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Abstract

Sentence-level extractive text summarization
is substantially a node classification task
of network mining, adhering to the infor-
mative components and concise representa-
tions. There are lots of redundant phrases
between extracted sentences, but it is diffi-
cult to model them exactly by the general
supervised methods. Previous sentence en-
coders, especially BERT, specialize in mod-
eling the relationship between source sen-
tences. While, they have no ability to con-
sider the overlaps of the target selected sum-
mary, and there are inherent dependencies
among target labels of sentences. In this pa-
per, we propose HAHSum (as shorthand for
Hierarchical Attentive Heterogeneous Graph
for Text Summarization), which well mod-
els different levels of information, includ-
ing words and sentences, and spotlights re-
dundancy dependencies between sentences.
Our approach iteratively refines the sen-
tence representations with redundancy-aware
graph and delivers the label dependencies
by message passing. Experiments on large
scale benchmark corpus (CNN/DM, NYT, and
NEWSROOM) demonstrate that HAHSum
yields ground-breaking performance and out-
performs previous extractive summarizers.

1 Introduction

Single document extractive summarization aims to
select subset sentences and assemble them as infor-
mative and concise summaries. Recent advances
(Nallapati et al., 2017; Zhou et al., 2018; Liu and
Lapata, 2019; Zhong et al., 2020) focus on balanc-
ing the salience and redundancy of sentences, i.e.
selecting the sentences with high semantic similar-
ity to the gold summary and resolving the redun-
dancy between selected sentences. Taking Table
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Salience Label Sentence

sent1: 0.7 0 Deanna Holleran is charged in murder.

sent2: 0.1 0 Jackson County Prosecutor Jean Peters Baker announced today.

sent3: 0.7 1 Deanna Holleran faces a charge of traffic accident.

sent4: 0.7 1 The fatal traffic accident is a murder.

sent5: 0.2 0 It took the life of Marianna Hernandez near 9th Hardesty.

Summary: Woman faces a charge of murder for a fatal traffic accident.

Table 1: Simplified News from Jackson County Prose-
cutor. Salience score is an approximate estimation de-
rived from semantic and Label is converted from gold
summary to ensure the concision and accuracy of the
extracted summaries.

1 for example, there are five sentences in a docu-
ment, and each of them is assigned one salience
score and one label indicating whether this sentence
should be contained in the extracted summary. Al-
though sent1, sent3, and sent4 are assigned high
salience score, just sent3 and sent4 are selected as
the summary sentences (with label 1) because there
are too much redundancy information between un-
selected sent1 and selected sent3. That is to say,
whether one sentence could be selected depends on
its salience and the redundancy with other selected
sentences. However, it is still difficult to model the
dependency exactly.

Most of the previous approaches utilize autore-
gressive architecture (Narayan et al., 2018; Mendes
et al., 2019; Liu and Lapata, 2019; Xu et al., 2020),
which just models the unidirectional dependency
between sentences, i.e., the state of the current sen-
tence is based on previously sentence labels. These
models are trained to predict the current sentence
label given the ground truth labels of the previous
sentences, while feeding the predicted labels of
the previous sentences as input in inference phase.
As we all know, the autoregressive paradigm faces
error propagation and exposure bias problems (Ran-
zato et al., 2015). Besides, reinforcement learning
is also introduced to consider the semantics of ex-
tracted summary (Narayan et al., 2018; Bae et al.,
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2019), which combines the maximum-likelihood
cross-entropy loss with the rewards from policy
gradient to directly optimize the evaluation metric
for the summarization task. Recently, the popular
solution is to build a summarization system with
two-stage decoder. These models extract salient
sentences and then rewrite (Chen and Bansal, 2018;
Bae et al., 2019), compress (Lebanoff et al., 2019;
Xu and Durrett, 2019; Mendes et al., 2019), or
match (Zhong et al., 2020) these sentences.

Previous models generally use top-k strategy as
an optimal strategy: for different documents, the
number of selected sentences is constant which
conflicts with the real world. For example, almost
all previous approaches extract three sentences
from the source articles (top-3 strategy (Zhou et al.,
2018; Liu and Lapata, 2019; Zhang et al., 2019b;
Xu et al., 2020)), although 40% documents in
CNN/DM contain more or less than 3-sentences or-
acle summary. That’s because these approaches are
difficult to measure the salience and redundancy
simultaneously with error propagation. Notably,
Mendes et al. (2019) introduces the length variable
into the decoder and Zhong et al. (2020) can choose
any number of sentences by match candidate sum-
mary in semantic space.

In order to address above issues, we construct
the source article as a hierarchical heterogeneous
graph (HHG) and propose a Graph Attention Net
(Veličković et al., 2018) based model (HAHSum)
to extract sentences by simultaneously balancing
salience and redundancy. In HHG, both words and
sentences are constructed as nodes, the relations
between them are constructed as different types
of edges. This hierarchical graph can be viewed
as a two-level graph: word-level and sentence-
level. For word-level graph (word-word), we de-
sign an Abstract Layer to learn the semantic rep-
resentation of each word. Then, we transduce the
word-level graph into the sentence-level one, by
aggregating each word to its corresponding sen-
tence node. For sentence-level graph (sentence-
sentence), we design a Redundancy Layer, which
firstly pre-labels each sentence and iteratively up-
dates the label dependencies by propagating redun-
dancy information. The redundancy layer restricts
the scale of receptive field for redundancy informa-
tion, and the information passing is guided by the
ground-truth labels of sentences. After obtaining
the redundancy-aware sentence representations, we
use a classifier to label these sentence-level nodes

with a threshold. In this way, the whole framework
extracts summary sentences simultaneously instead
of autoregressive paradigm, taking away the top-k
strategy.

The contributions of this paper are as below:
1) We propose a hierarchical attentive heteroge-
neous graph based model(HAHSum) to guide the
redundancy information propagating between sen-
tences and learn redundancy-aware sentence rep-
resentation; 2) Our architecture is able to extract
flexible quantity of sentences with a threshold, in-
stead of top-k strategy; 3) We evaluate HAHSum
on three popular benchmarks (CNN/DM, NYT,
NEWSROOM) and experimental results show that
HAHSum outperforms the existing state-of-the-art
approaches. Our source code will be available on
Github 1.

2 Related Work

2.1 Extractive Summarization
Neural networks have achieved great success in the
task of text summarization. There are two main
lines of research: abstractive and extractive. The
abstractive paradigm (Rush et al., 2015; See et al.,
2017; Celikyilmaz et al., 2018; Sharma et al., 2019)
focuses on generating a summary word-by-word
after encoding the full document. The extractive
approach (Cheng and Lapata, 2016; Zhou et al.,
2018; Narayan et al., 2018) directly selects sen-
tences from the document to assemble into a sum-
mary.

Recent research work on extractive summariza-
tion spans a large range of approaches. These
work usually instantiate their encoder-decoder ar-
chitecture by choosing RNN (Nallapati et al., 2017;
Zhou et al., 2018), Transformer (Wang et al.,
2019; Zhong et al., 2019b; Liu and Lapata, 2019;
Zhang et al., 2019b) or Hierarchical GNN (Wang
et al., 2020) as encoder, autoregressive (Jadhav
and Rajan, 2018; Liu and Lapata, 2019) or non-
autoregressive (Narayan et al., 2018; Arumae and
Liu, 2018) decoders. The application of RL pro-
vides a means of summary-level scoring and brings
improvement (Narayan et al., 2018; Bae et al.,
2019).

2.2 Graph Neural Network for NLP
Recently, there is considerable amount of interest
in applying GNN to NLP tasks and great success
has been achieved. Fernandes et al. (2019) applied

1http://github.com/coder352/HAHSum
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sequence GNN to model the sentences with named
entity information. Yao et al. (2019) used two-
layer GCN for text classification and introduced a
well-designed adjacency matrix. GCN also played
an important role in Chinese named entity (Ding
et al., 2019). Liu et al. (2019) proposed a new con-
textualized neural network for sequence learning
by leveraging various types of non-local contex-
tual information in the form of information passing
over GNN. These studies are related to our work
in the sense that we explore extractive text summa-
rization by message passing through hierarchical
heterogeneous architecture.

3 Methodology

3.1 Problem Definition
Let S = {s1, s2, ..., sN} denotes the source docu-
ment sequence which contains N sentences, where
si is the i-th sentence of document. Let T
denotes the hand-crafted summary. Extractive
summarization aims to produce summary S∗ =
{s∗1, s∗2, ..., s∗M} by selecting M sentences from S,
where M ≤ N . Labels Y = {y1, y2, ..., yN} are
derived from T , where yi ∈ {0, 1} denotes whether
sentence si should be included in the extracted
summary. Oracle summary is a subset of S, which
achieves the highest ROUGE score calculated with
T .

3.2 Graph Construction
In order to model the redundancy relation between
sentences, we use a heterogeneous graph which
contains multi-granularity levels of information to
represent a document, as shown in Figure 1. In this
graph, there are three types of nodes: named en-
tity, word, and sentence. To reduce semantic spar-
sity, we replace text spans of Named Entity by
anonymized tokens (e.g. [Person A], [Person B],
[Date A]). Word node is the original textual item,
representing word-level information. Different
from DivGraphPointer (Sun et al., 2019), which
aggregates identical words into one node, we keep
each word occurrence as one node to avoid the
confusion of different contexts. Each Sentence
node corresponds to one sentence and represents
the global information of one sentence.

We also define four types of edges to represent
various structural information in HAHSum:

1. We connect sequential named entities and
words in one sentence using directed Next
edges.

2. We connect one named entity node or word
node to one sentence node with directed In
edge if the named entity or word occurs in this
sentence.

3. We connect two named entity nodes with undi-
rected Same edge if they are the same named
entity.

4. We connect two sentence nodes with undi-
rected Similar edge if they have trigram
overlapping.

The topological structure of graph can be rep-
resented by adjacency matrix A, where the bool-
type element is indicating whether there is an
edge between nodes. Because HAHsum contains
multi-granularity levels of information, it can be
divided into three subgraphs: the word-level, word-
sentence, and sentence-level subgraph. So, we
define three adjacency matrices: Aword is used
for the word-level graph, constructed by Entity
node, Word node, Next edge and Same edge.
Aword−sent is used for the word-sentence graph,
constructed by three types of nodes and In edge.
Asent is used for sentence-level graph, constructed
by Sentence node and Similar edge. By
propagating the information from word-level to
sentence-level graph, we can obtain the sentence
representation and model the redundancy between
sentences.

Generally, the message passing over graphs can
be achieved in two steps: aggregation and combi-
nation, and this process can be conducted multiple
times (referred as layers or hops in GNN literature)
(Tu et al., 2019). Therefore, we iteratively update
the sentence nodes representation with redundancy
message passing which will be described in the
following sections.

3.3 Graph Attention Network
To represent graph structure A and node content
X in a unified framework, we develop a variant of
Graph Attention Network (GAT) (Veličković et al.,
2018). GAT is used to learn hidden representations
of each node by aggregating the information from
its neighbors, with the attention coefficients:

eij = LeakReLU(a(Wxi||Wxj)) (1)

where W ∈ Rd×d is a shared linear transformation
weight matrix for this layer, || is the concatena-
tion operation, and a ∈ R2d is a shared attentional
weight vector.
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Figure 1: Overview of Hierarchical Attentive Heterogeneous Graph

To make the attention coefficients easily compa-
rable across different nodes, we normalize them as
follows:

αij = softmax(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(2)

whereNi denotes the neighbors of node i according
to adjacency matrix A.

Then, the normalized attention coefficients are
used to compute a linear combination of features.

x′i = σ(
∑
j∈Ni

αijWxj) +W ′xi (3)

where W ′ is used to distinguish the information
between xi and its neighbors.

3.4 Message Passing
Shown in Figure 1, HAHSum consists of ALBERT
Encoder, Abstract Layer, Redundancy Layer, and
Output Layer. We next introduce how the informa-
tion propagates over these layers.

3.4.1 ALBERT Encoder
In order to learn the contextual representation of
words, we use a pre-trained ALBERT (Lan et al.,
2019) for summarization and the architecture is
similar to BERTSUMEXT (Liu and Lapata, 2019).
The output of ALBERT encoder contains word hid-
den states hword and sentence hidden states hsent.
Specifically, ALBERT takes subword units as in-
put, which means that one word may correspond
to multiple hidden states. In order to accurately
use these hidden states to represent each word, we
apply an average pooling function to the outputs of
ALBERT.

3.4.2 Abstract Layer
The abstract layer contains three GAT sublayers
which are described in Section 3.3: two for word-
level graph and one for word-sentence transduction.
The first two GAT sublayers are used to learn the
hidden state of each word based on its two-order
neighbors inspired by Kipf and Welling[2017],

W = GAT(GAT(hword, Aword), Aword) (4)

where Aword denotes the adjacency matrix of the
word-level subgraph, and W denotes the hidden
state of the word nodes.

The third GAT sublayer is to learn the initial
representation of each sentence node, derived from
the word hidden states:

[W,Sabs] = GAT([W, hsent], Aword−sent) (5)

where Aword−sent denotes the adjacency matrix of
the word-sentence subgraphs, and Sabs (abs is for
abstract) is the initial representation of sentence
nodes.

3.4.3 Redundancy Layer
The BERT encoder and abstract layer specialize in
modeling salience with overall context representa-
tion of sentences, while it is powerless for redun-
dancy information with dependencies among target
labels. So, redundancy layer aims to model the
redundancy, by iteratively updating the sentence
representation with redundancy message passing,
and this process is supervised by ground-truth la-
bels.
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This layer only deals with sentence-level infor-
mation S = {h1, h2, ..., hN} and iteratively up-
dates it L times with classification scores:

S̃ lre = GAT(GAT(S lre, Asent), Asent)

P (yi = 1|S̃ lre) = σ(FFN(LN(h̃li +MHAtt(h̃li))))

(6)

where S0re = Sabs (re is for redundancy) and we
get SLre at the end, Wc, Wr are weight parameters,
FFN, LN, MHAtt are feed-foreard network, layer
normalization and multi-head attention layer.

We update h̃li by reducing the redundancy in-
formation gli, which is the weighted summation of
neighbors information:

gli =
1

|Ni|
∑
j∈Ni

P (yj = 1|S̃ lre) ∗ h̃lj

hl+1
i =W l

c ∗ h̃li − h̃lTi W l
r tanh(g

l
i)

S l+1
re = (hl+1

1 , hl+1
2 , ..., hl+1

|S| )

(7)

where Ni is redundancy receptive field for node i,
according to Asent.

Specifically, we employ a gating mechanism
(Gilmer et al., 2017) for the information update,
so that: 1) to avoid GNN smoothing problem; 2)
the original overall information from ALBERT is
accessible for the ultimate classifier.

h̃l
′
i =W l

c ∗ h̃li − h̃lTi W l
r tanh(g

l
i)

plg = σ(f lg([h̃
l
i; h̃

l′
i ]))

hl+1
i = h̃li � plg + h̃l

′
i � (1− plg)

(8)

where � denotes element-wise multiplication.

3.5 Objective Function

Previous approaches for modeling the salience and
redundancy is autoregressive, where observations
from previous time-steps are used to predict the
value at current time-step:

P (Y |S) =
|S|∏
t=1

P (yt|S, y1, y2, ..., yt−1) (9)

The autoregressive models have some disadvan-
tages: 1) the error in inference will propagate sub-
sequently, 2) label yt is generated just depend on
previous sentences y<t rather than considering bidi-
rectional dependency, and 3) it is difficult to decide
how many sentences to extract.

Datasets
avg.doc length avg.summary length

words sentences words sentences

CNN 760.50 33.98 45.70 3.59
DailyMail 653.33 29.33 54.65 3.86
NYT 800.04 35.55 45.54 2.44
Newsroom (Ext) 605.44 28.78 40.95 1.90

Table 2: Data Statistics: CNN/Daily Mail, NYT, News-
room

Our HAHSum predicts these labels simultane-
ously:

P (Y |S) =
|S|∏
t=1

P (yt|S,Sabs,Sre) (10)

where we extract flexible quantity of sentences with
a threshold instead of top-k. For L classifiers in our
model, we train them simultaneously with different
proportions. For each training pair (X,Y ) and
the predicted Ŷ , the loss function is formalized as
follows:

L =−
L∑
l=0

L+ l

2L

|S|∑
i=1

{yi logP (ŷi|S̃ lre)+

(1− yi) log(1− P (ŷi|S̃ lre))}

(11)

4 Experiments Setting

4.1 Benchmark Datasets
As shown in Table 2, we employ three datasets
widely-used with multiple sentences summary
(CNN/DM (Hermann et al., 2015), NYT (Sand-
haus, 2008), and NEWSROOM (Grusky et al.,
2018)). These summaries vary with respect to
the type of rewriting operations, e.g., CNN/DM
and NYT prefer to the abstractive approaches and
Newsroom(Ext) is genuinely extractive. We em-
ploy the greedy method to obtain ground-truth sen-
tence labels (Nallapati et al., 2017).

CNN/DailyMail: We use the standard splits for
training, validation, and test (90,266/1,220/1,093
for CNN and 196,96/12,148/10,397 for DailyMail)
(Liu and Lapata, 2019). Input documents are trun-
cated to 768 BPE tokens, with anonymized entities
and processed by Stanford CoreNLP.

NYT: Following previous work (Zhang et al.,
2019b; Xu and Durrett, 2019), we use 137,778,
17,222 and 17,223 samples for training, validation,
and test, respectively. Input documents were trun-
cated to 768 BPE tokens too. Note that there are
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different division for NYT (Durrett et al., 2016; Liu
and Lapata, 2019) and several models are not eval-
uated on NYT officially (See et al., 2017; Mendes
et al., 2019), so we re-train and evaluate them on
NYT with the source code from Github.

Newsroom(Ext): We employ the extractive
part of Newsroom with same divisioin method
(Mendes et al., 2019) for training/validation/test
(331,778/36,332/36,122). Input documents are
truncted to 768 BPE tokens.

4.2 Evaluation Metric & Parameter Settings

Metric: ROUGE (Lin, 2004) is the standard met-
ric for evaluating the quality of summaries. We
report the ROUGE-1, ROUGE-2, and ROUGE-L
of HAHSum by ROUGE-1.5.5.pl, which calculates
the overlap lexical units of extracted sentences and
ground-truth.

Graph Structure: For abstract layer, we ex-
tract the named entities ([Person], [Date],
[Country], [Buildings], [Monetary])
using CoreNLP, and replace them by anonymized
tokens. Similar to Fernandes et al. (2019), we have
tried to add dependency parse edges and they didn’t
show significant benefits, owing to the facts that 1)
the dependency tree is substantially a permutation
sequential structure, with little advancements for
original information; 2) the performance is influ-
enced by the accuracy of the upstream annotators.
We have tried the iteration steps of [1, 2, 3, 5] for
updating redundancy layer, and L = 3 is the best
value in experiment result.

Parameters: We employ pre-trained ‘albert-
xxlarge-v2’2 and reuse the implementation of
PreSumm3. We train our model (with about
400M parameters) one day for 100,000 steps on
2 GPUs(Nvidia Tesla V100, 32G) with gradient
accumulation every two steps. We select the top-3
checkpoints according to the evaluation loss on val-
idation set and report the averaged results on the
test set. Adam with β1 = 0.9, β2 = 0.999 is used
as optimizer and learning rate schedule follows the
strategies with warming-up on first 10,000 steps
(Vaswani et al., 2017). The final threshold in ex-
traction is 0.65 for CNN/DM, 0.58 for NYT and
0.64 for Newsroom, with the highest ROUGE-1
score individually. A higher threshold will be with

2https://github.com/huggingface/transformers
3https://github.com/nlpyang/PreSumm

more concise summary and the lower threshold will
return more information.

4.3 Baselines
Extractive Methods: Oracle is the extracted
summary according to the ground-truth labels.
Lead is a base method for extractive text sum-
marization that chooses first several sentences
as a summary. SummaRuNNer takes content,
salience, novelty, and position of each sentence
into consideration when deciding if a sentence
should be included in the extractive summary. PN-
BERT tries to employ the unsupervised transfer-
able knowledge. BERTSUMEXT applies pre-
trained BERT in text summarization and proposes a
general framework for both extractive and abstrac-
tive models. MATCHSUM is a two-stage method
for extract-then-match, and the first-stage is BERT-
SUMEXT.

Abstractive Methods: ABS is the normal ar-
chitecture with RNN-based encoder and decoder.
PGC augments the standard Seq2Seq attentional
model with pointer and coverage mechanisms.
TransformerABS employs Transformer in text
summarization. MASS proposes masked Seq2Seq
pre-training for encoder-decoder. UniLM presents
unified pre-trained language model, that can be fine-
tuned for summarization. BART, and Prophet-
Net are pre-trained on large unlabeled data and
perform excellent performance with Transformer
architecture. PEGASUS proposes Transformer-
based models with extracted gap-sentences for ab-
stractive summarization.

Specifically, these Transformer-based ap-
proaches are divided into Base and Large
versions, according to the layers of Transformer.

5 Analysis

5.1 Rouge Scores
The experiment results on three benchmark datasets
are shown in Table 3. There are ignored positions
for Newsroom(Ext), which is designed for extrac-
tive approaches, eliminating the demanding of ab-
stractive ones. It is obvious that HAHSum almost
outperforms all the baselines across most of the
evaluation metrics. For CNN/DM, there is little
gap between the performance of extractive and ab-
stractive architectures, particularly demonstrating
the popularity and generality of this dataset. While
NYT prefers to abstractive methods, and NEWS-
ROOM(Ext) is constructed by extracting sentences
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Models
CNN/DM NYT Newsroom (Ext)

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Abstractive

ABS (2015) 35.46 13.30 32.65 42.78 25.61 35.26 6.1 0.2 5.4
PGC (2017) 39.53 17.28 36.38 43.93 26.85 38.67 39.1 27.9 36.2
TransformerABS (2017) 40.21 17.76 37.09 45.36 27.34 39.53 40.3 28.7 36.5
MASSLarge (2019) 43.05 20.02 40.08 - - - - - -
UniLMLarge (2019) 43.33 20.21 40.51 - - - - - -
BARTLarge (2019) 44.16 21.28 40.90 48.73 29.25 44.48 - - -
PEGASUSLarge (2019a) 44.17 21.47 41.11 - - - - - -
ProphetNetLarge (2020) 44.20 21.17 41.30 - - - - - -

Extractive

Oracle 55.61 32.84 51.88 64.22 44.57 57.27 - - -
Lead 40.42 17.62 36.67 41.80 22.60 35.00 53.1 49.0 52.4
SummaRuNNer (2017) 39.60 16.20 35.30 42.37 23.89 38.74 48.96 44.33 49.57
Exconsumm (2019) 41.7 18.6 37.8 43.18 24.43 38.92 68.4 62.9 67.3
PNBERTBase (2019a) 42.69 19.60 38.85 - - - - - -
BERTSUMEXTLarge (2019) 43.85 20.34 39.90 48.51 30.27 44.65 70.85 67.03 69.61
MATCHSUMBase (2020) 44.41 20.86 40.55 - - - - - -
HAHSumLarge(Ours) 44.68 21.30 40.75 49.36 31.41 44.97 71.31 68.75 70.83

Table 3: Automatic Evaluation or ROUGE

directly. For extractive approaches, HAHSum,
MATCHSUM, and BERTSUMEXT are outstand-
ing with the power of pre-trained BERT-like mod-
els. For abstractive methods, these variants of
Transformer perform extremely with deep archi-
tectures and large-scale unlabeled corpus.

HAHSum outperforms all other extractive ap-
proaches for that: 1) HAHSum achieves improve-
ments to mitigate the redundancy bias by measur-
ing salience and redundancy simultaneously, while
this would not be possible with any framework in
the autoregressive literature because salience and
redundancy are treated as two different processes
due to the dependency among target labels. 2)
The promising results of heterogeneous sequence-
graph models outperform pure sequence models.
Sequence encoders with a graph component can
reason about long-distance relationships in weakly
structured data such as text, which requires non-
trivial understanding of the input, while attentive
sequential architectures prefer to calculate the rele-
vance merely.

5.2 Ablation Studies
We propose several strategies to improve the per-
formance by relieving the semantic sparsity and
redundancy bias, including abstract layer(AL), the
iterative redundancy layer(RL), and pre-trained AL-
BERT. To investigate the influence of these factors,

Models R-1 R-2 R-L

HAHSum 44.68 21.30 40.75
w/o AL 44.35 20.98 40.49
w/o RL 44.49 21.11 40.58
w/o ALBERT 44.57 21.14 40.53

Table 4: Ablation Study on CNN/DM Test Set

we conduct the experiments and list the results
in Table 4. Significantly, AL is more important
than RL, for the reason that there are lots of mean-
ingless named entities. Besides, RL mechanism
enlarges the advantage of extraction without top-k
strategy, for there are more than 40% documents in
CNN/DM contains more or less than 3-sentences
oracle summary. As shown in Table 6, HAHSum
predicts sequence exactly with two sentences, same
as the oracle summary. While BERTSUMEXT ex-
tracts top-3 sentences strictly, in spite of the inac-
curateness and redundancy.

5.3 Human Evaluation for Summarization

It is not enough only relying on the ROUGE eval-
uation for a summarization system, although the
ROUGE correlates well with human judgments
(Owczarzak et al., 2012). To evaluate the perfor-
mance of HAHSum more accurately, we design
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Models 1st 2nd 3rd 4th 5th MeanR

SummaRuNNer 0.14 0.27 0.24 0.22 0.13 2.93
BERTSUMEXT 0.20 0.28 0.31 0.16 0.05 2.58
MATCHSUM 0.24 0.36 0.16 0.15 0.09 2.49
HAHSum 0.45 0.34 0.18 0.03 0.00 2.24
Ground-Truth 0.70 0.21 0.05 0.04 0.00 1.43

Table 5: Human evaluation on Daily Mail.

an Amazon Mechanical Turk experiment based
on ranking method. Following Cheng and Lapata
(2016); Narayan et al. (2018); Zhang et al. (2019b),
firstly, we randomly select 40 samples from Daily
Mail test set. Then the human participants are
presented with a original document and a list of
corresponding summaries produced by different
model systems. Participants are requested to rank
these summaries (ties allowed) by taking informa-
tiveness (Can the summary capture the important
information from the document) and fluency (Is the
summary grammatical) into account. Each docu-
ment is annotated by three different participants
separately.

Following the previous work, the input arti-
cle and ground truth summaries are also shown
to the human participants in addition to the
four model summaries (SummaRuNNer, BERT-
SUMEXT, MATCHSUM and HAHSum). From
the results shown in Table 5, we can see that HAH-
Sum is better in relevance compared with others.

5.4 Visualization

We visualize the learned embedding of word and
sentence nodes in a two-dimensional space by ap-
plying the t-SNE algorithm. We randomly select
500 continuous word nodes (approximately 30 sen-
tences in a document) and 1000 sentence nodes
from BERTSUMEXT and HAHSum separately.
As shown in Figure 2, for word nodes, the darkness
determines it’s position in one document; while
for sentence nodes, red points are the sentences
with label 1, and green points are with label 0. The
result shows: 1) It is amazing that sentence-level
summarization constrains word representations to
be shared across whole sentence, and there are ob-
viously word clusters in BERTSUMEXT; 2) The
word clusters are more distinct and meaningful in
HAHSum equipped with abstract layer and GAT;
3) Intuitively, the redundancy layer has particularly
strong representation power and generalizability,
for that oracle sentence nodes in HAHSum are easy
to identify, without autoregressive formalism used

for capturing sentence-level redundancy.
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Figure 2: T-SNE Visualization on CNN/DM Test Set

Source Document (truncated): built at a cost of # 1 billion, new broadcast-
ing house is the jewel in the crown of the bbc and the setting for its self-
mocking satire w1a. (...) new broadcasting house is home to three 24-hour
news channels, nine radio networks and 6,000 staff.

Oracle Summary: new broadcasting house was opened by the queen in

2013–four years behind schedule and at least #55 million over budget.

the bbc has admitted it ‘occasionally’ runs out of meeting rooms in its #

1billion new broadcasting house

HAHSum: new broadcasting house was opened by the queen in

2013–four years behind schedule and at least #55 million over budget.

the bbc has admitted it ‘occasionally’ runs out of meeting rooms in its #

1billion new broadcasting house

BERTSUMEXT: new broadcasting house was opened by the queen in

2013–four years behind schedule and at least #55 million over budget.

another said: ‘it’s bonkers to hold meetings across the street.’

a bbc spokesman said: ‘it is occasionally necessary to book nearby venues,

especially for larger meetings.

Table 6: Case Study on CNN/DM Test Set

6 Conclusion

In this paper, we propose hierarchical attentive
heterogeneous graph, aiming to advance text sum-
marization by measuring salience and redundancy
simultaneously. Our approach model redundancy
information by iteratively update the sentence infor-
mation with message passing in redundancy-aware
graph. As a result, HAHSum produces more fo-
cused summaries with fewer superfluous and the
performance improvements are more pronounced
on more extractive datasets.
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