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Abstract

It has been conjectured that multilingual infor-
mation can help monolingual word sense dis-
ambiguation (WSD). However, existing WSD
systems rarely consider multilingual informa-
tion, and no effective method has been pro-
posed for improving WSD by generating trans-
lations. In this paper, we present a novel
approach that improves the performance of
a base WSD system using machine transla-
tion. Since our approach is language indepen-
dent, we perform WSD experiments on several
languages. The results demonstrate that our
methods can consistently improve the perfor-
mance of WSD systems, and obtain state-of-
the-art results in both English and multilingual
WSD. To facilitate the use of lexical transla-
tion information, we also propose BABALIGN,
an precise bitext alignment algorithm which
is guided by multilingual lexical correspon-
dences from BabelNet.

1 Introduction

Word sense disambiguation (WSD) is one of the
core tasks in natural language processing. Given
a predefined sense inventory, a WSD system aims
to identify the correct sense of a content word in
context. Although WSD is a monolingual task, it
has been conjectured that multilingual information
could help (Resnik and Yarowsky, 1999; Carpuat,
2009). Attempts have been made to leverage par-
allel corpora for sense tagging (Diab and Resnik,
2002), but no effective method for improving WSD
with translations has been proposed to date.

Much of the history of WSD has been deter-
mined by the availability of manually created lexi-
cal resources in English, including SemCor (Miller
et al., 1994) and WordNet (Miller, 1995). The
situation changed with the introduction of Babel-
Net (Navigli and Ponzetto, 2012a), a massive mul-
tilingual semantic network, created by automati-
cally integrating WordNet, Wikipedia, and other
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Figure 1: An overview of our approach to leverage
translations to improve a base WSD system.

resources. In particular, BabelNet synsets contain
translations in multiple languages for each indi-
vidual word sense. Methods have been proposed
to use multilingual information in BabelNet for
WSD (Navigli and Ponzetto, 2012b; Apidianaki
and Gong, 2015), but they do not directly exploit
the mapping between senses and translations in
multiple languages.

While there have been many attempts to apply
WSD to machine translation (MT) (Liu et al., 2018;
Pu et al., 2018), our goal instead is to harness
advances in MT to improve WSD. Rather than
develop a new WSD system, we propose a gen-
eral method that can make existing and future sys-
tems more accurate by leveraging translations. We
evaluate our methods with several supervised and
knowledge-based WSD systems.

Our approach is based on the assumption of abso-
lute synonymy between the senses of mutual trans-
lations in context (Hauer and Kondrak, 2020). The
principal method SOFTCONSTRAINT refines sense
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predictions of a given base WSD system using
sense-translation mappings from BabelNet. The
approach is able to take advantage of translations
in multiple languages, whether produced manually
or by MT models. It is also able to leverage sense
frequency information, which can be obtained in
either a supervised or unsupervised manner. An-
other method that we test is f_emb which integrates
translations as contextual word embeddings into
a WSD system to bias its sense predictions. To
obtain word-level translations from the translated
contexts, we introduce BABALIGN, a precise align-
ment algorithm guided by BabelNet synsets. In
Figure 1, we show the entire architecture of our
model based on aforementioned components.

Our experimental results demonstrate that trans-
lations can significantly improve existing WSD
systems. We perform several experiments on En-
glish and multilingual WSD with both manual and
machine translations. In the English WSD exper-
iments with manual translations and word-level
alignments, we determine the potential of our meth-
ods in an ideal situation. In the experiments with
machine translations, we validate that the methods
are effective and robust by showing improvements
over existing WSD systems. Finally, in the mul-
tilingual WSD experiments, we demonstrate the
language independence of our methods.

The main contributions of this work are the fol-
lowing. (1) We propose the first effective method to
improve WSD with automatically generated trans-
lations. (2) Our language-independent knowledge-
based method achieves state-of-the-art results in
both English all-words and multilingual WSD.
(3) We introduce a bitext alignment algorithm that
leverages information from BabelNet.

2 Related Work

The integration of multilingual information to im-
prove English WSD has been considered in prior
work. Through analyzing a multilingual dictionary,
Resnik and Yarowsky (1999) observe that highly
distinct senses can translate differently. Diab and
Resnik (2002) propose a WSD system based on
translation information extracted from a bitext, but
it fails to outperform systems that rely on monolin-
gual information only.

Word sense induction (WSI) and cross-lingual
WSD (CLWSD) are related tasks. WSI aims for
automatically inducing word senses from corpora
by clustering similar instances of words. Several

prior works perform WSI based on bitexts to create
bilingual sense inventory on word samples, where
translations are treated as sense tags (Specia et al.,
2007; Apidianaki, 2009). CLWSD is a task to pre-
dict a set of translations for a given ambiguous
word in context. Attempts have been made to inte-
grate translations as bag-of-words feature vectors
to enhance CLWSD (Lefever et al., 2011). Since
the goals of WSI and CLWSD differ from standard
WSD with predefined senses, our approach is not
directly comparable.

Navigli and Ponzetto (2012b) incorporate trans-
lations in BabelNet synsets as a feature in a graph-
based WSD system. However, rather than apply
translations of the focus word token as constraints,
they simply consider all possible translations of the
focus word type to enhance its sense distinctions.

Apidianaki and Gong (2015) directly apply
sense-translation mappings in BabelNet as a hard
constraint on sense predictions using translations
from sense-annotated bitexts. Unlike our work,
their approach is based on the BabelNet First Sense
(BFS) baseline, rather than on an actual WSD sys-
tem. Their results on English WSD fail to show
improvement over the baseline, which may be due
to the use of only a single target language, as well
as word alignment errors.

3 Methods

We first formulate our WSD task. The input is a
sentence, in which one word, e, is designated as
the focus word. The set of possible senses of the
focus word S(e) comes from the sense inventory.
We assume that a base WSD system assigns a prob-
ability or score to each sense, with the output being
the sense with the maximum score. The objective
is to determine which sense s € S(e) is the sense
of e in this sentence.

We propose two methods, HARDCONSTRAINT
and SOFTCONSTRAINT, which can be used to aug-
ment any base WSD system that meets the above
specifications. Both methods leverage translations
in order to constrain sense predictions made by
a base WSD system. In addition, we introduce
a method of leveraging contextual word embed-
dings to enhance the integration of translations in
combination with those constraints. Finally, since
our methods crucially depend upon identifying the
translation of the focus word in the translated sen-
tence, we also introduce a new knowledge-based
word alignment algorithm.
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Figure 2: The application of HARDCONSTRAINT (red) and SOFTCONSTRAINT (blue) when disambiguating the
word children in the given context (actual example from Senseval2 data where the correct sense is s2).

3.1 HARDCONSTRAINT

Our first method extends the idea of Apidianaki
and Gong (2015) to constrain S(e) based on sense-
translation mappings in BabelNet. However, in-
stead of relying on a single translation, we incorpo-
rate multiple languages by taking the intersection
of the individual sets of senses; that is, we rule out
senses if their corresponding BabelNet synsets do
not contain translations from all target languages.
This baseline method is simple but inflexible: the
correct sense can be accidentally ruled out if the
provided translation of the focus word is not found
in the corresponding BabelNet synset.

Our implementation of HARDCONSTRAINT con-
siders the intersection of the sets of synsets that
contain translations from each language. Ideally,
the intersection contains exactly one sense, which
we take as the final prediction. (Such a case is illus-
trated in Figure 2.) Otherwise, if the intersection
contains multiple senses, we choose the one with
the highest score from the base WSD system. If
the intersection happens to be empty, we back-off
to the prediction of the base WSD system.

3.2 SOFTCONSTRAINT

HARDCONSTRAINT is effective at ruling out sense
candidates, but is also sensitive to MT errors and
BabelNet deficiencies. BabelNet contains transla-
tions for only 79% of the nominal senses in Word-
Net, and its multilingual lexicalizations have an av-
erage precision of only 72% (Navigli and Ponzetto,
2012a).

Our principal method, SOFTCONSTRAINT, is
more robust in handling noisy MT translations and
BabelNet gaps. It integrates information from three
sources: the base WSD system, translations, and
sense frequencies (Figure 2). From each of these
sources, we derive a probability distribution over
S(e). We employ the product of experts (PoE) ap-
proach (Hinton, 2002) to combine the probabilities
as follows:

ﬁ(s) = pwsd(s)a : ptram(s)ﬂ 'pfreq(s)7

The resulting score p is an unnormalized measure
of probability with tunable weights «, 3, and .
We tune those weights through grid-search. The
sense that maximizes this measure is taken as the
prediction. Below, we provide the details on each
of the three distributions.

Probability p,,, is obtained by simply normal-
izing the numerical scores from the base WSD
system.

Probability p;q,s is calculated on the basis of the
set of translations for each focus word e in Babel-
Net. Given a source focus word e and a word f
in another language, we obtain its sense coverage
c(e, f) representing the number of possible senses
of e that are mapped to f, i.e., the number of Ba-
belNet synsets containing both e and f. Based
on the sense coverage, the word pair e and f is
assigned a weight w(e, f) that reflects its discrimi-
nation power:

wie.f) = {

1
c(e.f)
0

ifcle, f) #0

otherwise
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Now, we consider f to be a translation ¢7,(e) for e
in a target language L € £, where £ stands for the
set of target languages. The score of a candidate
sense s € S(e) is then the sum of weights of the
translations that are found in the corresponding
BabelNet synset BN(s):

score(s) = Z w(e,tr(e)) - Ly (tr(e))

Lel

where T gy(s)(f2(€)) is an indicator function that
becomes 1 if t1,(e) € BN(s) and 0 otherwise. As
with p,,s, we normalize the scores into a proper
probability distribution p;,,,s over the set of senses.
To avoid zero values, we perform smoothing by
adding a small positive value (a tunable parameter).

Probability pj., represents the sense frequency
information for a given lemma and part-of-speech
(POS). This information is also used by most WSD
systems. For English, we obtain sense frequencies
from WordNet, which derives such information
from SemCor, a sense-annotated corpus. To han-
dle senses with zero frequency in SemCor, we also
apply additive smoothing. To obtain py,, for lan-
guages other than English, which lack large, high-
quality sense annotated corpora, we use CluBERT
(Pasini et al., 2020), the state-of-the-art system for
unsupervised sense distribution learning, which ap-
plies a clustering algorithm to contextual embed-
dings from BERT (Devlin et al., 2019). Like our
methods, CluBERT is language independent, has
no additional training data requirements, and has
been successfully integrated into WSD systems to
improve their performance.

Figure 2 illustrates how SOFTCONSTRAINT
combines the three probability distributions to cor-
rect an incorrect sense prediction produced by a
base system.

3.3 Contextual Word Embeddings

Recent work has demonstrated the utility of contex-
tual word embeddings for NLP tasks (Peters et al.,
2018; Devlin et al., 2019). Accordingly, WSD sys-
tems such as SENSEMBERT (Scarlini et al., 2020)
take a contextual embedding of the focus word as
input, in order to leverage its dense encoding of
relevant local information, which may be used to
determine the correct sense.

In this section, we propose a method of adding
translation information to the input of a WSD sys-
tem by modifying the contextual embedding of the
focus word to reflect its translation. We refer to this

method as t_emb. Note that this method can be com-
bined with either the HARDCONSTRAINT or SOFT-
CONSTRAINT methods. Unlike the constraint-
based methods, which use translations of the focus
word to post-process the output of a WSD system,
t_emb provides the translation information in the
form of an embedding directly as input to the WSD
system. Thus, translation information is used as an
additional feature to improve sense predictions of
the base WSD system.

As before, our approach is to translate the con-
text of the focus word, and use word alignment
to identify the translation of the focus word. We
compute a contextual embedding of this translation,
just as we did for the focus word itself, and then
concatenate the two embeddings. This produces
a new embedding that can be provided to a base
WSD system in place of the focus word embedding
alone. However, since not all WSD systems use
contextual embeddings, this method is less general,
and we only apply it to some of our models and
evaluation experiments.

3.4 Translation Alignment

The effectiveness of our approach for improving
WSD depends on the correct identification of the
word-level translations in each language. Even
when the sentential context of the focus word is cor-
rectly rendered in another language, both HARD-
CONSTRAINT and SOFTCONSTRAINT rely on the
proper alignment between the source focus word
and its translation, which may be composed of mul-
tiple word tokens. Although attention weights in
some NMT systems may be used to derive word
alignment, such an approach is not necessarily
more accurate than off-the-shelf alignment tools (Li
et al., 2019). Therefore, our approach is to instead
identify the word-level translations by performing
a bitext-based alignment between the source focus
words and their translations.

During development, we found that the accuracy
of alignment tools such as FASTALIGN (Dyer et al.,
2013) is limited by the size of the aligned bitext, as
well as the lack of access to the translation informa-
tion which is present in BabelNet. To mitigate these
issues, we introduce a knowledge-based word align-
ment algorithm BABALIGN! that leverages trans-
lation information in BabelNet by post-processing
the output of an off-the-shelf word aligner. BA-

"Tmplementation is available at: https://github.
com/YixingLuan/BabAlign
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BALIGN is shown to be more effective than existing
word aligners in downstream tasks such as cross-
lingual lexical entailment (Hauer et al., 2020). We
first append our translated WSD data to a large lem-
matized bitext. We further augment the bitext with
the BabelNet translations for all WSD focus words.
We then run the base aligner in both translation
directions, and take the intersection of the two sets
of alignment links. In its final stage, BABALIGN
leverages the BabelNet translation pairs again, to
post-process the generated alignment.

Algorithm 1 summarizes BABALIGN. The al-
gorithm takes as input a source-language sentence
and a target-language sentence, as well as the set
of translations for each content word in the source
sentence. As BABALIGN is an alignment post-
processing algorithm, its input is the alignment of
the two sentences from a base aligner.

If a source word w; is aligned to a word w;
which is one of its translations, the alignment is con-
sidered correct. Since a possible translation may
be composed of multiple words (e.g., French trans-
lation salle d’audience for courtroom), we attempt
to expand a partial alignment by considering the
adjacent word tokens. This is achieved by invoking
compound_search, which takes the aligned token
pair (ws, w;) and returns the longest sequence of
target tokens ¢ such that bn(w;) contains ¢, ¢ con-
tains wy, and ¢ does not contain any target tokens
(except wy) that are aligned by the base aligner. If
no such compound is found, compound_search sim-
ply returns wy, so no change in the alignment will
be made.

On the other hand, if the source word w; is
aligned to a target word which is not among its
translations, we invoke bnlex_search, which returns
the longest sequence of target tokens [ such that
bn(ws) contains [, and [ does not contain any to-
kens that are already aligned. Intuitively, this is
an attempt to “repair” an incorrect alignment by
searching for an unaligned target word which is
known to be a translation of w,. If such an [ can be
found (i.e. [ # None), the alignment is modified
so that wj is aligned to [.

4 Word Alignment Evaluation

To show the effectiveness of BABALIGN, which
combines an existing word aligner with translations
from BabelNet, we evaluate the alignment perfor-
mance using parallel datasets with gold alignment.
We employ FASTALIGN as the base aligner. As

Algorithm 1 BABALIGN

Input:
list of all source tokens, o5 = (w1, - . . , W)
list of all target tokens, oy = (w1, . . ., W)
BabelNet translations, bn(ws) = {l1,...,l,}

1: A < BaseAligner(os, o¢)
2: for each aligned word pair (ws, w;) € A do
3: if w; € bn(ws) then

4: ¢ « compound_search(wg, wy)

5: Modify A such that w; aligns to c.

6: else

7: [ < bnlex_search(ws)

8: if | # None then

9: Modify A such that w; aligns to [.
10: return A

the evaluation datasets, we use SemCor 3.0 and
its translations, Multi SemCor (MSC) (Bentivogli
and Pianta, 2005) and Japanese SemCor (JSC)
(Bond et al., 2012), to evaluate English-Italian
and English-Japanese alignment respectively. Both
MSC and JSC contain manually annotated gold
alignment for a subset of the sense-annotated con-
tent words in SemCor. We extract all English, Ital-
ian, and Japanese sentence triples where an English
token has gold alignments in both the Italian and
Japanese sides. We get 639 sentence triples with
2602 aligned tokens. We only evaluate the align-
ment performance for those 2602 sense-annotated
tokens, and do not consider the alignment for other
tokens, because our purpose here is to obtain proper
translations for test words in the WSD setting.

For SemCor, we continue to use the included tok-
enization, lemma, and POS information. For MSC
and JSC, we do not use the tokenization, lemma,
and POS information provided in the data to em-
ulate the setting where we generate translations
for monolingual WSD datasets. Instead, for MSC,
JSC, and the additional bitexts, we employ morpho-
logical taggers to perform pre-processing: TreeTag-
ger (Schmid, 1994) for Italian and MeCab (Kudo,
2005) for Japanese. The additional bitexts that we
append to the data are from OpenSubtitles2018 (Li-
son and Tiedemann, 2016): English-Italian (37.8M
sentences) and English-Japanese (2.2M sentences).
We evaluate alignment performance in terms of

2 We use SemCor 3.0 in the Natural Language Toolkit

(NLTK) to keep the compatible file format with MSC and
JSC.
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Method Data En-It En-Ja

test data only 804  36.0

FASTALIGN  +OpenSub 93.3 75.6

+OpenSub +pairs  93.6  81.9

BABALIGN  +OpenSub +pairs  94.0  91.6
Table 1: Alignment F-score on English-Italian and

English-Japanese bitexts.

whether the lemma of the aligned translation cor-
responds to the lemma of the manually aligned
translation in MSC or JSC.

Table 1 compares the alignment approaches. As
expected, the concatenation of a large bitext to
the test data (+OpenSub) dramatically reduces the
number of errors. The addition of translation pairs
from BabelNet (+pairs) yields further gains. BA-
BALIGN itself improves the quality of the align-
ment on English-Japanese by nearly 10 points. The
improvement on English-Italian is smaller, as the
alignment between similar languages is easier, and
the additional bitext is much larger. Japanese is
particularly challenging, not only because it is typo-
logically different, but also due to the frequency of
multi-character compounds. The back-off strategy
used by BABALIGN effectively leverages possible
translations in BabelNet to recover tokenized com-
pounds and missing alignment links. This mitigates
the effect of alignment errors on our WSD results,
which we describe in the next section.

5 WSD Evaluation

In this section, we first describe the WSD systems
that we use in our experiments. We then show how
our methods can improve existing WSD systems
in the oracle setting for English all-words WSD.
Finally, we report the results of the experiments
on multilingual WSD and English all-words WSD
with automatic translations.

5.1 WSD Systems

There are two main approaches to WSD: super-
vised and knowledge-based. Supervised systems
are trained on sense-annotated corpora and gener-
ally outperform knowledge-based systems. On the
other hand, knowledge-based systems usually ap-
ply graph-based algorithms to a semantic network
and thus do not require any sense-annotated cor-
pora. Since it is expensive to obtain manually sense-
annotated corpora and such corpora exist mainly in
English, it is often impractical to apply supervised
systems to multilingual settings. Therefore, for

multilingual WSD, knowledge-based approaches
are typically employed.

Many effective WSD systems have been pro-
posed; we include here only the systems that we
use in our experiments. IMS (Zhong and Ng, 2010)
is a canonical supervised WSD system, which uses
support vector machines with various lexical fea-
tures. LMMS (Loureiro and Jorge, 2019) lever-
ages contextual word embeddings and surpasses
the long-standing 70% F-score ceiling for super-
vised WSD. It learns supervised sense embeddings
by applying BERT to SemCor, with additional se-
mantic knowledge from WordNet. Among the
knowledge-based systems, Babelfy (Moro et al.,
2014) applies random walks with restarts to Ba-
belNet to perform WSD and entity linking. Even
though Babelfy is based on BabelNet, it does not
make direct use of the translation information in
BabelNet. Similarly, UKB (Agirre et al., 2014,
2018), which is based on personalized PageRank
on WordNet, achieves state-of-the-art performance
on English all-words WSD. Finally, utilizing con-
textual embeddings, SENSEMBERT (Scarlini et al.,
2020) learns knowledge-based multilingual sense
embeddings obtained by combining representations
learned using BERT with knowledge obtained from
BabelNet. This yields state-of-the-art results on En-
glish nouns WSD and multilingual WSD. We test
these systems both without modification, and with
the addition of our knowledge-based methods, to
measure how much improvement can be obtained
by leveraging translations.

5.2 Oracle WSD Experiments

Our first set of experiments aims at estimating the
upper limits of our approach in an oracle setting
of annotated and aligned bitexts with high-quality
human translations.

Experimental Setup Our sense-annotated bitexts
are MSC and JSC (Section 4), which contain man-
ual translations of texts from SemCor. As in Sec-
tion 4, we use 639 sentences with 2602 sense-
annotated instances from MSC and JSC. We ran-
domly sample 10% of the instances as the devel-
opment set. We tune all parameters on the de-
velopment set, and use the same hyperparameters
throughout the experiment.

We employ two knowledge-based WSD systems:
Babelfy and UKB. Both systems have variants that
take advantage of sense frequency information in
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System Translation base hard soft
IT 60.3 58.6

Babelfy JA 50.7 65.8 65.8
IT+JA 66.7 68.6

1T 64.1 64.2

UKB JA 58.0 72.0 72.1
IT+JA 722 733

IT 732 73.6

Babelfy + WN1st JA 72.6 73.1 73.6
IT+IA 734 73.6

IT 73.6 754

UKB + dict_weight JA 71.2 78.5 80.0
IT+JA 77.8 80.1

Table 2: WSD F-score on the SemCor test set with Ital-
ian and Japanese translations.

WordNet. Babelfy backs off to the WordNet first
sense (WN1st) using a fixed confidence threshold,
which we set to 0.8 following Moro et al. (2014).
UKB uses complete sense frequency distributions,
which are referred to as the dictionary weight
(dict_weight). We use the same parameter settings
as Agirre et al. (2018). For fair comparison, when
applying SOFTCONSTRAINT to a system variant
without sense frequency information, we set y to 0
to turn off the ps., component.

Results The results in Table 2 demonstrate the
efficacy of leveraging translations for WSD. The
systems without sense frequency information are
boosted by 15-18%, while the systems with full
features get up to 9% absolute improvement.
Also, SOFTCONSTRAINT consistently outperforms
HARDCONSTRAINT. The modest improvement of
1% on Babelfy is due to the base system falling
back on the WN1st sense in about 80% of test in-
stances, precluding the use of translations.

Also, we observe that our approach is effective
in combining translations from multiple languages.
For instance, the F-score of 73.3% for plain UKB
with SOFTCONSTRAINT (shown in Table 2) drops
to 72.1% with only Japanese translations, to 64.2%
with only Italian translations, and to 58.0% with no
translations. These results also indicate that trans-
lations from a more distant language, i.e., Japanese,
work better at discriminating senses.

5.3 Multilingual WSD Experiments
Since our methods are language-independent, we

test them on standard multilingual WSD datasets.

Experimental Setup We perform our multilingual
WSD evaluation on benchmark parallel datasets in

English, Spanish, Italian, French, and German from
SemEval-2013 task 12 (Navigli et al., 2013) and
SemEval-2015 task 13 (Moro and Navigli, 2015).3
The datasets contain manual reference translations,
but are not word-aligned. We perform experiments
in two settings, with either machine or human trans-
lations. To obtain automatic translations, we trans-
late the test sets into English using Google Trans-
late* because the pre-trained NMT models for test
languages are not always available. For manual
translations, we use the provided parallel datasets
in all languages. For each individual language, we
use BABALIGN to obtain translations of the focus
word in other languages. We randomly sample 10%
of test instances in each dataset to obtain develop-
ment sets for parameter tuning.

We use two multilingual base WSD systems:
IMS and SENSEMBERT. We train IMS on
OneSeC (Scarlini et al., 2019), an automatically
sense-annotated set of corpora in multiple lan-
guages.” For SENSEMBERT embeddings, when
we integrate the translation embedding (t_emb), we
concatenate the focus word embedding and its cor-
responding t_emb, as described in Section 3.3. To
compute these contextual word embeddings for En-
glish translations, we use the 768-dimensional mul-
tilingual BERT cased pre-trained model (mBERT).
Since both OneSeC and SENSEMBERT are lim-
ited to nouns, we follow Scarlini et al. (2019, 2020)
in performing the evaluation on nominal instances
only.

Since languages other than English lack large
sense-annotated corpora, we employ two evalua-
tion settings. In the default setting, sense frequency
information is not used, with the parameter ~y set
to 0 in SOFTCONSTRAINT. In the other setting,
we approximate sense distributions with CluBERT
(Pasini et al., 2020).

Results In Tables 3 and 4, we report the
WSD results on SemEval-2013 and SemEval-2015
datasets.® Surprisingly, the results with English-
only Google Translate (GT) translations are only
slightly lower on average than with manual trans-
lations from multiple languages. HARDCON-

3French and German are in SemEval-2013 only.

*nttps://translate.google.com/

STacobacci et al. (2016) propose an extended version of
IMS that incorporates static English word embeddings; how-
ever, we are not aware of any IMS version with contextual
word embeddings.

8Some combinations are omitted for clarity.
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SE-13 SE-15

Method DE ES FR IT ES IT

base system 7277 67.8 69.6 68.1 63.0 64.1
e soft(y =0) 73.7 71.4 733 749 65.0 70.8
O soft (CluBERT) 724 76.8 73.9 755 682 75.7
S hard 72.0 71.2 743 734 65.5 70.0
§ soft (y = 0) 73.5 75.0 74.6 76.2 655 71.1
S soft (CluBERT) 73.8 77.0 745 749 69.1 76.5

Table 3: WSD F-score of IMS (OneSeC) with trans-
lations on the nominal instances of the SemEval-2013
and SemEval-2015 datasets, with Google Translate
(English) and manual (all languages) translations.

SE-13 SE-15
Method DE ES FR IT ES IT
base system 76.7 74.7 77.6 70.7 64.4 68.7
soft (y = 0) 77.7 80.8 79.4 76.8 65.0 74.1
S soft (CluBERT) 78.1 80.4 80.7 78.9 65.7 78.7
soft (CluBERT+t_emb) 78.2 80.8 80.9 79.4 65.9 78.7
. hard 77.1 80.1 79.3 76.6 63.5 72.8
S soft (v = 0) 76.8 81.9 80.8 78.3 64.6 73.6
S soft (ClJuBERT) 76.8 79.2 81.5 79.8 66.4 78.7
= soft (CluBERT+t_emb) 79.6 81.4 81.5 78.9 66.6 78.7

Table 4: WSD F-score of SENSEMBERT with trans-
lations on the nominal instances of the SemEval-2013
and SemEval-2015 datasets, with Google Translate
(English) and manual (all languages) translations.

STRAINT performs well in this set of experiments,
as nouns are very well covered by BabelNet.”
SOFTCONSTRAINT achieves an average improve-
ment of several F1 points on both systems, even
without sense frequency information. The best re-
sults are obtained using sense frequency estimates
from CIuBERT, especially when they can be com-
bined with mBERT-based contextual translation
embeddings (t_emb), neither of which requires man-
ually sense-annotated corpora. We interpret these
results as the new state of the art in multilingual
WSD based on the consistent improvement over
SENSEMBERT.

To evaluate the potential of using translations
from a replicable NMT model, we obtain English
translations for test words in the SemEval-2013
German dataset with a pre-trained transformer
model (Ng et al., 2019) available in the fairseq
toolkit (Ott et al., 2019). In this setting, we use
only English translations for both constraints and
t_emb. The results on both WSD systems with the
pre-trained model are almost the same as with GT,
and slightly better than with English-only manual

"Over 99% of the words in BabelNet are nouns (Navigli
and Ponzetto, 2012a). On average, 92% of the SemEval trans-
lations are in the BabelNet synsets of the correct senses.

translations. According to our preliminary analysis,
machine translations may sometimes work better
because they tend to be more literal, and easier to
align with the source focus words. This suggests
that our methods can effectively leverage transla-
tions from different kinds of sources.

5.4 English WSD Experiments with NMT

In the final set of experiments, we evaluate our
methods on standard monolingual benchmark
datasets using NMT translations from multiple
languages.

Experimental Setup We evaluate on five English
all-words datasets: Senseval2, Senseval3, SemEval-
2007, SemEval-2013, and SemEval-2015 from the
unified framework made available by Raganato
et al. (2017). Since these datasets are not accom-
panied by translations, we automatically obtain the
translations from NMT models. We tune parame-
ters on Senseval2, and apply the same parameter
settings in all datasets.

We test our methods with four base WSD
systems: Babelfy and UKB (knowledge-based),
and IMS and LMMS (supervised), trained on
SemCor 3.0 provided in Raganato et al. (2017).
Our replication experiments match the reported
results for these systems (£0.2% on average). For
translations, we employ pre-trained transformer
models from the fairseq toolkit: English-French
and English-German models from Ott et al. (2018),
and an English-Russian model from Ng et al.
(2019). We choose French, German, and Russian
as target languages due to the availability of
pre-trained models. Note that unlike multilingual
WSD experiments (Section 5.3), we do not use
Google Translate in the following experiments.
We compare plain Babelfy and UKB to SOFTCON-
STRAINT without pg,. For other systems, we
derive pf, from sense frequency information from
WordNet 3.0.3

Results Table 5 shows the results on the standard
English all-words WSD datasets. While HARD-
CONSTRAINT is not sufficiently robust to improve
complex WSD systems with automatically gener-
ated translations, SOFTCONSTRAINT shows statis-
tically significant improvements over the original
performance for all base systems.

8Due to the complexity of transforming mBERT repre-

sentations into different dimensionalities and vector spaces,
translation embeddings are not used in these experiments.
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System [ Method [ SE-2 SE-3 SE-07 SE-13 SE-15 [ ALL

‘WN st sense baseline - 66.8 66.2 55.2 63.0 67.8 65.2

base system | 50.2 464 389 35.6 543 50.3
Babelfy hard 53.0° 4927 4177 556 55.9° | 52.3
3 soft(y=0) | 577" 543 470° 60.1° 618 | 573"
§ base system | 642 548 40.0 645 645 60.4
¢ UKB hard 653" 574" 440" 626 662" | 6LS
3 soft (y=0) | 67.6° 588 486 645 711 | 64.0°
= base system | 66.6  65.5  53.0 63.0 685 64.9
S Babelfy + WNIst hard 66.7 655 534 62.7 68.5 64.9
X soft 674" 659 543" 634 68.3 65.4"
base system | 68.8  66.1 53.0 68.8 70.3 67.3

UKB + dict_weight hard 685 655 53.6 64.5 69.7 66.1
soft 71.3°  66.8 54.1 69.0 742" | 68.9"

base system | 71.3 69.1 61.5 65.1 68.3 68.3

I IMS hard 710 682 607 620 676 67.1
-‘§ soft 723 687 598 658 717 | 69.0"
N base system | 76.3 754 679 75.0 76.9 75.3
S LMMS hard 759 741  66.2 70.9 75.7 73.6
soft 772 7117 69.2 76.1 77.2 76.4"

Table 5: English all-words WSD F-score on standard evaluation datasets with translations from 3 languages
(French, German, and Russian). The results show statistically significant improvement over the base system are

marked with * (McNemar’s Test, p < 0.05).

method trans SE-2 SE-3 SE-07 SE-13 SE-15|ALL
base - 68.8 66.1 53.0 68.8 70.3|67.3
FR 70.0 67.9 545 67.6 70.6 |68.0

soft DE 70.2 66.4 554 675 713 |67.8
RU 69.6 66.6 534 68.7 71.7 |67.9
FR+DE+RU|71.3 66.8 54.1 69.0 74.2 |68.9

Table 6: WSD F-score of UKB + dict_weight with
translations from a single language only.

For example, UKB with dict_weight correctly
predicts the sense of “earth” in “the world’s most
influential countries.” However, English world and
its three translations, monde, Welt, and mir, are
only found in the BabelNet synset glossed as “pop-
ulace”, while the Russian translation mir happens
to be missing from the BabelNet synset glossed as
“earth”, perhaps because there is no Russian link
to the English Wikipedia page for World. Hence,
while HARDCONSTRAINT miscorrects the UKB
prediction to the sense of “populace”, SOFTCON-
STRAINT keeps it unchanged by leveraging sense
frequencies and the base system scores.

In Table 6, we show additional results on UKB
with dict_weight when using only a single language
to derive translations. All three languages show
similar improvements, and we can obtain better
improvements by combining multiple languages.

In summary, these results again demonstrate that
our method can effectively integrate information
from the WSD system itself, translations, and sense
frequency even with noisy translations generated by

NMT models. While translations are shown to help
even strong supervised WSD systems, the improve-
ments are particularly impressive on knowledge-
based systems. The SOFTCONSTRAINT result on
UKB with dict_weight sets a new state of the art
for knowledge-based systems.

6 Conclusion

We proposed a novel approach that improves WSD
by leveraging translations from multiple languages,
which incorporates a knowledge-based bitext align-
ment. We tested our methods with several base
WSD systems. We demonstrated experimentally
that SOFTCONSTRAINT can consistently improve
WSD performance even when no manual transla-
tions are available, leading to state-of-the-art re-
sults on multilingual and English all-words WSD.
We make the source code available at https://

github.com/YixingLuan/translations4wsd.
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