invariance of deep
models. An adversary can modify the input to
change its class while leaving the model’s predic-
tion unaffected (Jacobsen et al., 2019b). The in-
trinsic property of rectifier activation function can
cause images with different labels to have the same
feature vectors (Li et al., 2019).

3 Threat Model

We describe the targets of our attack, the threat
model, and the adversary’s objectives.

Semantic similarity. Evaluating semantic sim-
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ilarity of a pair of texts is at the core of many
NLP applications. Paraphrase identification de-
cides whether sentences are paraphrases of each
other and can be used to merge similar content and
remove duplicates. Document retrieval computes
semantic similarity scores between the user’s query
and each of the candidate documents and uses these
scores to rank the documents. Response suggestion,
aka Smart Reply (Kannan et al., 2016) or sentence
retrieval, selects a response from a pool of candi-
dates based on their similarity scores to the user’s
input in dialogue. Extractive summarization ranks
sentences in a document based on their semantic
similarity to the document’s content and outputs
the top-ranked sentences.

For each of these tasks, let f denote the model
and xa,xb a pair of text inputs. There are two
common modeling approaches for these applica-
tions. In the first approach, the model takes the
concatenation ⊕ of xa and xb as input and directly
produces a similarity score f(xa ⊕ xb). In the sec-
ond approach, the model computes a sentence-level
embedding f(x) ∈ Rh, i.e., a dense vector repre-
sentation of input x. The similarity score is then
computed as s(f(xa), f(xb)), where s is a vector
similarity metric such as cosine similarity. Models
based on either approach are trained with similar
losses, such as the binary classification loss where
each pair of inputs is labeled as 1 if semantically
related, 0 otherwise. For generality, let S(·, ·) be
a similarity function that captures semantic rele-
vance under either approach. We also assume that
f can take x in the form of a sequence of discrete
words (denoted as w) or word embedding vectors
(denoted as e), depending on the scenario.

Assumptions. We assume that the adversary has
full knowledge of the target model, including its
architecture and parameters. It may be possible to
transfer white-box attacks to the black-box scenario
using model extraction (Krishna et al., 2020; Wal-
lace et al., 2020); we leave this to future work. The
adversary controls some inputs that will be used
by the target model, e.g., he can insert or modify
candidate documents for a retrieval system.

Adversary’s objectives. Given a target model f
and target sentence x, the adversary wants to gen-
erate a collision xb = c such that f perceives x
and c as semantically similar or relevant. Adver-
sarial uses of this attack depend on the application.
If an application is using paraphrase identification
to merge similar contents, e.g., in Quora (Scharff,

Figure 1: Overview of generating semantic collision c for a
query input x. The continuous variables zt relax the words in
c and are optimized with gradients. We search in the simplex
produced by zt for the actual colliding words in c.

2015), the adversary can use collisions to deliver
spam or advertising to users. In a retrieval system,
the adversary can use collisions to boost the rank
of irrelevant candidates for certain queries. For
extractive summarization, the adversary can cause
collisions to be returned as the summary of the
target document.

4 Adversarial Semantic Collisions

Given an input (query) sentence x, we aim to gener-
ate a collision c for the victim model with the white-
box similarity function S. This can be formulated
as an optimization problem: arg maxc∈X S(x, c)
such that x and c are semantically unrelated. A
brute-force enumeration of X is computationally
infeasible. Instead, we design gradient-based ap-
proaches outlined in Algorithm 1. We consider two
variants: (a) aggressively generating unconstrained,
nonsensical collisions, and (b) constrained colli-
sions, i.e., sequences of tokens that appear fluent
under a language model and cannot be automati-
cally filtered out based on their perplexity.

We assume that models can accept inputs as both
hard one-hot words and soft words,1 where a soft
word is a probability vector w̌ ∈ ∆|V|−1 for vocab-
ulary V .

4.1 Aggressive Collisions

We use gradient-based search to generate a fixed-
length collision given a target input. The search is
done in two steps: 1) we find a continuous repre-
sentation of a collision using gradient optimization
with relaxation, and 2) we apply beam search to
produce a hard collision. We repeat these two steps
iteratively until the similarity score S converges.

1For a soft-word input, models will compute the word
vector as the weighted average of word embeddings by the
probability vector.
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Algorithm 1 Generating adversarial semantic collisions
Input: input text x, similarity function S, embeddings E, language model g, vocabulary V , length T
Hyperparams: beam size B, top-k size K, iterations N , step size η, temperature τ , score coefficient β, label smoothing ε
procedure MAIN

return collision c =AGGRESSIVE() or NATURAL()
procedure AGGRESSIVE

Z ← [z1, . . . , zT ],zt ← 0 ∈ R|V|
while similarity score not converged do

for iteration 1 to N do
č← [č1, . . . , čT ], čt ← softmax(zt/τ)
Z ← Z + η · ∇Z(1− β) · S(x, č) + β · Ω(Z)

B ← B replicates of empty token
for t = 1 to T do
Ft ← 0 ∈ RB×K , beam score matrix
for c1:t−1 ∈ B, w ∈ top-k(zt,K) do
Ft[c1:t−1, w]← S(x, c1:t−1 ⊕ w ⊕ čt+1:T )

B ← {c1:t−1 ⊕ w|(c1:t−1, w) ∈ top-k(Ft, B)}
LS(ct)← Eq 2 with ε for ct ∈ arg maxB
zt ← log LS(ct) for zt in Z

return c = arg maxB

procedure NATURAL
B ← B replicates of start token
for t = 1 to T do
Ft ← 0 ∈ RB×K , beam score matrix
for each beam c1:t−1 ∈ B do
`t ← g(c1:t−1), next token logits from LM
zt ← PERTURBLOGITS(`t, c1:t−1)
for w ∈ top-k(zt,K) do
Ft[c1:t−1, w]← joint score from Eq 5

B ← {c1:t−1 ⊕ w|(c1:t−1, w) ∈ top-k(Ft, B)}
return c = arg maxB

procedure PERTURBLOGITS(`, c1:t−1)
δ ← 0 ∈ R|V|
for iteration 1 to N do
čt ← softmax((`+ δ)/τ)
δ ← δ + η · ∇δS(x, c1:t−1 ⊕ čt)

return z = `+ δ

Optimizing for soft collision. We first relax the
optimization to a continuous representation with
temperature annealing. Given the model’s vocabu-
lary V and a fixed length T , we model word selec-
tion at each position t as a continuous logit vector
zt ∈ R|V|. To convert each zt to an input word, we
model a softly selected word at t as:

čt = softmax(zt/τ) (1)

where τ is a temperature scalar. Intuitively, soft-
max on zt gives the probability of each word in
V . The temperature controls the sharpness of word
selection probability; when τ → 0, the soft word
čt is the same as the hard word arg maxzt.

We optimize for the continuous values z. At
each step, the soft word collisions č = [č1, . . . , čT ]
are forwarded to f to calculate S(x, č). Since all
operations are continuous, the error can be back-
propagated all the way to each zt to calculate its
gradients. We can thus apply gradient ascent to
improve the objective.

Searching for hard collision. After the relaxed
optimization, we apply a projection step to find a
hard collision using discrete search.2 Specifically,
we apply left-to-right beam search on each zt. At
every search step t, we first get the top K words w
based on zt and rank them by the target similarity
S(x, c1:t−1 ⊕ w ⊕ čt+1:T ), where čt+1:T is the
partial soft collision starting at t+1. This procedure
allows us to find a hard-word replacement for the

2We could project the soft collision by annealing the tem-
perature to 0, c = [arg maxz1, . . . , arg max zT ]. However,
this approach yields sub-optimal results because the hard
arg max discards information from nearby words.

soft word at each position t based on the previously
found hard words and relaxed estimates of future
words.

Repeating optimization with hard collision. If
the similarity score still has room for improvement
after the beam search, we use the current c to ini-
tialize the soft solution zt for the next iteration of
optimization by transferring the hard solution back
to continuous space.

In order to initialize the continuous relaxation
from a hard sentence, we apply label smoothing
(LS) to its one-hot representation. For each word
ct in the current c, we soften its one-hot vector to
be inside ∆|V|−1 with

LS(ct)w =

{
1− ε if w = arg max ct
ε

|V|−1 otherwise
(2)

where ε is the label-smoothing parameter. Since
LS(ct) is constrained in the probability simplex
∆|V|−1, we set each zt to log LS(ct) ∈ R|V| as the
initialization for optimizing the soft solution in the
next iteration.

4.2 Constrained Collisions
The Aggressive approach is very effective at find-
ing collisions, but it can output nonsensical sen-
tences. Since these sentences have high perplex-
ity under a language model (LM), simple filtering
can eliminate them from consideration. To evade
perplexity-based filtering, we impose a soft con-
straint on collision generation and jointly maximize
target similarity and LM likelihood:

max
c∈X

(1− β) · S(x, c) + β · logP (c; g) (3)
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where P (c; g) is the LM likelihood for collision
c under a pre-trained LM g and β ∈ [0, 1] is an
interpolation coefficient.

We investigate two different approaches for solv-
ing the optimization in equation 3: (a) adding a
regularization term on soft č to approximate the
LM likelihood, and (b) steering a pre-trained LM
to generate natural-looking c.

4.2.1 Regularized Aggressive Collisions
Given a language model g, we can incorporate a
soft version of the LM likelihood as a regularization
term on the soft aggressive č computed from the
variables [z1, . . . ,zT ]:

Ω =
T∑
t=1

H(čt, P (wt|č1:t−1; g)) (4)

where H(·, ·) is cross entropy, P (wt|č1:t−1; g) are
the next-token prediction probabilities at t given
partial soft collision č1:t−1. Equation 4 relaxes the
LM likelihood on hard collisions by using soft col-
lisions as input, and can be added to the objective
function for gradient optimization. The variables zt
after optimization will favor words that maximize
the LM likelihood.

To further reduce the perplexity of c, we exploit
the degeneration property of LM, i.e., the obser-
vation that LM assigns low perplexity to repeat-
ing common tokens (Holtzman et al., 2020), and
constrain a span of consecutive tokens in c (e.g.,
second half of c) to be selected from most frequent
English words instead of the entire V . This modifi-
cation produces even more disfluent collisions, but
they evade LM-based filtering.

4.2.2 Natural Collisions
Our final approach aims to produce fluent, low-
perplexity outputs. Instead of relaxing and then
searching, we search and then relax each step for
equation 3. This lets us integrate a hard language
model while selecting next words in continuous
space. In each step t, we maximize:

max
w∈V

(1− β) · S(x, c1:t−1 ⊕ w)+

β · logP (c1:t−1 ⊕ w; g) (5)

where c1:t−1 is the beam solution found before
t. This sequential optimization is essentially LM
decoding with a joint search on the LM likelihood
and target similarity S, of the collision prefix.

Optimizing equation 5 exactly requires rank-
ing each w ∈ V based on LM likelihood

logP (c1:t−1 ⊕ w; g) and similarity S(x, c1:t−1 ⊕
w). Evaluating LM likelihood for every word
at each step is efficient because we can cache
logP (c1:t−1; g) and compute the next-word prob-
ability in the standard manner. However, evaluat-
ing an arbitrary similarity function S(x, c1:t−1 ⊕
w),∀w ∈ V , requires |V| forwarded passes to f ,
which can be computationally expensive.

Perturbing LM logits. Inspired by Plug and Play
LM (Dathathri et al., 2020), we modify the LM
logits to take similarity into account. We first let
`t = g(c1:t−1) be the next-token logits produced
by LM g at step t. We then optimize from this ini-
tialization to find an update that favors words maxi-
mizing similarity. Specifically, we let zt = `t + δt
where δt ∈ R|V| is a perturbation vector. We then
take a small number of gradient steps on the relaxed
similarity objective maxδt S(x, c1:t−1⊕ čt) where
čt is the relaxed soft word as in equation 1. This
encourages the next-word prediction distribution
from the perturbed logits, čt, to favor words that
are likely to collide with the input x.

Joint beam search. After perturbation at each
step t, we find the top K most likely words in čt.
This allows us to only evaluate S(x, c1:t−1 ⊕ w)
for this subset of words w that are likely under the
LM given the current beam context. We rank these
top K words based on the interpolation of target
loss and LM log likelihood. We assign a score to
each beam b and each top K word as in equation 5,
and update the beams with the top-scored words.

This process leads to a natural-looking decoded
sequence because each step utilizes the true words
as input. As we build up a sequence, the search
at each step is guided by the joint score of two
objectives, semantic similarity and fluency.

5 Experiments

Baseline. We use a simple greedy baseline based
on HotFlip (Ebrahimi et al., 2018). We initialize the
collision text with a sequence of repeating words,
e.g., “the”, and iteratively replace all words. In
each iteration, we look at every position t and flip
the current wt to v that maximizes the first-order
Taylor approximation of target similarity S:

arg max
1≤t≤T,v∈V

(ei − ev)>∇etS(x, c) (6)

where et, ev are the word vectors for wt and v. Fol-
lowing prior HotFlip-based attacks (Michel et al.,
2019; Wallace et al., 2019, 2020), we evaluate S
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using the top K words from Equation 6 and flip to
the word with the lowest loss to counter the local
approximation.

LM for natural collisions. For generating nat-
ural collisions, we need a LM g that shares the
vocabulary with the target model f . When target-
ing models that do not share the vocabulary with
an available LM, we fine-tune another BERT with
an autoregressive LM task on the Wikitext-103
dataset (Merity et al., 2017). When targeting mod-
els based on RoBERTa, we use pretrained GPT-
2 (Radford et al., 2019) as the LM since the vocab-
ulary is shared.

Unrelatedness. To ensure that collisions c are not
semantically similar to inputs x, we filter out words
that are relevant to x from V when generating c.
First, we discard non-stop words in x; then, we
discard 500 to 2,000 words in V with the highest
similarity score S(x, w).

Hyperparameters. We use Adam (Kingma and Ba,
2015) for gradient ascent. Detailed hyperparameter
setup can be found in table 6 in Appendix A.

Notation. In the following sections, we abbreviate
HotFlip baseline as HF; aggressive collisions as
Aggr.; regularized aggressive collisions as Aggr.
Ω where Ω is the regularization term in equation 4;
and natural collisions as Nat.

5.1 Tasks and Models

We evaluate our attacks on paraphrase identifica-
tion, document retrieval, response suggestions and
extractive summarization. Our models for these
applications are pretrained transformers, including
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), fine-tuned on the corresponding task
datasets and matching state-of-the-art performance.

Paraphrase detection. We use the Microsoft
Research Paraphrase Corpus (MRPC) (Dolan
and Brockett, 2005) and Quora Question Pairs
(QQP) (Iyer et al., 2017), and attack the first 1,000
paraphrase pairs from the validation set.

We target the BERT and RoBERTa base models
for MRPC and QQP, respectively. The models
take in concatenated inputs xa,xb and output the
similarity score as S(xa,xb) = sigmoid(f(xa ⊕
xb)). We fine-tune them with the suggested hyper-
parameters. BERT achieves 87.51% F1 score on
MRPC and RoBERTa achieves 91.6% accuracy on
QQP, consistent with prior work.

Document retrieval. We use the Common Core

Tracks from 2017 and 2018 (Core17/18). They
have 50 topics as queries and use articles from
the New York Times Annotated Corpus and TREC
Washington Post Corpus, respectively.

Our target model is Birch (Yilmaz et al.,
2019a,b). Birch retrieves 1,000 candidate docu-
ments using the BM25 and RM3 baseline (Abdul-
jaleel et al., 2004) and re-ranks them using the
similarity scores from a fine-tuned BERT model.
Given a query xq and a document xd, the BERT
model assigns similarity scores S(xq,xi) for each
sentence xi in xd. The final score used by Birch for
re-reranking is: γ·SBM25+(1−γ)·

∑
i κi·S(xq,xi)

where SBM25 is the baseline BM25 score and γ, κi
are weight coefficients. We use the published mod-
els3 and coefficient values for evaluation.

We attack similarity scores S(xq,xi) by insert-
ing sentences that collide with xq into irrelevant
xd. We filter out query words when generating col-
lisions c so that term frequencies of query words
in c are 0, thus inserting collisions does not affect
the original SBM25. For each of the 50 query topics,
we select irrelevant articles that are ranked from
900 to 1000 by Birch and insert our collisions into
these articles to boost their ranks.

Response suggestion. We use the Persona-chat
(Chat) dataset of dialogues (Zhang et al., 2018).
The task is to pick the correct utterance in each
dialogue context from 20 choices. We attack the
first 1,000 contexts from the validation set.

We use transformer-based Bi- and Poly-encoders
that achieved state-of-the-art results on this
dataset (Humeau et al., 2020). Bi-encoders com-
pute a similarity score for the dialogue context xa
and each possible next utterancexb as S(xa,xb) =
fpool(xa)

>fpool(xb) where fpool(x) ∈ Rh is the
pooling-over-time representation from transform-
ers. Poly-encoders extend Bi-encoders compute
S(xa,xb) =

∑T
i=1 αi ·f(xa)

>
i fpool(xb) where αi

is the weight from attention and f(xa)i is the ith
token’s contextualized representation. We use the
published models4 for evaluation.

Extractive summarization. We use the CNN
/ DailyMail (CNNDM) dataset (Hermann et al.,
2015), which consists of news articles and labeled
overview highlights. We attack the first 1,000 arti-
cles from the validation set.

Our target model is PreSumm (Liu and Lapata,
2019). Given a text xd, PreSumm first obtains a

3https://github.com/castorini/birch
4https://parl.ai/docs/zoo.html

https://github.com/castorini/birch
https://parl.ai/docs/zoo.html
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c type MRPC QQP Core17/18 Chat-Bi Chat-Poly CNNDM
S % Succ S % Succ S r ≤ 10 ≤ 100 S r = 1 S r = 1 S r = 1 r ≤ 3

Gold 0.87 - 0.90 - 1.34 - - 17.14 - 25.30 - 0.51 - -

HF 0.60 67.3% 0.55 54.8% -0.96 0.0% 16.5% 21.20 78.5% 28.82 73.1% 0.50 67.9% 96.5%
Aggr. 0.93 97.8% 0.98 97.3% 1.62 49.9% 86.7% 23.79 99.8% 31.94 99.4% 0.69 99.4% 100.0%
Aggr. Ω 0.69 81.0% 0.91 91.1% 0.86 20.6% 69.7% 21.66 92.9% 29.51 90.7% 0.58 90.7% 100.0%
Nat. 0.78 98.6% 0.88 88.8% 0.77 12.3% 60.6% 22.15 86.0% 31.10 86.6% 0.37 30.4% 77.7%

Table 2: Attack results. r is the rank of collisions among candidates. Gold denotes the ground truth.

vector representation φi ∈ Rh for each sentence
xi using BERT, and scores each sentence xi in the
text as S(xd,xi) = sigmoid(u>f(φ1, . . . ,φT )i)
where u is a weight vector, f is a sentence-level
transformer, and f(·)i is the ith sentence’s contex-
tualized representation. Our objective is to insert
a collision c into xd such that the rank of S(xd, c)
among all sentences is high. We use the published
models5 for evaluation.

5.2 Attack Results
For all attacks, we report the similarity score S
between x and c; the “gold” baseline is the simi-
larity between x and the ground truth. For MRPC,
QQP, Chat, and CNNDM, the ground truth is the
annotated label sentences (e.g., paraphrases or sum-
maries); for Core17/18, we use the sentences with
the highest similarity S to the query. For MRPC
and QQP, we also report the percentage of success-
ful collisions with S > 0.5. For Core17/18, we
report the percentage of irrelevant articles ranking
in the top-10 and top-100 after inserting collisions.
For Chat, we report the percentage of collisions
achieving top-1 rank. For CNNDM, we report the
percentage of collisions with the top-1 and top-3
ranks (likely to be selected as summary). Table 2
shows the results.

On MRPC, aggressive and natural collisions
achieve around 98% success; aggressive ones have
higher similarity S . With regularization Ω, success
rate drops to 81%. On QQP, aggressive collisions
achieve 97% vs. 90% for constrained collisions.

On Core17/18, aggressive collisions shift the
rank of almost half of the irrelevant articles into
the top 10. Regularized and natural collisions are
less effective, but more than 60% are still ranked
in the top 100. Note that query topics are compact
phrases with narrow semantics, thus it might be
harder to find constrained collisions for them.

On Chat, aggressive collisions achieve rank of 1
more than 99% of the time for both Bi- and Poly-

5https://github.com/nlpyang/PreSumm

c type MRPC QQP Core Chat CNNDM
FBERT FBERT PBERT PBERT FBERT

Gold 0.66 0.68 0.17 0.14 0.38

Aggr. -0.22 -0.17 -0.34 -0.31 -0.31
Aggr. Ω -0.34 -0.34 -0.48 -0.43 -0.36
Nat. -0.12 -0.09 -0.11 -0.10 -0.25

Table 3: BERTSCORE between collisions and target inputs.
Gold denotes the ground truth.

encoders. With regularization Ω, success drops
slightly to above 90%. Natural collisions are less
successful, with 86% ranked as 1.

On CNNDM, aggressive collisions are almost
always ranked as the top summarizing sentence.
HotFlip and regularized collisions are in the top
3 more than 96% of the time. Natural collisions
perform worse, with 77% ranked in the top 3.

Aggressive collisions always beat HotFlip on all
tasks; constrained collisions are often better, too.
The similarity scores S for aggressive collisions
are always higher than for the ground truth.

5.3 Evaluating Unrelatedness
We use BERTSCORE (Zhang et al., 2020) to
demonstrate that our collisions are unrelated to
the target inputs. Instead of exact matches in raw
texts, BERTSCORE computes a semantic similar-
ity score, ranging from -1 to 1, between a candidate
and a reference by using contextualized representa-
tion for each token in the candidate and reference.

The baseline for comparisons is BERTSCORE

between the target input and the ground truth. For
MRPC and QQP, we use x as reference; the ground
truth is paraphrases as given. For Core17/18, we
use x concatenated with the top sentences except
the one with the highest S as reference; the ground
truth is the sentence in the corpus with the high-
est S. For Chat, we use the dialogue contexts as
reference and the labeled response as the ground
truth. For CNNDM, we use labeled summarizing
sentences in articles as reference and the given ab-
stractive summarization as the ground truth.

https://github.com/nlpyang/PreSumm
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Figure 2: Histograms of log perplexity evaluated by GPT-2 on real data and collisions.

c type MRPC QQP Core17/18 Chat CNNDM
FP@90 FP@80 FP@90 FP@80 FP@90 FP@80 FP@90 FP@80 FP@90 FP@80

HF 2.1% 0.8% 3.1% 1.2% 4.6% 1.2% 1.5% 0.8% 3.2% 3.1%
Aggr. 0.0% 0.0% 0.0% 0.0% 0.8% 0.7% 5.2% 2.6% 3.1% 3.1%
Aggr. Ω 47.5% 35.6% 15.8% 11.9% 29.3% 17.8% 76.5% 65.3% 52.8% 35.7%
Nat. 94.9% 89.2% 20.5% 12.1% 13.7% 10.9% 93.8% 86.5% 59.8% 37.7%

Table 4: Effectiveness of perplexity-based filtering. FP@90 and FP@80 are false positive rates (percentage of real data
mistakenly filtered out) at thresholds that filter out 90% and 80% of collisions, respectively.

c type MRPC Chat
BERT RoBERTa Bi→ Poly Poly→ Bi

HF 34.0% 0.0% 55.3% 48.9%
Aggr. 64.5% 0.0% 77.4% 71.3%
Aggr. Ω 38.9% 0.0% 60.5% 56.0%
Nat. 41.4% 0.0% 71.4% 68.2%

Table 5: Percentage of successfully transferred collisions for
MRPC and Chat.

For MPRC, QQP and CNNDM, we report FBERT
(F1) score. For Core17/18 and Chat, we report
PBERT (content from reference found in candidate)
because the references are longer and not token-
wise equivalent to collisions or ground truth. Ta-
ble 3 shows the results. The scores for collisions
are all negative while the scores for target inputs
are positive, indicating that our collisions are un-
related to the target inputs. Since aggressive and
regularized collisions are nonsensical, their con-
textualized representations are less similar to the
reference texts than natural collisions.

5.4 Transferability of Collisions

To evaluate whether collisions generated for one tar-
get model f are effective against a different model
f ′, we use MRPC and Chat datasets. For MRPC,
we set f ′ to a BERT base model trained with a
different random seed and a RoBERTa model. For
Chat, we use Poly-encoder as f ′ for Bi-encoder f ,
and vice versa. Both Poly-encoder and Bi-encoder
are fine-tuned from the same pretrained transformer
model. We report the percentage of successfully

transferred attacks, e.g., S(x, c) > 0.5 for MRPC
and r = 1 for Chat.

Table 5 summarizes the results. All collisions
achieve some transferability (40% to 70%) if the
model architecture is the same and f, f ′ are fine-
tuned from the same pretrained model. Further-
more, our attacks produce more transferable colli-
sions than the HotFlip baseline. No attacks trans-
fer if f, f ′ are fine-tuned from different pretrained
models (BERT and RoBERTa). We leave a study of
transferability of collisions across different types
of pretrained models to future work.

6 Mitigation

Perplexity-based filtering. Because our collisions
are synthetic rather than human-generated texts, it
is possible that their perplexity under a language
model (LM) is higher than that of real text. There-
fore, one plausible mitigation is to filter out colli-
sions by setting a threshold on LM perplexity.

Figure 2 shows perplexity measured using GPT-
2 (Radford et al., 2019) for real data and collisions
for each of our attacks. We observe a gap between
the distributions of real data and aggressive colli-
sions, showing that it might be possible to find a
threshold that discards aggressive collisions while
retaining the bulk of the real data. On the other
hand, constrained collisions (regularized or natu-
ral) overlap with the real data.

We quantitatively measure the effectiveness of
perplexity-based filtering using thresholds that
would discard 80% and 90% of collisions, respec-
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tively. Table 4 shows the false positive rate, i.e.,
fraction of the real data that would be mistakenly
filtered out. Both HotFlip and aggressive collisions
can be filtered out with little to no false positives
since both are nonsensical. For regularized or nat-
ural collisions, a substantial fraction of the real
data would be lost, while 10% or 20% of collisions
evade filtering. On MRPC and Chat, perplexity-
based filtering is least effective, discarding around
85% to 90% of the real data.

Learning-based filtering. Recent works ex-
plored automatic detection of generated texts using
a binary classifier trained on human-written and
machine-generated data (Zellers et al., 2019; Ip-
polito et al., 2020). These classifiers might be able
to filter out our collisions—assuming that the ad-
versary is not aware of the defense.

As a general evaluation principle (Carlini et al.,
2019), any defense mechanism should assume that
the adversary has complete knowledge of how the
defense works. In our case, a stronger adversary
may use the detection model to craft collisions to
evade the filtering. We leave a thorough evaluation
of these defenses to future work.

Adversarial training. Including adversarial ex-
amples during training can be effective against
inference-time attacks (Madry et al., 2018). Simi-
larly, training with collisions might increase mod-
els’ robustness against collisions. Generating colli-
sions for each training example in each epoch can
be very inefficient, however, because it requires
additional search on top of gradient optimization.
We leave adversarial training to future work.

7 Conclusion

We demonstrated a new class of vulnerabilities in
NLP applications: semantic collisions, i.e., input
pairs that are unrelated to each other but perceived
by the application as semantically similar. We de-
veloped gradient-based search algorithms for gen-
erating collisions and showed how to incorporate
constraints that help generate more “natural” colli-
sions. We evaluated the effectiveness of our attacks
on state-of-the-art models for paraphrase identifi-
cation, document and sentence retrieval, and ex-
tractive summarization. We also demonstrated that
simple perplexity-based filtering is not sufficient to
mitigate our attacks, motivating future research on
more effective defenses.
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A Additional Experiment Details

MRPC B K N T η τ β

Aggr. 10 30 30 20 0.001 1.0 0.0
Aggr. Ω 5 15 30 30 0.001 1.0 0.8
Nat. 10 128 5 25 0.001 0.1 0.05

QQP

Aggr. 10 30 30 15 0.001 1.0 0.0
Aggr. Ω 5 15 30 30 0.001 1.0 0.8
Nat. 10 64 5 20 0.001 0.1 0.0

Core

Aggr. 5 50 30 30 0.001 1.0 0.0
Aggr. Ω 5 40 30 60 0.001 1.0 0.85
Nat. 10 150 5 35 0.001 0.1 0.015

Chat

Aggr. 5 30 30 15 0.001 1.0 0.0
Aggr. Ω 5 20 30 25 0.001 1.0 0.8
Nat. 10 128 5 20 0.001 0.1 0.15

Summ

Aggr. 5 10 30 15 0.001 1.0 0.0
Aggr. Ω 5 10 30 30 0.001 1.0 0.8
Nat. 5 64 5 20 0.001 1.0 0.02

Table 6: Hyper-parameters for each experiment. B is the
beam size for beam search. K is the number of top words
evaluated at each optimization step. N is the number of op-
timization iterations. T is the sequence length. η is the step
size for optimization. τ is the temperature for softmax. β is
the interpolation parameter in equation 5.

Hyper-parameters. We report the hyper-
parameter values for our experiments in Table 6.
The label-smoothing parameter ε for aggressive col-
lisions is set to 0.1. The hyper-parameters for the
baseline are the same as for aggressive collisions.

Runtime. On a single GeForce RTX 2080 GPU,
our attacks generate collisions in 10 to 60 seconds
depending on the length of target inputs.

B Additional Collision Examples

Tables 7, 8, 9, 10 show collision additional exam-
ples for MRPC/QQP, Core17/18, Chat, and CN-
NDM respectively.

MRPC/QQP target inputs and collisions Outputs

MRPC Input (x): PCCW ’s chief operating
officer, Mike Butcher, and Alex Arena, the
chief financial officer, will report directly to
Mr So.
Aggressive (c): primera metaphysical
declaration dung southernmost among
structurally favorably endeavor from superior
morphology indirectly materialized yesterday
sorority would indirectly 〈 sg

99.5%

Regularized aggressive (c): in one time rave
rave — in . . . ” in but . . . rv rv smacked a a of
a a a a a a a a a of a a

81.6%

Natural (c): in 1989 and joined the new york
giants in 1990

81.7%

MRPC Input (x): Under terms of the deal,
Legato stockholders will receive 0.9 of a share
of EMC common stock for each share of
Legato stock.
Aggressive (c): moreover author elk telling
assert honest exact inventions locally mythical
confirms newer feat said assert according
locally prefecture municipal realization

96.7%

Regularized aggressive (c): in new ” news
lust release ” on connected different ” vibe ”
reassure females and and to to and and to and
to and to and to and to

95.0%

Natural (c): she is also a member of the
united states house of representatives, serving
as a representative

83.4%

QQP Input (x): How can I slowly lose
weight?
Aggressive (c): sustain fitness recover bru
become bolst Enhanced additional
distinguished contend crunch Cutting Vital
Time cov

80.5%

Regularized aggressive (c): fat Ensure burner
www Enhancement Lar Cure Dou St Reaper
of of of of of a to and to the the the and to to to
of of a of

85.2%

Natural (c): be able that in less long time it 80.2%

Table 7: Collision examples for MRPC and QQP. Outputs
are the probability scores produced by the model for whether
the input and the collisions are paraphrases.
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Core17/18 query inputs and collisions r

Query (x): abuses of e-mail
Aggressive (c): trailing helsinki, competent
regimes internally outlaw wireless offence road :
cables by nhs sided head lockheed ford announce
oblast million offenders climb ranged postal courier
administrations courtesy guangdong oracle

1

Regularized aggressive (c): un / australia
overthrow ” — of most telegraph telegraph
operations ” : the state office in consensus in
document lifts down us ” by trial ” for using ¡ the a
and a to and a and a to the a to a a to to a a and a a
and a a a the a to to

1

Natural (c): the itc ordered all wireless posts
confiscated and usps were stripped of their offices
and property, leading to a number of

3

Query (x): heroic acts
Aggressive (c): colossal helmet vedic bro axes
resembling neighbours lead floods blacksmith :
evening eligibility caller indicates sculptor coroner
lakshmi’ than lama announced seizure branded,
crafts informing nottinghamshire watch
commission.

1

Regularized aggressive (c): recorded health and
human execution followed, applause prompted,
support increased extended : thayer and some there
danger, while frank teammate followed feat of
personal injury injuries of a the a of the a of the the
of of the and of of of of and of of of of and of and of
of of the

1

Natural (c): the american fighter ( 1 november
1863 ; kia for his feat ) — the japanese ship carrying
the cargo of wheat from australia to sydney

11

Query (x): cult lifestyles
Aggressive (c): indiana - semiconductor cut and
radiating fire damage, domain reproductive
nighttime pastoral calendar failing critical soils
indicates force practice ritual belarus stall ; cochin
sabha fragmented nut dominance owing

1

Regularized aggressive (c): preferred fruits, as
willow, suggested to botanist ro spike’for resident
nursery : big spreads of pipe rolls and other
european pie, a long season at the a and a a and the
and of of and of the a of and of of and of of and of
of of of and of of the

2

Natural (c): the early 1980s their appeal soared :
during summerslam in los angeles ( 1993 ), a large
number of teenagers went to church to confess their
connection to the

15

Query (x): art, stolen, forged
Aggressive (c): colossal helmet vedic bro axes
resembling neighbours lead floods blacksmith :
evening eligibility caller indicates sculptor coroner
lakshmi’than lama announced seizure branded,
crafts informing nottinghamshire watch commission

1

Regularized aggressive (c): - house and later car
dead with prosecutors remaining : “ and cathedral
gallery ’ import found won british arrest prosecution
a a portrait or mural ( patron at from the the to the a
and a to the a and to the a to the of a and to the the
and to the to the a and a

3

Natural (c): the work which left its owner by a
mishandle - the royal academy’s chief judge inquest

8

Table 8: Collision examples for Core17/18. r are the ranks
of irrelevant articles after inserting the collisions.

Chat target inputs and collisions r

Context (x): i’m 33 and love giving back i grew up
poor. i did too , back during the great depression.
Aggressive (c): that to existed with and that is with
cope warlord s s came the on

1

Regularized aggressive (c): camps wii also until
neutral in later addiction and the the the the of to and
the the the of to and to the the

1

Natural (c): was the same side of abject warfare that
had followed then for most people in this long

1

Context (x): i am a male . i have a children and a
dogs . hey there how is it going ?
Aggressive (c): is frantically in to it programs s
junior falls of it s talking a juan

1

Regularized aggressive (c): in on from the it
department with gabrielle and the the and a and a a to
a a and of and of and of

1

Natural (c): as of this point, and in the meantime it’s
having very technical support : it employs

1

Context (x): hi ! how are you doing today ? great ,
just ate pizza my favorite . . and you ? that’s not as
good as shawarma
Aggressive (c): safer to eat that and was mickey in a
cut too on it s foreigner

1

Regularized aggressive (c): dipped in in kai tak
instead of that and the the a of a of a to to the to and a
a of a

1

Natural (c): not as impressive, its artistic production
provided an environment

1

Table 9: Collision examples for Chat. r are the ranks of
collisions among the candidate responses.

CNNDM ground truth and collisions r

Truth: zayn malik is leaving one direction . rumors
about such a move had started since malik left the
band ’s tour last week .
Aggressive (c): bp interest yd £ offering funded fit
literacy 2020 can propose amir pau laureate
conservation

1

Regularized aggressive (c): the are shortlisted to
compete 14 times zealand in in the 2015 zealand
artist yo a to to to to to to to to to to to to to to

1

Natural (c): an estimated $2 billion by 2014 ;
however estimates suggest only around 20 percent
are being funded from

1

Truth: she says sometimes his attacks are so violent,
she’s had to call the police to come and save her.
Aggressive (c): bwf special editor councils want qc
iec melinda rey marry selma iec qc disease translated

1

Regularized aggressive (c): poll is in 2012 eight
percent b dj dj dj coco behaviors in dj coco and a a to
of to to to the a a to the to a

1

Natural (c): first national strike since world war ii
occurred between january 13 – 15 2014 ; this date
will occur

1

Table 10: Collision examples for CNNDM. Truth are the
true summarizing sentences. r are the ranks of collisions
among all sentences in the news articles.


